File size: 76,038 Bytes
82732bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "75baecd1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:11:48.036570Z",
     "iopub.status.busy": "2025-03-25T05:11:48.036412Z",
     "iopub.status.idle": "2025-03-25T05:11:48.203876Z",
     "shell.execute_reply": "2025-03-25T05:11:48.203558Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Esophageal_Cancer\"\n",
    "cohort = \"GSE100843\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Esophageal_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Esophageal_Cancer/GSE100843\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Esophageal_Cancer/GSE100843.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Esophageal_Cancer/gene_data/GSE100843.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Esophageal_Cancer/clinical_data/GSE100843.csv\"\n",
    "json_path = \"../../output/preprocess/Esophageal_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7bcd8d54",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "b4318991",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:11:48.205528Z",
     "iopub.status.busy": "2025-03-25T05:11:48.205358Z",
     "iopub.status.idle": "2025-03-25T05:11:48.381110Z",
     "shell.execute_reply": "2025-03-25T05:11:48.380751Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Expression data from nonrandomized trial of vitamin D in Barrett's esophagus\"\n",
      "!Series_summary\t\"Vitamin D deficiency has been associated with increased esophageal cancer risk.  Vitamin D controls many downstream regulators of cellular processes including proliferation, apoptosis, and differentiation.  We evaluated the effects of vitamin D supplementation on global gene expression in patients with Barrett's esophagus.\"\n",
      "!Series_summary\t\"We used microarrays to assess global gene expression in Barrett's esophagus patients who received vitamin D supplementation.\"\n",
      "!Series_overall_design\t\"Patients in Arm A with Barrett's esophagus with high grade dysplasia were given vitamin D3 50,000 IU weekly for 2 weeks.  Patients in Arm B with Barrett's esophagus with low grade dysplasia or no dysplasia were given vitamin D3 50,000 IU weekly for 12 weeks.  In both arms, biopsies were obtained from two sites: Barrett's esophagus segment (IM) and normal squamous mucosa (NSQ) proximal to the segment at 2 timepoints: before (T0) and after (T1) vitamin D supplementation.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: [\"tissue: Barrett's esophagus segment\", 'tissue: Normal esophageal squamous mucosa'], 1: ['arm: Arm A', 'arm: Arm B'], 2: ['timepoint (t0=before, t1=after): T0', 'timepoint (t0=before, t1=after): T1']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fdb4d07a",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "28e84f9d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:11:48.382800Z",
     "iopub.status.busy": "2025-03-25T05:11:48.382664Z",
     "iopub.status.idle": "2025-03-25T05:11:48.391124Z",
     "shell.execute_reply": "2025-03-25T05:11:48.390804Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of extracted clinical data:\n",
      "{0: [1.0], 1: [nan], 2: [nan]}\n",
      "Clinical data saved to ../../output/preprocess/Esophageal_Cancer/clinical_data/GSE100843.csv\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import json\n",
    "import pandas as pd\n",
    "from typing import Callable, Optional, Dict, Any\n",
    "\n",
    "# Step 1: Determine gene expression data availability\n",
    "# From the background information, we can see they used microarrays for gene expression in Barrett's esophagus patients\n",
    "is_gene_available = True  # Microarray data typically contains gene expression data\n",
    "\n",
    "# Step 2: Identify row numbers for trait, age, and gender\n",
    "# From sample characteristics, we see information about tissue, arm, and timepoint\n",
    "\n",
    "# For trait data, we can use the 'tissue' information as it tells us whether it's Barrett's esophagus or normal tissue\n",
    "trait_row = 0  # The tissue information is in row 0\n",
    "\n",
    "# Age and gender are not available in the sample characteristics\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# Step 2.2: Define conversion functions\n",
    "def convert_trait(value_str):\n",
    "    \"\"\"Convert tissue information to binary trait value (1 for Barrett's esophagus, 0 for normal)\"\"\"\n",
    "    if not isinstance(value_str, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon\n",
    "    if \":\" in value_str:\n",
    "        value = value_str.split(\":\", 1)[1].strip()\n",
    "    else:\n",
    "        value = value_str.strip()\n",
    "    \n",
    "    if \"Barrett's esophagus\" in value:\n",
    "        return 1  # Barrett's esophagus (pathological condition)\n",
    "    elif \"Normal\" in value:\n",
    "        return 0  # Normal esophageal squamous mucosa\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value_str):\n",
    "    \"\"\"Placeholder function as age data is not available\"\"\"\n",
    "    return None\n",
    "\n",
    "def convert_gender(value_str):\n",
    "    \"\"\"Placeholder function as gender data is not available\"\"\"\n",
    "    return None\n",
    "\n",
    "# Step 3: Save metadata about dataset usability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Step 4: Extract clinical features if trait_row is not None\n",
    "if trait_row is not None:\n",
    "    # Create a DataFrame from the sample characteristics dictionary provided in the previous step\n",
    "    # The dictionary has row numbers as keys and lists of characteristic values as values\n",
    "    sample_chars = {\n",
    "        0: [\"tissue: Barrett's esophagus segment\", 'tissue: Normal esophageal squamous mucosa'], \n",
    "        1: ['arm: Arm A', 'arm: Arm B'], \n",
    "        2: ['timepoint (t0=before, t1=after): T0', 'timepoint (t0=before, t1=after): T1']\n",
    "    }\n",
    "    \n",
    "    try:\n",
    "        # Convert the dictionary to a format suitable for geo_select_clinical_features\n",
    "        # Each row in the dictionary becomes a column in the DataFrame\n",
    "        clinical_data = pd.DataFrame()\n",
    "        for key, values in sample_chars.items():\n",
    "            # Create a series for each characteristic\n",
    "            clinical_data[key] = values\n",
    "        \n",
    "        # Extract clinical features using the library function\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the extracted clinical data\n",
    "        preview = preview_df(selected_clinical_df)\n",
    "        print(\"Preview of extracted clinical data:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Create the output directory if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        \n",
    "        # Save the extracted clinical data\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error processing clinical data: {e}\")\n",
    "else:\n",
    "    print(\"Trait data is not available. Skipping clinical feature extraction.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c391cb49",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "512051be",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:11:48.392090Z",
     "iopub.status.busy": "2025-03-25T05:11:48.391973Z",
     "iopub.status.idle": "2025-03-25T05:11:48.660025Z",
     "shell.execute_reply": "2025-03-25T05:11:48.659630Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found data marker at line 64\n",
