File size: 25,114 Bytes
53eb596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6997e14b",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Endometriosis\"\n",
    "cohort = \"GSE37837\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Endometriosis\"\n",
    "in_cohort_dir = \"../../input/GEO/Endometriosis/GSE37837\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Endometriosis/GSE37837.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Endometriosis/gene_data/GSE37837.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Endometriosis/clinical_data/GSE37837.csv\"\n",
    "json_path = \"../../output/preprocess/Endometriosis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "02b8386e",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "21e29777",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "86961c98",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3d721f7d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Check if gene expression data is available\n",
    "# From the background information, we see this dataset contains genome-wide expression analysis\n",
    "# using Agilent whole human genome oligo microarray\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Determine variable availability and create conversion functions\n",
    "\n",
    "# 2.1 Trait Data\n",
    "# Here, endometriosis status can be determined from the 'tissue' field (row 2)\n",
    "# Looking at the unique values, we can see \"Autologous_eutopic\" vs \"Endometrioma_ectopic\"\n",
    "trait_row = 2\n",
    "\n",
    "def convert_trait(value):\n",
    "    if isinstance(value, str) and ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    if isinstance(value, str) and \"Endometrioma_ectopic\" in value:\n",
    "        return 1  # Endometriotic tissue\n",
    "    elif isinstance(value, str) and \"Autologous_eutopic\" in value:\n",
    "        return 0  # Normal endometrial tissue\n",
    "    return None\n",
    "\n",
    "# 2.2 Age Data\n",
    "# Age is available in row 0\n",
    "age_row = 0\n",
    "\n",
    "def convert_age(value):\n",
    "    if isinstance(value, str) and ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    try:\n",
    "        if isinstance(value, str):\n",
    "            # Extract numeric age value\n",
    "            age = int(value.split()[0])\n",
    "            return age  # Return as continuous value\n",
    "    except:\n",
    "        pass\n",
    "    return None\n",
    "\n",
    "# 2.3 Gender Data\n",
    "# All samples are from females according to row 1\n",
    "# Since this is a constant feature (only one value), we'll mark it as not available\n",
    "gender_row = None\n",
    "\n",
    "def convert_gender(value):\n",
    "    # Not needed since gender is not variable in this dataset, but included for completeness\n",
    "    if isinstance(value, str) and ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    if isinstance(value, str) and \"female\" in value.lower():\n",
    "        return 0\n",
    "    elif isinstance(value, str) and \"male\" in value.lower():\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save metadata using the validate_and_save_cohort_info function\n",
    "# Determine if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save initial cohort info\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Extract clinical features if trait data is available\n",
    "if trait_row is not None:\n",
    "    # The Sample Characteristics Dictionary was provided in the previous step\n",
    "    sample_chars = {0: ['age (y): 29', 'age (y): 40', 'age (y): 33', 'age (y): 45', 'age (y): 24', 'age (y): 38', 'age (y): 28', 'age (y): 25', 'age (y): 31', 'age (y): 37', 'age (y): 30', 'age (y): 34'], 1: ['gender: female (fertile)'], 2: ['tissue: Autologous_eutopic', 'tissue: Endometrioma_ectopic'], 3: ['subject id: E17', 'subject id: E20', 'subject id: E23', 'subject id: E26', 'subject id: E31', 'subject id: E32', 'subject id: E33', 'subject id: E40', 'subject id: E43', 'subject id: E48', 'subject id: E49', 'subject id: E52', 'subject id: E56', 'subject id: E57', 'subject id: E68', 'subject id: E70', 'subject id: E73', 'subject id: E75'], 4: ['menstrual phase: Proliferative', 'menstrual phase: Secretory'], 5: ['endometrioma severity stage: Severe (stage 4)', 'endometrioma severity stage: Moderate (stage 3)'], 6: ['parity: Pregnancy_1; live offspriing_1', 'parity: Pregnancy_6; live offspriing_6', 'parity: Pregnancy_3; live offspriing_3', 'parity: Pregnancy_3; live offspriing_2', 'parity: Pregnancy_2; live offspriing_1', 'parity: Pregnancy_4; live offspriing_2', 'parity: Pregnancy_2; live offspriing_2', 'parity: Pregnancy_4; live offspriing_4']}\n",
    "    \n",
    "    # First, let's create a dataframe where rows are the feature indices and columns are the sample IDs\n",
    "    # Start with an empty list to hold the sample IDs\n",
    "    sample_ids = []\n",
    "    # Extract subject IDs from row 3\n",
    "    for sample_id_str in sample_chars[3]:\n",
    "        if ':' in sample_id_str:\n",
    "            sample_id = sample_id_str.split(':', 1)[1].strip()\n",
    "            sample_ids.append(sample_id)\n",
    "    \n",
    "    # Create an empty dataframe with rows as feature indices and columns as sample IDs\n",
    "    clinical_data = pd.DataFrame(index=sample_chars.keys(), columns=sample_ids)\n",
    "    \n",
    "    # Now fill the dataframe\n",
    "    # For each feature row and sample, determine the appropriate value\n",
