File size: 29,784 Bytes
e4183cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ac2d1d5e",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:31:11.226771Z",
"iopub.status.busy": "2025-03-25T08:31:11.226596Z",
"iopub.status.idle": "2025-03-25T08:31:11.393247Z",
"shell.execute_reply": "2025-03-25T08:31:11.392890Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"COVID-19\"\n",
"cohort = \"GSE213313\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/COVID-19\"\n",
"in_cohort_dir = \"../../input/GEO/COVID-19/GSE213313\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/COVID-19/GSE213313.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/COVID-19/gene_data/GSE213313.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/COVID-19/clinical_data/GSE213313.csv\"\n",
"json_path = \"../../output/preprocess/COVID-19/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "41d885f6",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c17b6736",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:31:11.394731Z",
"iopub.status.busy": "2025-03-25T08:31:11.394586Z",
"iopub.status.idle": "2025-03-25T08:31:11.548047Z",
"shell.execute_reply": "2025-03-25T08:31:11.547665Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Serial whole blood transcriptomic analysis demonstrates activation of neutrophils, platelets and coagulation in severe and critical COVID-19 – submitted\"\n",
"!Series_summary\t\"Introduction: A maladaptive inflammatory response has been implicated in the pathogenesis of severe and critical COVID-19. This study aimed to characterize the temporal dynamics of this response and investigate whether critical disease is associated with distinct gene expression patterns.\"\n",
"!Series_summary\t\"Methods: We performed microarray analysis of serial whole blood RNA samples from 19 patients with critical COVID-19, 15 patients with severe but non-critical disease and 11 healthy controls. We assessed whole blood gene expression patterns by differential gene expression analysis, gene set enrichment, two clustering methods and estimated relative leukocyte abundance using CIBERSORT.\"\n",
"!Series_summary\t\"Results: Neutrophils, platelets, cytokine signaling, and the coagulation system were activated in COVID-19, and more pronounced in critical vs. non-critical disease. We observed two different trajectories of neutrophil-associated genes, indicating the emergence of a more immature neutrophil phenotype over time. Interferon-associated genes were strongly enriched in early COVID-19 before falling markedly, with modest severity-associated differences in trajectory.\"\n",
"!Series_summary\t\"Conclusions: Severe COVID-19 is associated with a broad inflammatory response, which is more pronounced in critical disease. Our data suggest a progressively more immature circulating neutrophil phenotype over time. Interferon signaling is enriched in COVID-19 but does not seem to drive critical disease.\"\n",
"!Series_overall_design\t\"Between March and May 2020, 135 patients admitted to Akershus University Hospital with COVID-19 confirmed by SARS-CoV-2 RT-PCR were prospectively recruited to the Coronavirus Disease Mechanisms (COVID MECH) observational cohort study. Thirty-six patients (27%) were admitted to the ICU and 8 (6%) died. Inclusion predated the use of corticosteroids in severe COVID-19. This substudy included 19 patients with critical disease, defined as requiring invasive mechanical ventilation, and 15 patients with non-critical disease receiving supplemental O2. Patients were selected based on the availability of sequential whole blood RNA samples, and time from symptom onset to baseline sampling between five and 15 days. RNA samples from 11 healthy volunteers matched to patients by age and gender served as controls.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['individual: patient 018', 'individual: patient 053', 'individual: patient 063', 'individual: patient 089', 'individual: patient 115', 'individual: patient 130', 'individual: patient 141', 'individual: patient F014', 'individual: patient 117', 'individual: patient 051', 'individual: patient F016', 'individual: patient 066', 'individual: patient 135', 'individual: patient 062', 'individual: patient 002', 'individual: patient 050', 'individual: patient 061', 'individual: patient 087', 'individual: patient 129', 'individual: patient 138', 'individual: patient F011', 'individual: patient F013', 'individual: patient 086', 'individual: patient 113', 'individual: patient F009', 'individual: patient 022', 'individual: patient 057', 'individual: patient 096', 'individual: patient 091', 'individual: patient F002'], 1: ['disease state: COVID-19', 'disease state: Healthy'], 2: ['severity: Critical', 'severity: Non-critical', 'severity: Healthy'], 3: ['time: T1', 'time: T2', 'time: T3', 'time: T0'], 4: ['tissue: whole blood']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "8d9140fd",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "db007bc6",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:31:11.549298Z",
"iopub.status.busy": "2025-03-25T08:31:11.549183Z",
"iopub.status.idle": "2025-03-25T08:31:11.553812Z",