      "Header line: \"ID_REF\"\t\"GSM2694849\"\t\"GSM2694850\"\t\"GSM2694851\"\t\"GSM2694852\"\t\"GSM2694853\"\t\"GSM2694854\"\t\"GSM2694855\"\t\"GSM2694856\"\t\"GSM2694857\"\t\"GSM2694858\"\t\"GSM2694859\"\t\"GSM2694860\"\t\"GSM2694861\"\t\"GSM2694862\"\t\"GSM2694863\"\t\"GSM2694864\"\t\"GSM2694865\"\t\"GSM2694866\"\t\"GSM2694867\"\t\"GSM2694868\"\t\"GSM2694869\"\t\"GSM2694870\"\t\"GSM2694871\"\t\"GSM2694872\"\t\"GSM2694873\"\t\"GSM2694874\"\t\"GSM2694875\"\t\"GSM2694876\"\t\"GSM2694877\"\t\"GSM2694878\"\t\"GSM2694879\"\t\"GSM2694880\"\t\"GSM2694881\"\t\"GSM2694882\"\t\"GSM2694883\"\t\"GSM2694884\"\t\"GSM2694885\"\t\"GSM2694886\"\t\"GSM2694887\"\t\"GSM2694888\"\t\"GSM2694889\"\t\"GSM2694890\"\t\"GSM2694891\"\t\"GSM2694892\"\t\"GSM2694893\"\t\"GSM2694894\"\t\"GSM2694895\"\t\"GSM2694896\"\t\"GSM2694897\"\t\"GSM2694898\"\t\"GSM2694899\"\t\"GSM2694900\"\t\"GSM2694901\"\t\"GSM2694902\"\t\"GSM2694903\"\t\"GSM2694904\"\t\"GSM2694905\"\t\"GSM2694906\"\t\"GSM2694907\"\t\"GSM2694908\"\t\"GSM2694909\"\t\"GSM2694910\"\t\"GSM2694911\"\t\"GSM2694912\"\t\"GSM2694913\"\t\"GSM2694914\"\t\"GSM2694915\"\t\"GSM2694916\"\t\"GSM2694917\"\t\"GSM2694918\"\t\"GSM2694919\"\t\"GSM2694920\"\t\"GSM2694921\"\t\"GSM2694922\"\t\"GSM2694923\"\t\"GSM2694924\"\n",
      "First data line: 7892501\t3.398631627\t3.464622982\t3.819329576\t3.54726664\t4.372728292\t4.005182731\t3.580611758\t3.484274002\t3.572563019\t3.853759137\t3.834269525\t3.771435235\t3.701265409\t3.775290851\t3.763615815\t3.652581476\t3.390109976\t3.877028066\t3.268195599\t3.838363704\t3.496450436\t4.038807869\t3.595268513\t3.888283129\t3.620973485\t4.092445818\t3.58034849\t3.704407231\t3.483703072\t3.618764668\t3.628694828\t3.696671085\t3.647390352\t3.815859698\t4.101673355\t4.250557122\t3.820872572\t3.976187922\t3.741956394\t3.786392705\t3.807877935\t3.813879653\t3.809149694\t3.540056077\t5.032102133\t3.596134785\t3.803431585\t3.490813012\t3.790779436\t3.527891225\t3.783955866\t3.434754273\t3.610670242\t3.8805058\t4.387400737\t3.500280421\t3.629632304\t3.922236418\t4.425519645\t3.634407255\t4.405922522\t3.815022062\t3.46131541\t3.443781463\t3.543499136\t3.654112146\t3.557347223\t4.058295293\t3.608630365\t4.710210221\t3.847579291\t3.856559436\t3.716984817\t3.80231157\t3.917799135\t3.59612307\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['7892501', '7892502', '7892503', '7892504', '7892505', '7892506',\n",
      "       '7892507', '7892508', '7892509', '7892510', '7892511', '7892512',\n",
      "       '7892513', '7892514', '7892515', '7892516', '7892517', '7892518',\n",
      "       '7892519', '7892520'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8d2550fe",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "a7348a65",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:11:48.661846Z",
     "iopub.status.busy": "2025-03-25T05:11:48.661720Z",
     "iopub.status.idle": "2025-03-25T05:11:48.663668Z",
     "shell.execute_reply": "2025-03-25T05:11:48.663374Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examine the identifiers in the gene expression data\n",
    "# Based on the preview, we see identifiers like 7892501, 7892502, etc.\n",
    "# These are numeric identifiers, not standard human gene symbols (which would be like BRCA1, TP53, etc.)\n",
    "# These appear to be probe IDs from a microarray platform that need to be mapped to gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "846b467e",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "5fce5b82",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:11:48.665461Z",
     "iopub.status.busy": "2025-03-25T05:11:48.665326Z",
     "iopub.status.idle": "2025-03-25T05:11:49.783442Z",
     "shell.execute_reply": "2025-03-25T05:11:49.782993Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Examining SOFT file structure:\n",
      "Line 0: ^DATABASE = GeoMiame\n",
      "Line 1: !Database_name = Gene Expression Omnibus (GEO)\n",
      "Line 2: !Database_institute = NCBI NLM NIH\n",
      "Line 3: !Database_web_link = http://www.ncbi.nlm.nih.gov/geo\n",
      "Line 4: !Database_email = [email protected]\n",
      "Line 5: ^SERIES = GSE100843\n",
      "Line 6: !Series_title = Expression data from nonrandomized trial of vitamin D in Barrett's esophagus\n",
      "Line 7: !Series_geo_accession = GSE100843\n",
      "Line 8: !Series_status = Public on Jul 06 2017\n",
      "Line 9: !Series_submission_date = Jul 05 2017\n",
      "Line 10: !Series_last_update_date = Jul 25 2021\n",
      "Line 11: !Series_pubmed_id = 28922414\n",
      "Line 12: !Series_summary = Vitamin D deficiency has been associated with increased esophageal cancer risk.  Vitamin D controls many downstream regulators of cellular processes including proliferation, apoptosis, and differentiation.  We evaluated the effects of vitamin D supplementation on global gene expression in patients with Barrett's esophagus.\n",
      "Line 13: !Series_summary = We used microarrays to assess global gene expression in Barrett's esophagus patients who received vitamin D supplementation.\n",
      "Line 14: !Series_overall_design = Patients in Arm A with Barrett's esophagus with high grade dysplasia were given vitamin D3 50,000 IU weekly for 2 weeks.  Patients in Arm B with Barrett's esophagus with low grade dysplasia or no dysplasia were given vitamin D3 50,000 IU weekly for 12 weeks.  In both arms, biopsies were obtained from two sites: Barrett's esophagus segment (IM) and normal squamous mucosa (NSQ) proximal to the segment at 2 timepoints: before (T0) and after (T1) vitamin D supplementation.\n",
      "Line 15: !Series_type = Expression profiling by array\n",
      "Line 16: !Series_contributor = Linda,C,Cummings\n",
      "Line 17: !Series_contributor = Patrick,,Leahy\n",
      "Line 18: !Series_sample_id = GSM2694849\n",
      "Line 19: !Series_sample_id = GSM2694850\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "{'ID': [7896736, 7896738, 7896740, 7896742, 7896744], 'GB_LIST': [nan, nan, 'NM_001004195,NM_001005240,NM_001005484,BC136848,BC136867,BC136907,BC136908', 'NR_024437,XM_006711854,XM_006726377,XR_430662,AK298283,AL137655,BC032332,BC118988,BC122537,BC131690,NM_207366,AK301928,BC071667', 'NM_001005221,NM_001005224,NM_001005277,NM_001005504,BC137547,BC137568'], 'SPOT_ID': ['chr1:53049-54936', 'chr1:63015-63887', 'chr1:69091-70008', 'chr1:334129-334296', 'chr1:367659-368597'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'RANGE_GB': ['NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10'], 'RANGE_STRAND': ['+', '+', '+', '+', '+'], 'RANGE_START': ['53049', '63015', '69091', '334129', '367659'], 'RANGE_STOP': ['54936', '63887', '70008', '334296', '368597'], 'total_probes': [7, 31, 24, 6, 36], 'gene_assignment': ['---', 'ENST00000328113 // OR4G2P // olfactory receptor, family 4, subfamily G, member 2 pseudogene // --- // --- /// ENST00000492842 // OR4G11P // olfactory receptor, family 4, subfamily G, member 11 pseudogene // --- // --- /// ENST00000588632 // OR4G1P // olfactory receptor, family 4, subfamily G, member 1 pseudogene // --- // ---', 'NM_001004195 // OR4F4 // olfactory receptor, family 4, subfamily F, member 4 // 15q26.3 // 26682 /// NM_001005240 // OR4F17 // olfactory receptor, family 4, subfamily F, member 17 // 19p13.3 // 81099 /// NM_001005484 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000318050 // OR4F17 // olfactory receptor, family 4, subfamily F, member 17 // 19p13.3 // 81099 /// ENST00000326183 // OR4F4 // olfactory receptor, family 4, subfamily F, member 4 // 15q26.3 // 26682 /// ENST00000335137 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000585993 // OR4F17 // olfactory receptor, family 4, subfamily F, member 17 // 19p13.3 // 81099 /// BC136848 // OR4F17 // olfactory receptor, family 4, subfamily F, member 17 // 19p13.3 // 81099 /// BC136867 // OR4F17 // olfactory receptor, family 4, subfamily F, member 17 // 19p13.3 // 81099 /// BC136907 // OR4F4 // olfactory receptor, family 4, subfamily F, member 4 // 15q26.3 // 26682 /// BC136908 // OR4F4 // olfactory receptor, family 4, subfamily F, member 4 // 15q26.3 // 26682', 'NR_024437 // LOC728323 // uncharacterized LOC728323 // 2q37.3 // 728323 /// XM_006711854 // LOC101060626 // F-box only protein 25-like // --- // 101060626 /// XM_006726377 // LOC101060626 // F-box only protein 25-like // --- // 101060626 /// XR_430662 // LOC101927097 // uncharacterized LOC101927097 // --- // 101927097 /// ENST00000279067 // LINC00266-1 // long intergenic non-protein coding RNA 266-1 // 20q13.33 // 140849 /// ENST00000431812 // LOC101928706 // uncharacterized LOC101928706 // --- // 101928706 /// ENST00000431812 // LOC101929823 // uncharacterized LOC101929823 // --- // 101929823 /// ENST00000433444 // LOC728323 // uncharacterized LOC728323 // 2q37.3 // 728323 /// ENST00000436899 // LINC00266-3 // long intergenic non-protein coding RNA 266-3 // --- // --- /// ENST00000445252 // LINC00266-1 // long intergenic non-protein coding RNA 266-1 // 20q13.33 // 140849 /// ENST00000455207 // LOC101928706 // uncharacterized LOC101928706 // --- // 101928706 /// ENST00000455207 // LOC101929823 // uncharacterized LOC101929823 // --- // 101929823 /// ENST00000455464 // LOC101928706 // uncharacterized LOC101928706 // --- // 101928706 /// ENST00000455464 // LOC101929823 // uncharacterized LOC101929823 // --- // 101929823 /// ENST00000456398 // LOC728323 // uncharacterized LOC728323 // 2q37.3 // 728323 /// ENST00000601814 // LOC101928706 // uncharacterized LOC101928706 // --- // 101928706 /// ENST00000601814 // LOC101929823 // uncharacterized LOC101929823 // --- // 101929823 /// AK298283 // LOC728323 // uncharacterized LOC728323 // 2q37.3 // 728323 /// AL137655 // LOC100134822 // uncharacterized LOC100134822 // --- // 100134822 /// BC032332 // PCMTD2 // protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 2 // 20q13.33 // 55251 /// BC118988 // LINC00266-1 // long intergenic non-protein coding RNA 266-1 // 20q13.33 // 140849 /// BC122537 // LINC00266-1 // long intergenic non-protein coding RNA 266-1 // 20q13.33 // 140849 /// BC131690 // LOC728323 // uncharacterized LOC728323 // 2q37.3 // 728323 /// NM_207366 // SEPT14 // septin 14 // 7p11.2 // 346288 /// ENST00000388975 // SEPT14 // septin 14 // 7p11.2 // 346288 /// ENST00000427373 // LINC00266-4P // long intergenic non-protein coding RNA 266-4, pseudogene // --- // --- /// ENST00000431796 // LOC728323 // uncharacterized LOC728323 // 2q37.3 // 728323 /// ENST00000509776 // LINC00266-2P // long intergenic non-protein coding RNA 266-2, pseudogene // --- // --- /// ENST00000570230 // LOC101929008 // uncharacterized LOC101929008 // --- // 101929008 /// ENST00000570230 // LOC101929038 // uncharacterized LOC101929038 // --- // 101929038 /// ENST00000570230 // LOC101930130 // uncharacterized LOC101930130 // --- // 101930130 /// ENST00000570230 // LOC101930567 // uncharacterized LOC101930567 // --- // 101930567 /// AK301928 // SEPT14 // septin 14 // 7p11.2 // 346288', 'NM_001005221 // OR4F29 // olfactory receptor, family 4, subfamily F, member 29 // 1p36.33 // 729759 /// NM_001005224 // OR4F3 // olfactory receptor, family 4, subfamily F, member 3 // 5q35.3 // 26683 /// NM_001005277 // OR4F16 // olfactory receptor, family 4, subfamily F, member 16 // 1p36.33 // 81399 /// NM_001005504 // OR4F21 // olfactory receptor, family 4, subfamily F, member 21 // 8p23.3 // 441308 /// ENST00000320901 // OR4F21 // olfactory receptor, family 4, subfamily F, member 21 // 8p23.3 // 441308 /// ENST00000332831 // OR4F3 // olfactory receptor, family 4, subfamily F, member 3 // 5q35.3 // 26683 /// ENST00000332831 // OR4F16 // olfactory receptor, family 4, subfamily F, member 16 // 1p36.33 // 81399 /// ENST00000332831 // OR4F29 // olfactory receptor, family 4, subfamily F, member 29 // 1p36.33 // 729759 /// ENST00000402444 // OR4F7P // olfactory receptor, family 4, subfamily F, member 7 pseudogene // --- // --- /// ENST00000405102 // OR4F1P // olfactory receptor, family 4, subfamily F, member 1 pseudogene // --- // --- /// ENST00000424047 // OR4F2P // olfactory receptor, family 4, subfamily F, member 2 pseudogene // --- // --- /// ENST00000426406 // OR4F3 // olfactory receptor, family 4, subfamily F, member 3 // 5q35.3 // 26683 /// ENST00000426406 // OR4F16 // olfactory receptor, family 4, subfamily F, member 16 // 1p36.33 // 81399 /// ENST00000426406 // OR4F29 // olfactory receptor, family 4, subfamily F, member 29 // 1p36.33 // 729759 /// ENST00000456475 // OR4F3 // olfactory receptor, family 4, subfamily F, member 3 // 5q35.3 // 26683 /// ENST00000456475 // OR4F16 // olfactory receptor, family 4, subfamily F, member 16 // 1p36.33 // 81399 /// ENST00000456475 // OR4F29 // olfactory receptor, family 4, subfamily F, member 29 // 1p36.33 // 729759 /// ENST00000559128 // OR4F28P // olfactory receptor, family 4, subfamily F, member 28 pseudogene // --- // --- /// BC137547 // OR4F3 // olfactory receptor, family 4, subfamily F, member 3 // 5q35.3 // 26683 /// BC137547 // OR4F16 // olfactory receptor, family 4, subfamily F, member 16 // 1p36.33 // 81399 /// BC137547 // OR4F29 // olfactory receptor, family 4, subfamily F, member 29 // 1p36.33 // 729759 /// BC137568 // OR4F3 // olfactory receptor, family 4, subfamily F, member 3 // 5q35.3 // 26683 /// BC137568 // OR4F16 // olfactory receptor, family 4, subfamily F, member 16 // 1p36.33 // 81399 /// BC137568 // OR4F29 // olfactory receptor, family 4, subfamily F, member 29 // 1p36.33 // 729759 /// ENST00000589943 // OR4F8P // olfactory receptor, family 4, subfamily F, member 8 pseudogene // --- // ---'], 'mrna_assignment': ['NONHSAT060105 // NONCODE // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 7 // 7 // 0', 'ENST00000328113 // ENSEMBL // havana:known chromosome:GRCh38:15:101926805:101927707:-1 gene:ENSG00000183909 gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 100 // 100 // 31 // 31 // 0 /// ENST00000492842 // ENSEMBL // havana:known chromosome:GRCh38:1:62948:63887:1 gene:ENSG00000240361 gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 100 // 100 // 31 // 31 // 0 /// ENST00000588632 // ENSEMBL // havana:known chromosome:GRCh38:19:104535:105471:1 gene:ENSG00000267310 gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 100 // 100 // 31 // 31 // 0 /// NONHSAT000016 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 31 // 31 // 0 /// NONHSAT051704 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 31 // 31 // 0 /// NONHSAT060106 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 31 // 31 // 0', 'NM_001004195 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 4 (OR4F4), mRNA. // chr1 // 100 // 100 // 24 // 24 // 0 /// NM_001005240 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 17 (OR4F17), mRNA. // chr1 // 100 // 100 // 24 // 24 // 0 /// NM_001005484 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 24 // 24 // 0 /// ENST00000318050 // ENSEMBL // ensembl:known chromosome:GRCh38:19:110643:111696:1 gene:ENSG00000176695 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 24 // 24 // 0 /// ENST00000326183 // ENSEMBL // ensembl_havana_transcript:known chromosome:GRCh38:15:101922042:101923095:-1 gene:ENSG00000177693 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 24 // 24 // 0 /// ENST00000335137 // ENSEMBL // ensembl_havana_transcript:known chromosome:GRCh38:1:69091:70008:1 gene:ENSG00000186092 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 24 // 24 // 0 /// ENST00000585993 // ENSEMBL // havana:known chromosome:GRCh38:19:107461:111696:1 gene:ENSG00000176695 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 24 // 24 // 0 /// BC136848 // GenBank // Homo sapiens olfactory receptor, family 4, subfamily F, member 17, mRNA (cDNA clone MGC:168462 IMAGE:9020839), complete cds. // chr1 // 100 // 100 // 24 // 24 // 0 /// BC136867 // GenBank // Homo sapiens olfactory receptor, family 4, subfamily F, member 17, mRNA (cDNA clone MGC:168481 IMAGE:9020858), complete cds. // chr1 // 100 // 100 // 24 // 24 // 0 /// BC136907 // GenBank // Homo sapiens olfactory receptor, family 4, subfamily F, member 4, mRNA (cDNA clone MGC:168521 IMAGE:9020898), complete cds. // chr1 // 100 // 100 // 24 // 24 // 0 /// BC136908 // GenBank // Homo sapiens olfactory receptor, family 4, subfamily F, member 4, mRNA (cDNA clone MGC:168522 IMAGE:9020899), complete cds. // chr1 // 100 // 100 // 24 // 24 // 0 /// ENST00000618231 // ENSEMBL // havana:known chromosome:GRCh38:19:110613:111417:1 gene:ENSG00000176695 gene_biotype:protein_coding transcript_biotype:retained_intron // chr1 // 100 // 88 // 21 // 21 // 