    "    for row_idx, values in sample_chars.items():\n",
    "        for sample_id in sample_ids:\n",
    "            # For each sample, find the most appropriate value\n",
    "            # For now, we'll just use the first value in the list\n",
    "            if values:\n",
    "                clinical_data.loc[row_idx, sample_id] = values[0]\n",
    "    \n",
    "    # Use geo_select_clinical_features to extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical features\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of clinical data:\")\n",
    "    for key, value in preview.items():\n",
    "        print(f\"{key}: {value}\")\n",
    "    \n",
    "    # Save the extracted clinical features to file\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f8842678",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7bb12fef",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ee466cb3",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bdcf0926",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Observing the gene identifiers in the data\n",
    "# Based on the preview, we see identifiers like 'A_23_P100001' which are Agilent microarray probe IDs, \n",
    "# not standard human gene symbols\n",
    "# These IDs need to be mapped to gene symbols for biological interpretation\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "16b1a1f6",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a91eadb3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ae7fa827",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a63aa368",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Examine the gene annotation to identify mapping columns\n",
    "# From the preview, we can see that 'ID' in the gene annotation corresponds to the probe identifiers\n",
    "# 'GENE_SYMBOL' contains the human gene symbols we want to map to\n",
    "\n",
    "# 1. Extract the mapping between probe IDs and gene symbols using the get_gene_mapping function\n",
    "probe_col = 'ID'\n",
    "gene_symbol_col = 'GENE_SYMBOL'\n",
    "gene_mapping = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col)\n",
    "\n",
    "# 2. Print a sample of the mapping to verify\n",
    "print(\"Gene mapping preview (probe ID to gene symbol):\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level data to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# 4. Preview the first few rows of the gene expression data\n",
    "print(\"\\nGene expression data preview after mapping:\")\n",
    "print(gene_data.head())\n",
    "\n",
    "# 5. Report the shape of the gene expression data\n",
    "print(f\"\\nGene expression data shape: {gene_data.shape}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ae3fc5c2",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1ffd4abf",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Load clinical features from the previously saved file\n",
    "clinical_features_df = pd.read_csv(out_clinical_data_file, index_col=0)\n",
    "\n",
    "# Create a mapping between GSM IDs and subject IDs from the SOFT file\n",
    "gsm_to_subject_mapping = {}\n",
    "\n",
    "# Extract the mapping from the SOFT file\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for line in f:\n",
    "        if line.startswith('!Sample_geo_accession'):\n",
    "            gsm_id = line.strip().split('=')[1].strip('\"')\n",
    "        elif line.startswith('!Sample_source_name_ch1'):\n",
    "            if 'E' in line:\n",
    "                # Extract subject ID (usually in format \"subject id: E##\")\n",
    "                subject_id = 'E' + line.split('E')[1].split()[0]\n",
    "                gsm_to_subject_mapping[gsm_id] = subject_id\n",
    "\n",
    "# If mapping was created successfully, transform clinical features to align with GSM IDs\n",
    "if gsm_to_subject_mapping:\n",
    "    # Create a new clinical dataframe using GSM IDs as index\n",
    "    new_clinical_df = pd.DataFrame(index=normalized_gene_data.columns)\n",
    "    \n",
    "    # Map trait values from subject IDs to GSM IDs\n",
    "    for gsm_id, subject_id in gsm_to_subject_mapping.items():\n",
    "        if gsm_id in new_clinical_df.index and subject_id in clinical_features_df.columns:\n",
    "            for feature in clinical_features_df.index:\n",
    "                if feature == trait:\n",
    "                    new_clinical_df.loc[gsm_id, feature] = clinical_features_df.loc[feature, subject_id]\n",
    "                elif feature == 'Age':\n",
    "                    new_clinical_df.loc[gsm_id, feature] = clinical_features_df.loc[feature, subject_id]\n",
    "    \n",
    "    clinical_features_df = new_clinical_df.T  # Transpose to get features as rows\n",
    "else:\n",
    "    # If mapping failed, create clinical data from scratch based on SOFT file information\n",
    "    # Extract tissue and age information from the SOFT file\n",
    "    tissue_dict = {}\n",
    "    age_dict = {}\n",
    "    \n",
    "    with gzip.open(soft_file, 'rt') as f:\n",
    "        current_gsm = None\n",
    "        for line in f:\n",
    "            line = line.strip()\n",
    "            if line.startswith('!Sample_geo_accession'):\n",
    "                current_gsm = line.split('=')[1].strip('\"')\n",
    "            elif current_gsm and line.startswith('!Sample_characteristics_ch1'):\n",
    "                value = line.split('=')[1].strip('\"')\n",
    "                if 'tissue:' in value:\n",