0', 'NR_024437 // RefSeq // Homo sapiens uncharacterized LOC728323 (LOC728323), long non-coding RNA. // chr1 // 100 // 100 // 6 // 6 // 0 /// XM_006711854 // RefSeq // PREDICTED: Homo sapiens F-box only protein 25-like (LOC101060626), partial mRNA. // chr1 // 100 // 100 // 6 // 6 // 0 /// XM_006726377 // RefSeq // PREDICTED: Homo sapiens F-box only protein 25-like (LOC101060626), partial mRNA. // chr1 // 100 // 100 // 6 // 6 // 0 /// XR_430662 // RefSeq // PREDICTED: Homo sapiens uncharacterized LOC101927097 (LOC101927097), misc_RNA. // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000279067 // ENSEMBL // ensembl_havana_transcript:known chromosome:GRCh38:20:64290385:64303559:1 gene:ENSG00000149656 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000431812 // ENSEMBL // havana:known chromosome:GRCh38:1:485066:489553:-1 gene:ENSG00000237094 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 83 // 100 // 5 // 6 // 0 /// ENST00000433444 // ENSEMBL // havana:putative chromosome:GRCh38:2:242122293:242138888:1 gene:ENSG00000220804 gene_biotype:transcribed_unprocessed_pseudogene transcript_biotype:processed_transcript // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000436899 // ENSEMBL // havana:known chromosome:GRCh38:6:131910:144885:-1 gene:ENSG00000170590 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000445252 // ENSEMBL // havana:known chromosome:GRCh38:20:64294897:64311371:1 gene:ENSG00000149656 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000455207 // ENSEMBL // havana:known chromosome:GRCh38:1:373182:485208:-1 gene:ENSG00000237094 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000455464 // ENSEMBL // havana:known chromosome:GRCh38:1:476531:497259:-1 gene:ENSG00000237094 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000456398 // ENSEMBL // havana:known chromosome:GRCh38:2:242088633:242140638:1 gene:ENSG00000220804 gene_biotype:transcribed_unprocessed_pseudogene transcript_biotype:processed_transcript // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000601814 // ENSEMBL // havana:known chromosome:GRCh38:1:484832:495476:-1 gene:ENSG00000237094 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// AK298283 // GenBank // Homo sapiens cDNA FLJ60027 complete cds, moderately similar to F-box only protein 25. // chr1 // 100 // 100 // 6 // 6 // 0 /// AL137655 // GenBank // Homo sapiens mRNA; cDNA DKFZp434B2016 (from clone DKFZp434B2016). // chr1 // 100 // 100 // 6 // 6 // 0 /// BC032332 // GenBank // Homo sapiens protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 2, mRNA (cDNA clone MGC:40288 IMAGE:5169056), complete cds. // chr1 // 100 // 100 // 6 // 6 // 0 /// BC118988 // GenBank // Homo sapiens chromosome 20 open reading frame 69, mRNA (cDNA clone MGC:141807 IMAGE:40035995), complete cds. // chr1 // 100 // 100 // 6 // 6 // 0 /// BC122537 // GenBank // Homo sapiens chromosome 20 open reading frame 69, mRNA (cDNA clone MGC:141808 IMAGE:40035996), complete cds. // chr1 // 100 // 100 // 6 // 6 // 0 /// BC131690 // GenBank // Homo sapiens similar to bA476I15.3 (novel protein similar to septin), mRNA (cDNA clone IMAGE:40119684), partial cds. // chr1 // 100 // 100 // 6 // 6 // 0 /// NM_207366 // RefSeq // Homo sapiens septin 14 (SEPT14), mRNA. // chr1 // 50 // 100 // 3 // 6 // 0 /// ENST00000388975 // ENSEMBL // ensembl_havana_transcript:known chromosome:GRCh38:7:55793544:55862789:-1 gene:ENSG00000154997 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 50 // 100 // 3 // 6 // 0 /// ENST00000427373 // ENSEMBL // havana:known chromosome:GRCh38:Y:25378300:25394719:-1 gene:ENSG00000228786 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 67 // 100 // 4 // 6 // 0 /// ENST00000431796 // ENSEMBL // havana:known chromosome:GRCh38:2:242088693:242122405:1 gene:ENSG00000220804 gene_biotype:transcribed_unprocessed_pseudogene transcript_biotype:processed_transcript // chr1 // 60 // 83 // 3 // 5 // 0 /// ENST00000509776 // ENSEMBL // havana:known chromosome:GRCh38:Y:24278681:24291346:1 gene:ENSG00000248792 gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 67 // 100 // 4 // 6 // 0 /// ENST00000570230 // ENSEMBL // havana:known chromosome:GRCh38:16:90157932:90178344:1 gene:ENSG00000260528 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 67 // 100 // 4 // 6 // 0 /// AK301928 // GenBank // Homo sapiens cDNA FLJ59065 complete cds, moderately similar to Septin-10. // chr1 // 50 // 100 // 3 // 6 // 0 /// ENST00000413839 // ENSEMBL // havana:known chromosome:GRCh38:7:45816557:45821064:1 gene:ENSG00000226838 gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 83 // 100 // 5 // 6 // 0 /// ENST00000414688 // ENSEMBL // havana:known chromosome:GRCh38:1:711342:720200:-1 gene:ENSG00000230021 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000419394 // ENSEMBL // havana:known chromosome:GRCh38:1:703685:720194:-1 gene:ENSG00000230021 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000420830 // ENSEMBL // havana:known chromosome:GRCh38:1:243031272:243047869:-1 gene:ENSG00000231512 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 83 // 100 // 5 // 6 // 0 /// ENST00000428915 // ENSEMBL // havana:known chromosome:GRCh38:10:38453181:38466176:1 gene:ENSG00000203496 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000439401 // ENSEMBL // havana:known chromosome:GRCh38:3:198228194:198228376:1 gene:ENSG00000226008 gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000440200 // ENSEMBL // havana:known chromosome:GRCh38:1:601436:720200:-1 gene:ENSG00000230021 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000441245 // ENSEMBL // havana:known chromosome:GRCh38:1:701936:720150:-1 gene:ENSG00000230021 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 67 // 4 // 4 // 0 /// ENST00000445840 // ENSEMBL // havana:known chromosome:GRCh38:1:485032:485211:-1 gene:ENSG00000224813 gene_biotype:transcribed_unprocessed_pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000447954 // ENSEMBL // havana:known chromosome:GRCh38:1:720058:724550:-1 gene:ENSG00000230021 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 83 // 100 // 5 // 6 // 0 /// ENST00000450226 // ENSEMBL // havana:known chromosome:GRCh38:1:243038914:243047875:-1 gene:ENSG00000231512 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 83 // 100 // 5 // 6 // 0 /// ENST00000453405 // ENSEMBL // havana:known chromosome:GRCh38:2:242122287:242122469:1 gene:ENSG00000244528 gene_biotype:processed_pseudogene transcript_biotype:processed_pseudogene // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000477740 // ENSEMBL // havana:known chromosome:GRCh38:1:92230:129217:-1 gene:ENSG00000238009 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 83 // 100 // 5 // 6 // 0 /// ENST00000508026 // ENSEMBL // havana:known chromosome:GRCh38:8:200385:200562:-1 gene:ENSG00000255464 gene_biotype:processed_pseudogene transcript_biotype:processed_pseudogene // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000509192 // ENSEMBL // havana:known chromosome:GRCh38:5:181329241:181342213:1 gene:ENSG00000250765 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000513445 // ENSEMBL // havana:known chromosome:GRCh38:4:118640673:118640858:1 gene:ENSG00000251155 gene_biotype:processed_pseudogene transcript_biotype:processed_pseudogene // chr1 // 83 // 100 // 5 // 6 // 0 /// ENST00000523795 // ENSEMBL // havana:known chromosome:GRCh38:8:192091:200563:-1 gene:ENSG00000250210 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000529266 // ENSEMBL // havana:known chromosome:GRCh38:11:121279:125784:-1 gene:ENSG00000254468 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000587432 // ENSEMBL // havana:known chromosome:GRCh38:19:191212:195696:-1 gene:ENSG00000267237 gene_biotype:transcribed_unprocessed_pseudogene transcript_biotype:processed_transcript // chr1 // 83 // 100 // 5 // 6 // 0 /// ENST00000610542 // ENSEMBL // ensembl:known chromosome:GRCh38:1:120725:133723:-1 gene:ENSG00000238009 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 83 // 100 // 5 // 6 // 0 /// ENST00000612088 // ENSEMBL // ensembl:known chromosome:GRCh38:10:38453181:38466176:1 gene:ENSG00000203496 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000612214 // ENSEMBL // havana:known chromosome:GRCh38:19:186371:191429:-1 gene:ENSG00000267237 gene_biotype:transcribed_unprocessed_pseudogene transcript_biotype:processed_transcript // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000613471 // ENSEMBL // ensembl:known chromosome:GRCh38:1:476738:489710:-1 gene:ENSG00000237094 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000615295 // ENSEMBL // ensembl:known chromosome:GRCh38:5:181329241:181342213:1 gene:ENSG00000250765 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000616585 // ENSEMBL // ensembl:known chromosome:GRCh38:1:711715:724707:-1 gene:ENSG00000230021 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000618096 // ENSEMBL // havana:known chromosome:GRCh38:19:191178:191354:-1 gene:ENSG00000267237 gene_biotype:transcribed_unprocessed_pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000618222 // ENSEMBL // ensembl:known chromosome:GRCh38:6:131910:144885:-1 gene:ENSG00000170590 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000622435 // ENSEMBL // havana:known chromosome:GRCh38:2:242088684:242159382:1 gene:ENSG00000220804 gene_biotype:transcribed_unprocessed_pseudogene transcript_biotype:processed_transcript // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000622626 // ENSEMBL // ensembl:known chromosome:GRCh38:11:112967:125927:-1 gene:ENSG00000254468 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 6 // 6 // 0 /// GENSCAN00000007486 // ENSEMBL // cdna:genscan chromosome:GRCh38:2:242089132:242175655:1 transcript_biotype:protein_coding // chr1 // 100 // 100 // 6 // 6 // 0 /// GENSCAN00000023775 // ENSEMBL // cdna:genscan chromosome:GRCh38:7:45812479:45856081:1 transcript_biotype:protein_coding // chr1 // 100 // 100 // 6 // 6 // 0 /// GENSCAN00000045845 // ENSEMBL // cdna:genscan chromosome:GRCh38:8:166086:213433:-1 transcript_biotype:protein_coding // chr1 // 100 // 100 // 6 // 6 // 0 /// BC071667 // GenBank HTC // Homo sapiens cDNA clone IMAGE:4384656, **** WARNING: chimeric clone ****. // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT000053 // NONCODE // Non-coding transcript identified by NONCODE: Sense No Exonic // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT000055 // NONCODE // Non-coding transcript identified by NONCODE: Sense No Exonic // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT000063 // NONCODE // Non-coding transcript identified by NONCODE: Sense No Exonic // chr1 // 83 // 100 // 5 // 6 // 0 /// NONHSAT000064 // NONCODE // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT000065 // NONCODE // Non-coding transcript identified by NONCODE: Sense No Exonic // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT000086 // NONCODE // Non-coding transcript identified by NONCODE: Sense No Exonic // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT000097 // NONCODE // Non-coding transcript identified by NONCODE: Sense No Exonic // chr1 // 100 // 67 // 4 // 4 // 0 /// NONHSAT000098 // NONCODE // Non-coding transcript identified by NONCODE: Sense No Exonic // chr1 // 83 // 100 // 5 // 6 // 0 /// NONHSAT010578 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 83 // 100 // 5 // 6 // 0 /// NONHSAT012829 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT017180 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT060112 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT078034 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT078035 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT078039 // NONCODE // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT078040 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT078041 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT081035 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT081036 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT094494 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT094497 // NONCODE // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT098010 // NONCODE // Non-coding transcript identified by NONCODE // chr1 // 83 // 100 // 5 // 6 // 0 /// NONHSAT105956 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT105968 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 6 // 6 // 0 /// NONHSAT120472 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 83 // 100 // 5 // 6 // 0 /// NONHSAT124571 // NONCODE // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00001800-XLOC_l2_001331 // Broad TUCP // linc-TP53BP2-4 chr1:-:224133091-224222680 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00001926-XLOC_l2_000004 // Broad TUCP // linc-OR4F16-1 chr1:+:329783-334271 // chr1 // 83 // 100 // 5 // 6 // 0 /// TCONS_l2_00001927-XLOC_l2_000004 // Broad TUCP // linc-OR4F16-1 chr1:+:334139-342806 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00002370-XLOC_l2_000720 // Broad TUCP // linc-ZNF692-5 chr1:-:92229-129217 // chr1 // 83 // 100 // 5 // 6 // 0 /// TCONS_l2_00002386-XLOC_l2_000726 // Broad TUCP // linc-OR4F29-1 chr1:-:637315-655530 // chr1 // 100 // 67 // 4 // 4 // 0 /// TCONS_l2_00002387-XLOC_l2_000726 // Broad TUCP // linc-OR4F29-1 chr1:-:639064-655574 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00002388-XLOC_l2_000726 // Broad TUCP // linc-OR4F29-1 chr1:-:646721-655580 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00002389-XLOC_l2_000726 // Broad TUCP // linc-OR4F29-1 chr1:-:655437-659930 // chr1 // 83 // 100 // 5 // 6 // 0 /// TCONS_l2_00002812-XLOC_l2_001398 // Broad TUCP // linc-PLD5-4 chr1:-:243194573-243211171 // chr1 // 83 // 100 // 5 // 6 // 0 /// TCONS_l2_00003949-XLOC_l2_001561 // Broad TUCP // linc-BMS1-9 chr10:+:38742108-38755311 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00003950-XLOC_l2_001561 // Broad TUCP // linc-BMS1-9 chr10:+:38742265-38764837 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00014349-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243030831-243101574 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00014350-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243030855-243102147 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00014351-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243030868-243101569 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00014352-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243030886-243064759 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00014354-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243030931-243067562 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00014355-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243030941-243102157 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00014357-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243037045-243101538 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00014358-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243058329-243064628 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00015637-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243030783-243082789 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00015638-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243030843-243065243 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00015639-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243030843-243102469 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00015640-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243030843-243102469 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00015641-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243030843-243102469 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00015643-XLOC_l2_007835 // Broad TUCP // linc-ORC6-14 chr2:+:243064443-243081039 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00016828-XLOC_l2_008724 // Broad TUCP // linc-HNF1B-4 chr20:+:62921737-62934707 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00020055-XLOC_l2_010084 // Broad TUCP // linc-MCMBP-2 chr3:+:197937115-197955676 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00025304-XLOC_l2_012836 // Broad TUCP // linc-PDCD2-1 chr6:-:131909-144885 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00025849-XLOC_l2_013383 // Broad TUCP // linc-IGFBP1-1 chr7:+:45831387-45863181 // chr1 // 100 // 100 // 6 // 6 // 0 /// TCONS_l2_00025850-XLOC_l2_013383 // Broad TUCP // linc-IGFBP1-1 chr7:+:45836951-45863174 // chr1 // 100 // 100 // 6 // 6 // 0 /// ENST00000437691 // ENSEMBL // havana:known chromosome:GRCh38:1:243047737:243052252:-1 gene:ENSG00000231512 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 67 // 100 // 4 // 6 // 0 /// ENST00000447236 // ENSEMBL // havana:known chromosome:GRCh38:7:56360362:56360541:-1 gene:ENSG00000231299 gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 50 // 100 // 3 // 6 // 0 /// ENST00000453576 // ENSEMBL // havana:known chromosome:GRCh38:1:129081:133566:-1 gene:ENSG00000238009 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 67 // 100 // 4 // 6 // 0 /// ENST00000611754 // ENSEMBL // ensembl:known chromosome:GRCh38:Y:25378671:25391610:-1 gene:ENSG00000228786 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 67 // 100 // 4 // 6 // 0 /// ENST00000617978 // ENSEMBL // havana:known chromosome:GRCh38:1:227980051:227980227:1 gene:ENSG00000274886 gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 67 // 100 // 4 // 6 // 0 /// ENST00000621799 // ENSEMBL // ensembl:known chromosome:GRCh38:16:90173217:90186204:1 gene:ENSG00000260528 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 67 // 100 // 4 // 6 // 0 /// NONHSAT000022 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 67 // 100 // 4 // 6 // 0 /// NONHSAT010579 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 67 // 100 // 4 // 6 // 0 /// NONHSAT010580 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 67 // 100 // 4 // 6 // 0 /// NONHSAT120743 // NONCODE // Non-coding transcript identified by NONCODE // chr1 // 50 // 100 // 3 // 6 // 0 /// NONHSAT139746 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 67 // 100 // 4 // 6 // 0 /// NONHSAT144650 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 67 // 100 // 4 // 6 // 0 /// NONHSAT144655 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 67 // 100 // 4 // 6 // 0 /// TCONS_l2_00002372-XLOC_l2_000720 // Broad TUCP // linc-ZNF692-5 chr1:-:129080-133566 // chr1 // 67 // 100 // 4 // 6 // 0 /// TCONS_l2_00002813-XLOC_l2_001398 // Broad TUCP // linc-PLD5-4 chr1:-:243202215-243211826 // chr1 // 67 // 100 // 4 // 6 // 0 /// TCONS_l2_00002814-XLOC_l2_001398 // Broad TUCP // linc-PLD5-4 chr1:-:243211038-243215554 // chr1 // 67 // 100 // 4 // 6 // 0 /// TCONS_l2_00010440-XLOC_l2_005352 // Broad TUCP // linc-RBM11-5 chr16:+:90244124-90289080 // chr1 // 67 // 100 // 4 // 6 // 0 /// TCONS_l2_00031062-XLOC_l2_015962 // Broad TUCP // linc-BPY2B-4 chrY:-:27524446-27540866 // chr1 // 67 // 100 // 4 // 6 // 0', 'NM_001005221 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 29 (OR4F29), mRNA. // chr1 // 100 // 100 // 36 // 36 // 0 /// NM_001005224 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 3 (OR4F3), mRNA. // chr1 // 100 // 100 // 36 // 36 // 0 /// NM_001005277 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 16 (OR4F16), mRNA. // chr1 // 100 // 100 // 36 // 36 // 0 /// NM_001005504 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 21 (OR4F21), mRNA. // chr1 // 89 // 100 // 32 // 36 // 0 /// ENST00000320901 // ENSEMBL // ensembl_havana_transcript:known chromosome:GRCh38:8:166049:167043:-1 gene:ENSG00000176269 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 89 // 100 // 32 // 36 // 0 /// ENST00000332831 // ENSEMBL // ensembl_havana_transcript:known chromosome:GRCh38:1:685716:686654:-1 gene:ENSG00000273547 gene_biotype:protein_coding transcript_biotype:protein_coding gene:ENSG00000185097 // chr1 // 100 // 100 // 36 // 36 // 0 /// ENST00000402444 // ENSEMBL // havana:known chromosome:GRCh38:6:170639606:170640536:1 gene:ENSG00000217874 gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 78 // 100 // 28 // 36 // 0 /// ENST00000405102 // ENSEMBL // havana:known chromosome:GRCh38:6:105919:106856:-1 gene:ENSG00000220212 gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 81 // 100 // 29 // 36 // 0 /// ENST00000424047 // ENSEMBL // havana:known chromosome:GRCh38:11:86649:87586:-1 gene:ENSG00000224777 gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 78 // 100 // 28 // 36 // 0 /// ENST00000426406 // ENSEMBL // ensembl_havana_transcript:known chromosome:GRCh38:1:450740:451678:-1 gene:ENSG00000278566 gene_biotype:protein_coding transcript_biotype:protein_coding gene:ENSG00000235249 // chr1 // 100 // 100 // 36 // 36 // 0 /// ENST00000456475 // ENSEMBL // ensembl_havana_transcript:known chromosome:GRCh38:5:181367268:181368262:1 gene:ENSG00000230178 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 36 // 36 // 0 /// ENST00000559128 // ENSEMBL // havana:known chromosome:GRCh38:15:101875964:101876901:1 gene:ENSG00000257109 gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 83 // 100 // 30 // 36 // 0 /// BC137547 // GenBank // Homo sapiens olfactory receptor, family 4, subfamily F, member 3, mRNA (cDNA clone MGC:169170 IMAGE:9021547), complete cds. // chr1 // 100 // 100 // 36 // 36 // 0 /// BC137568 // GenBank // Homo sapiens olfactory receptor, family 4, subfamily F, member 3, mRNA (cDNA clone MGC:169191 IMAGE:9021568), complete cds. // chr1 // 100 // 100 // 36 // 36 // 0 /// ENST00000589943 // ENSEMBL // havana:known chromosome:GRCh38:19:156279:157215:-1 gene:ENSG00000266971 gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 72 // 100 // 26 // 36 // 0 /// GENSCAN00000011446 // ENSEMBL // cdna:genscan chromosome:GRCh38:5:181367527:181368225:1 transcript_biotype:protein_coding // chr1 // 100 // 64 // 23 // 23 // 0 /// GENSCAN00000017675 // ENSEMBL // cdna:genscan chromosome:GRCh38:1:685716:686414:-1 transcript_biotype:protein_coding // chr1 // 100 // 64 // 23 // 23 // 0 /// GENSCAN00000017679 // ENSEMBL // cdna:genscan chromosome:GRCh38:1:450740:451438:-1 transcript_biotype:protein_coding // chr1 // 100 // 64 // 23 // 23 // 0 /// GENSCAN00000045845 // ENSEMBL // cdna:genscan chromosome:GRCh38:8:166086:213433:-1 transcript_biotype:protein_coding // chr1 // 87 // 83 // 26 // 30 // 0 /// NONHSAT051700 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 83 // 100 // 30 // 36 // 0 /// NONHSAT051701 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 83 // 100 // 30 // 36 // 0 /// NONHSAT105966 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 81 // 100 // 29 // 36 // 0 /// NONHSAT060109 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 72 // 100 // 26 // 36 // 0'], 'category': ['main', 'main', 'main', 'main', 'main']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
    "import gzip\n",
    "\n",
    "# Look at the first few lines of the SOFT file to understand its structure\n",
    "print(\"Examining SOFT file structure:\")\n",
    "try:\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        # Read first 20 lines to understand the file structure\n",
    "        for i, line in enumerate(file):\n",
    "            if i < 20:\n",
    "                print(f\"Line {i}: {line.strip()}\")\n",
    "            else:\n",
    "                break\n",
    "except Exception as e:\n",
    "    print(f\"Error reading SOFT file: {e}\")\n",
    "\n",
    "# 2. Now let's try a more robust approach to extract the gene annotation\n",
    "# Instead of using the library function which failed, we'll implement a custom approach\n",
    "try:\n",
    "    # First, look for the platform section which contains gene annotation\n",
    "    platform_data = []\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        in_platform_section = False\n",
    "        for line in file:\n",
    "            if line.startswith('^PLATFORM'):\n",
    "                in_platform_section = True\n",
    "                continue\n",
    "            if in_platform_section and line.startswith('!platform_table_begin'):\n",