    "                    tissue_dict[current_gsm] = 1 if \"Endometrioma_ectopic\" in value else 0\n",
    "                elif 'age (y):' in value:\n",
    "                    try:\n",
    "                        age = int(value.split(':')[1].strip().split()[0])\n",
    "                        age_dict[current_gsm] = age\n",
    "                    except (IndexError, ValueError):\n",
    "                        pass\n",
    "    \n",
    "    # Create clinical dataframe with GSM IDs as index\n",
    "    new_clinical_df = pd.DataFrame(index=normalized_gene_data.columns)\n",
    "    new_clinical_df[trait] = new_clinical_df.index.map(tissue_dict)\n",
    "    new_clinical_df['Age'] = new_clinical_df.index.map(age_dict)\n",
    "    \n",
    "    # Transpose to get features as rows\n",
    "    clinical_features_df = new_clinical_df.T\n",
    "\n",
    "# Now link the clinical and genetic data\n",
    "linked_data = pd.concat([clinical_features_df, normalized_gene_data], axis=0)\n",
    "print(\"Linked data shape:\", linked_data.shape)\n",
    "\n",
    "# Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "\n",
    "# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information.\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains gene expression from eutopic and ectopic endometrial tissues from women with endometriosis.\"\n",
    ")\n",
    "\n",
    "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "29e458a3",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5c0f254e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Create a dictionary to store GSM to tissue type mapping\n",
    "gsm_to_tissue = {}\n",
    "gsm_to_age = {}\n",
    "\n",
    "# Extract tissue type and age for each GSM ID directly from the SOFT file\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    current_gsm = None\n",
    "    for line in f:\n",
    "        line = line.strip()\n",
    "        if line.startswith('!Sample_geo_accession'):\n",
    "            current_gsm = line.split('=')[1].strip('\"')\n",
    "        elif current_gsm and line.startswith('!Sample_characteristics_ch1'):\n",
    "            value = line.split('=')[1].strip('\"')\n",
    "            if 'tissue:' in value:\n",
    "                gsm_to_tissue[current_gsm] = 1 if \"Endometrioma_ectopic\" in value else 0\n",
    "            elif 'age (y):' in value:\n",
    "                try:\n",
    "                    age = int(value.split(':')[1].strip().split()[0])\n",
    "                    gsm_to_age[current_gsm] = age\n",
    "                except (IndexError, ValueError):\n",
    "                    pass\n",
    "\n",
    "# Print sample of mappings to verify data extraction\n",
    "print(f\"Sample of tissue mappings: {list(gsm_to_tissue.items())[:5]}\")\n",
    "print(f\"Sample of age mappings: {list(gsm_to_age.items())[:5]}\")\n",
    "print(f\"Total GSMs with tissue data: {len(gsm_to_tissue)}\")\n",
    "print(f\"Total GSMs with age data: {len(gsm_to_age)}\")\n",
    "\n",
    "# Create clinical data as a DataFrame with appropriate structure for linking\n",
    "# Using the gene expression data column names as sample IDs\n",
    "clinical_data = pd.DataFrame(index=[trait, 'Age'])\n",
    "\n",
    "# Add data for each sample\n",
    "for gsm in normalized_gene_data.columns:\n",
    "    if gsm in gsm_to_tissue:\n",
    "        clinical_data.at[trait, gsm] = gsm_to_tissue[gsm]\n",
    "    if gsm in gsm_to_age:\n",
    "        clinical_data.at['Age', gsm] = gsm_to_age[gsm]\n",
    "\n",
    "# Verify clinical data content\n",
    "print(\"Clinical data shape:\", clinical_data.shape)\n",
    "print(\"Clinical data sample:\")\n",
    "print(clinical_data.iloc[:, :5])\n",
    "\n",
    "# Save clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_data.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Link clinical and genetic data\n",
    "linked_data = pd.concat([clinical_data, normalized_gene_data])\n",
    "print(\"Linked data shape:\", linked_data.shape)\n",
    "\n",
    "# Print a quick check of the trait column\n",
    "trait_values = clinical_data.loc[trait]\n",
    "print(f\"Number of samples with trait values: {sum(~pd.isna(trait_values))}\")\n",
    "print(f\"Trait value counts: {trait_values.value_counts().to_dict()}\")\n",
    "\n",
    "# Handle missing values using the library function\n",
    "processed_df = handle_missing_values(linked_data, trait)\n",
    "print(\"Shape after handling missing values:\", processed_df.shape)\n",
    "\n",
    "# Check if any data remains after handling missing values\n",
    "if processed_df.shape[0] == 0 or processed_df.shape[1] == 0:\n",
    "    print(\"WARNING: No data remains after handling missing values.\")\n",
    "    # In this case, we'll set is_trait_biased to True as the dataset is unusable\n",
    "    is_trait_biased = True\n",
    "    unbiased_linked_data = processed_df\n",
    "else:\n",
    "    # Determine whether the trait and demographic features are severely biased\n",
    "    is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(processed_df, trait)\n",
    "\n",
    "# Conduct quality validation and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains gene expression from eutopic and ectopic endometrial tissues from women with endometriosis.\"\n",
    ")\n",
    "\n",
    "# If the linked data is usable, save it\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Processed data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}