    "                # Next line should be the header\n",
    "                header = next(file).strip()\n",
    "                platform_data.append(header)\n",
    "                # Read until the end of the platform table\n",
    "                for table_line in file:\n",
    "                    if table_line.startswith('!platform_table_end'):\n",
    "                        break\n",
    "                    platform_data.append(table_line.strip())\n",
    "                break\n",
    "    \n",
    "    # If we found platform data, convert it to a DataFrame\n",
    "    if platform_data:\n",
    "        import pandas as pd\n",
    "        import io\n",
    "        platform_text = '\\n'.join(platform_data)\n",
    "        gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
    "                                      low_memory=False, on_bad_lines='skip')\n",
    "        print(\"\\nGene annotation preview:\")\n",
    "        print(preview_df(gene_annotation))\n",
    "    else:\n",
    "        print(\"Could not find platform table in SOFT file\")\n",
    "        \n",
    "        # Try an alternative approach - extract mapping from other sections\n",
    "        with gzip.open(soft_file, 'rt') as file:\n",
    "            for line in file:\n",
    "                if 'ANNOTATION information' in line or 'annotation information' in line:\n",
    "                    print(f\"Found annotation information: {line.strip()}\")\n",
    "                if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
    "                    print(f\"Platform title: {line.strip()}\")\n",
    "            \n",
    "except Exception as e:\n",
    "    print(f\"Error processing gene annotation: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "185b0b13",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "9a1c620b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:11:49.785291Z",
     "iopub.status.busy": "2025-03-25T05:11:49.785145Z",
     "iopub.status.idle": "2025-03-25T05:11:50.227890Z",
     "shell.execute_reply": "2025-03-25T05:11:50.227539Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Example gene assignment entries:\n",
      "- ---...\n",
      "- ENST00000328113 // OR4G2P // olfactory receptor, family 4, subfamily G, member 2 pseudogene // --- /...\n",
      "- NM_001004195 // OR4F4 // olfactory receptor, family 4, subfamily F, member 4 // 15q26.3 // 26682 ///...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping dataframe shape: (33297, 2)\n",
      "First few rows of mapping data with extracted gene symbols:\n",
      "ID: 7896736, Genes: []\n",
      "ID: 7896738, Genes: ['OR4G2P', 'OR4G11P', 'OR4G1P']\n",
      "ID: 7896740, Genes: ['OR4F4', 'OR4F17', 'OR4F5', 'OR4F17', 'OR4F4', 'OR4F5', 'OR4F17', 'OR4F17', 'OR4F17', 'OR4F4', 'OR4F4']\n",
      "ID: 7896742, Genes: ['LINC00266-1', 'LINC00266-3', 'LINC00266-1', 'PCMTD2', 'LINC00266-1', 'LINC00266-1', 'SEPT14', 'SEPT14', 'LINC00266-4P', 'LINC00266-2P', 'SEPT14']\n",
      "ID: 7896744, Genes: ['OR4F29', 'OR4F3', 'OR4F16', 'OR4F21', 'OR4F21', 'OR4F3', 'OR4F16', 'OR4F29', 'OR4F7P', 'OR4F1P', 'OR4F2P', 'OR4F3', 'OR4F16', 'OR4F29', 'OR4F3', 'OR4F16', 'OR4F29', 'OR4F28P', 'OR4F3', 'OR4F16', 'OR4F29', 'OR4F3', 'OR4F16', 'OR4F29', 'OR4F8P']\n",
      "Number of probes with valid gene mappings: 24436\n",
      "Gene expression dataframe shape before normalization: (0, 76)\n",
      "First few gene symbols in the gene expression data:\n",
      "Index([], dtype='object', name='Gene')\n",
      "Gene expression data saved to ../../output/preprocess/Esophageal_Cancer/gene_data/GSE100843.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Determine which columns in the gene annotation data correspond to probe IDs and gene symbols\n",
    "prob_col = 'ID'  # This is the column with the probe identifiers matching the gene expression data\n",
    "gene_col = 'gene_assignment'  # This column contains gene symbol information\n",
    "\n",
    "# First, let's examine what the gene_assignment column actually contains\n",
    "print(\"Example gene assignment entries:\")\n",
    "for entry in gene_annotation[gene_col].head(3):\n",
    "    print(f\"- {entry[:100]}...\")\n",
    "\n",
    "# 2. Get the gene mapping dataframe by extracting these two columns\n",
    "import re\n",
    "\n",
    "# Let's define a better function to extract gene symbols from the gene_assignment field\n",
    "def extract_gene_symbols_from_assignment(assignment_text):\n",
    "    if not isinstance(assignment_text, str) or assignment_text == '---':\n",
    "        return []\n",
    "    \n",
    "    # The format appears to be: ID // SYMBOL // DESCRIPTION // LOCATION // GENE_ID\n",
    "    # We want to extract SYMBOL\n",
    "    genes = []\n",
    "    # Split by /// which separates multiple gene entries\n",
    "    for entry in assignment_text.split('///'):\n",
    "        # Apply regex to extract gene symbol between first and second //\n",
    "        match = re.search(r'//\\s+([A-Z0-9-]+)\\s+//', entry)\n",
    "        if match:\n",
    "            gene_symbol = match.group(1)\n",
    "            # Filter out common non-gene entries and limit to likely human gene symbols\n",
    "            if (gene_symbol not in ['---', 'LOC'] and \n",
    "                not gene_symbol.startswith('LOC') and \n",
    "                re.match(r'^[A-Z][A-Z0-9-]{1,15}$', gene_symbol)):\n",
    "                genes.append(gene_symbol)\n",
    "    \n",
    "    return genes\n",
    "\n",
    "# Use a custom function when creating the mapping\n",
    "mapping_data = gene_annotation[[prob_col, gene_col]].copy()\n",
    "mapping_data = mapping_data.dropna()\n",
    "mapping_data['Gene'] = mapping_data[gene_col].apply(extract_gene_symbols_from_assignment)\n",
    "mapping_data = mapping_data[[prob_col, 'Gene']]\n",
    "mapping_data = mapping_data.astype({prob_col: 'str'})\n",
    "\n",
    "print(f\"Gene mapping dataframe shape: {mapping_data.shape}\")\n",
    "print(\"First few rows of mapping data with extracted gene symbols:\")\n",
    "for idx, row in mapping_data.head(5).iterrows():\n",
    "    print(f\"ID: {row[prob_col]}, Genes: {row['Gene']}\")\n",
    "\n",
    "# Check if we have enough valid gene mappings\n",
    "valid_mappings = mapping_data[mapping_data['Gene'].apply(len) > 0]\n",
    "print(f\"Number of probes with valid gene mappings: {len(valid_mappings)}\")\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_data)\n",
    "\n",
    "print(f\"Gene expression dataframe shape before normalization: {gene_data.shape}\")\n",
    "print(\"First few gene symbols in the gene expression data:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# Skip the normalization step for now as it's causing data loss\n",
    "# Instead of: gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "\n",
    "# Save the processed gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e8740812",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "9ad6bd21",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:11:50.229645Z",
     "iopub.status.busy": "2025-03-25T05:11:50.229530Z",
     "iopub.status.idle": "2025-03-25T05:11:50.471123Z",
     "shell.execute_reply": "2025-03-25T05:11:50.470778Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data shape: (0, 76)\n",
      "First few genes with their expression values after normalization:\n",
      "Empty DataFrame\n",
      "Columns: [GSM2694849, GSM2694850, GSM2694851, GSM2694852, GSM2694853, GSM2694854, GSM2694855, GSM2694856, GSM2694857, GSM2694858, GSM2694859, GSM2694860, GSM2694861, GSM2694862, GSM2694863, GSM2694864, GSM2694865, GSM2694866, GSM2694867, GSM2694868, GSM2694869, GSM2694870, GSM2694871, GSM2694872, GSM2694873, GSM2694874, GSM2694875, GSM2694876, GSM2694877, GSM2694878, GSM2694879, GSM2694880, GSM2694881, GSM2694882, GSM2694883, GSM2694884, GSM2694885, GSM2694886, GSM2694887, GSM2694888, GSM2694889, GSM2694890, GSM2694891, GSM2694892, GSM2694893, GSM2694894, GSM2694895, GSM2694896, GSM2694897, GSM2694898, GSM2694899, GSM2694900, GSM2694901, GSM2694902, GSM2694903, GSM2694904, GSM2694905, GSM2694906, GSM2694907, GSM2694908, GSM2694909, GSM2694910, GSM2694911, GSM2694912, GSM2694913, GSM2694914, GSM2694915, GSM2694916, GSM2694917, GSM2694918, GSM2694919, GSM2694920, GSM2694921, GSM2694922, GSM2694923, GSM2694924]\n",
      "Index: []\n",
      "\n",
      "[0 rows x 76 columns]\n",
      "Normalized gene data saved to ../../output/preprocess/Esophageal_Cancer/gene_data/GSE100843.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Raw clinical data shape: (3, 77)\n",
      "Clinical features:\n",
      "                   GSM2694849  GSM2694850  GSM2694851  GSM2694852  GSM2694853  \\\n",
      "Esophageal_Cancer         1.0         1.0         0.0         0.0         1.0   \n",
      "\n",
      "                   GSM2694854  GSM2694855  GSM2694856  GSM2694857  GSM2694858  \\\n",
      "Esophageal_Cancer         0.0         1.0         0.0         1.0         0.0   \n",
      "\n",
      "                   ...  GSM2694915  GSM2694916  GSM2694917  GSM2694918  \\\n",
      "Esophageal_Cancer  ...         1.0         0.0         1.0         0.0   \n",
      "\n",
      "                   GSM2694919  GSM2694920  GSM2694921  GSM2694922  GSM2694923  \\\n",
      "Esophageal_Cancer         1.0         0.0         1.0         0.0         1.0   \n",
      "\n",
      "                   GSM2694924  \n",
      "Esophageal_Cancer         0.0  \n",
      "\n",
      "[1 rows x 76 columns]\n",
      "Clinical features saved to ../../output/preprocess/Esophageal_Cancer/clinical_data/GSE100843.csv\n",
      "Linked data shape: (76, 1)\n",
      "Linked data preview (first 5 rows, first 5 columns):\n",
      "            Esophageal_Cancer\n",
      "GSM2694849                1.0\n",
      "GSM2694850                1.0\n",
      "GSM2694851                0.0\n",
      "GSM2694852                0.0\n",
      "GSM2694853                1.0\n",
      "Missing values before handling:\n",
      "  Trait (Esophageal_Cancer) missing: 0 out of 76\n",
      "  Genes with >20% missing: 0\n",
      "  Samples with >5% missing genes: 0\n",
      "Data shape after handling missing values: (0, 1)\n",
      "No data remains after handling missing values.\n",
      "Abnormality detected in the cohort: GSE100843. Preprocessing failed.\n",
      "A new JSON file was created at: ../../output/preprocess/Esophageal_Cancer/cohort_info.json\n",
      "Data was determined to be unusable or empty and was not saved\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(\"First few genes with their expression values after normalization:\")\n",
    "print(normalized_gene_data.head())\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Check if trait data is available before proceeding with clinical data extraction\n",
    "if trait_row is None:\n",
    "    print(\"Trait row is None. Cannot extract trait information from clinical data.\")\n",
    "    # Create an empty dataframe for clinical features\n",
    "    clinical_features = pd.DataFrame()\n",
    "    \n",
    "    # Create an empty dataframe for linked data\n",
    "    linked_data = pd.DataFrame()\n",
    "    \n",
    "    # Validate and save cohort info\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=False,  # Trait data is not available\n",
    "        is_biased=True,  # Not applicable but required\n",
    "        df=pd.DataFrame(),  # Empty dataframe\n",
    "        note=\"Dataset contains gene expression data but lacks clear trait indicators for Duchenne Muscular Dystrophy status.\"\n",
    "    )\n",
    "    print(\"Data was determined to be unusable due to missing trait indicators and was not saved\")\n",
    "else:\n",
    "    try:\n",
    "        # Get the file paths for the matrix file to extract clinical data\n",
    "        _, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "        \n",
    "        # Get raw clinical data from the matrix file\n",
    "        _, clinical_raw = get_background_and_clinical_data(matrix_file)\n",
    "        \n",
    "        # Verify clinical data structure\n",
    "        print(\"Raw clinical data shape:\", clinical_raw.shape)\n",
    "        \n",
    "        # Extract clinical features using the defined conversion functions\n",
    "        clinical_features = geo_select_clinical_features(\n",
    "            clinical_df=clinical_raw,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        print(\"Clinical features:\")\n",
    "        print(clinical_features)\n",
    "        \n",
    "        # Save clinical features to file\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        clinical_features.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "        \n",
    "        # 3. Link clinical and genetic data\n",
    "        linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
    "        print(f\"Linked data shape: {linked_data.shape}\")\n",
    "        print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
    "        print(linked_data.iloc[:5, :5])\n",
    "        \n",
    "        # 4. Handle missing values\n",
    "        print(\"Missing values before handling:\")\n",
    "        print(f\"  Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
    "        if 'Age' in linked_data.columns:\n",
    "            print(f\"  Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n",
    "        if 'Gender' in linked_data.columns:\n",
    "            print(f\"  Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n",
    "        \n",
    "        gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n",
    "        print(f\"  Genes with >20% missing: {sum(linked_data[gene_cols].isna().mean() > 0.2)}\")\n",
    "        print(f\"  Samples with >5% missing genes: {sum(linked_data[gene_cols].isna().mean(axis=1) > 0.05)}\")\n",
    "        \n",
    "        cleaned_data = handle_missing_values(linked_data, trait)\n",
    "        print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
    "        \n",
    "        # 5. Evaluate bias in trait and demographic features\n",
    "        is_trait_biased = False\n",
    "        if len(cleaned_data) > 0:\n",
    "            trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
    "            is_trait_biased = trait_biased\n",
    "        else:\n",
    "            print(\"No data remains after handling missing values.\")\n",
    "            is_trait_biased = True\n",
    "        \n",
    "        # 6. Final validation and save\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=True, \n",
    "            is_trait_available=True, \n",
    "            is_biased=is_trait_biased, \n",
    "            df=cleaned_data,\n",
    "            note=\"Dataset contains gene expression data comparing Duchenne muscular dystrophy vs healthy samples.\"\n",
    "        )\n",
    "        \n",
    "        # 7. Save if usable\n",
    "        if is_usable and len(cleaned_data) > 0:\n",
    "            os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "            cleaned_data.to_csv(out_data_file)\n",
    "            print(f\"Linked data saved to {out_data_file}\")\n",
    "        else:\n",
    "            print(\"Data was determined to be unusable or empty and was not saved\")\n",
    "            \n",
    "    except Exception as e:\n",
    "        print(f\"Error processing data: {e}\")\n",
    "        # Handle the error case by still recording cohort info\n",
    "        validate_and_save_cohort_info(\n",
    "            is_final=True, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=True, \n",
    "            is_trait_available=False,  # Mark as not available due to processing issues\n",
    "            is_biased=True, \n",
    "            df=pd.DataFrame(),  # Empty dataframe\n",
    "            note=f\"Error processing data: {str(e)}\"\n",
    "        )\n",
    "        print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}