"shell.execute_reply": "2025-03-25T08:31:11.553508Z"
}
},
"outputs": [],
"source": [
"import os\n",
"import pandas as pd\n",
"import re\n",
"import json\n",
"from typing import Callable, Optional, Dict, Any\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this is a microarray analysis of whole blood RNA samples\n",
"# which indicates gene expression data should be available\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"\n",
"# 2.1 Data Availability\n",
"# For trait (COVID-19 severity):\n",
"# From the sample characteristics dictionary, key 2 contains severity information\n",
"trait_row = 2\n",
"\n",
"# For age:\n",
"# There is no age information in the sample characteristics dictionary\n",
"age_row = None\n",
"\n",
"# For gender:\n",
"# There is no gender information in the sample characteristics dictionary\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion\n",
"\n",
"# Function to convert trait values (severity)\n",
"def convert_trait(value):\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract the value after colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert severity to binary (0 for Non-critical/Healthy, 1 for Critical)\n",
" if 'critical' in value.lower():\n",
" return 1\n",
" elif 'non-critical' in value.lower() or 'healthy' in value.lower():\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"# Function to convert age (not available in this dataset)\n",
"def convert_age(value):\n",
" return None\n",
"\n",
"# Function to convert gender (not available in this dataset)\n",
"def convert_gender(value):\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Conduct initial filtering on usability\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Load the clinical data first (assuming it's available from previous steps)\n",
" if os.path.exists(os.path.join(in_cohort_dir, \"clinical_data.csv\")):\n",
" clinical_data = pd.read_csv(os.path.join(in_cohort_dir, \"clinical_data.csv\"))\n",
" \n",
" # Extract clinical features using the provided function\n",
" selected_clinical = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the selected clinical data\n",
" preview = preview_df(selected_clinical)\n",
" print(\"Preview of selected clinical data:\")\n",
" print(preview)\n",
" \n",
" # Save the selected clinical data to the specified output file\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "e3338e91",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4eec8559",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:31:11.554978Z",
"iopub.status.busy": "2025-03-25T08:31:11.554865Z",
"iopub.status.idle": "2025-03-25T08:31:11.828902Z",
"shell.execute_reply": "2025-03-25T08:31:11.828504Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SOFT file: ../../input/GEO/COVID-19/GSE213313/GSE213313_family.soft.gz\n",
"Matrix file: ../../input/GEO/COVID-19/GSE213313/GSE213313_series_matrix.txt.gz\n",
"Found the matrix table marker at line 66\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape: (25469, 94)\n",
"First 20 gene/probe identifiers:\n",
"['A_19_P00315452', 'A_19_P00315492', 'A_19_P00315493', 'A_19_P00315506', 'A_19_P00315529', 'A_19_P00315543', 'A_19_P00315551', 'A_19_P00315581', 'A_19_P00315584', 'A_19_P00315593', 'A_19_P00315603', 'A_19_P00315649', 'A_19_P00315668', 'A_19_P00315716', 'A_19_P00315753', 'A_19_P00315764', 'A_19_P00315780', 'A_19_P00315810', 'A_19_P00315824', 'A_19_P00315843']\n"
]
}
],
"source": [
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"SOFT file: {soft_file}\")\n",
"print(f\"Matrix file: {matrix_file}\")\n",
"\n",
"# Set gene availability flag\n",
"is_gene_available = True # Initially assume gene data is available\n",
"\n",
"# First check if the matrix file contains the expected marker\n",
"found_marker = False\n",
"marker_row = None\n",
"try:\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" for i, line in enumerate(file):\n",
" if \"!series_matrix_table_begin\" in line:\n",
" found_marker = True\n",
" marker_row = i\n",
" print(f\"Found the matrix table marker at line {i}\")\n",
" break\n",
" \n",
" if not found_marker:\n",
" print(\"Warning: Could not find '!series_matrix_table_begin' marker in the file.\")\n",
" is_gene_available = False\n",
" \n",
" # If marker was found, try to extract gene data\n",
" if is_gene_available:\n",
" try:\n",
" # Try using the library function\n",
" gene_data = get_genetic_data(matrix_file)\n",
" \n",
" if gene_data.shape[0] == 0:\n",
" print(\"Warning: Extracted gene data has 0 rows.\")\n",
" is_gene_available = False\n",
" else:\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" # Print the first 20 gene/probe identifiers\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20].tolist())\n",
" except Exception as e:\n",
" print(f\"Error extracting gene data with get_genetic_data(): {e}\")\n",
" is_gene_available = False\n",
" \n",
" # If gene data extraction failed, examine file content to diagnose\n",
" if not is_gene_available:\n",
" print(\"Examining file content to diagnose the issue:\")\n",
" try:\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" # Print lines around the marker if found\n",
" if marker_row is not None:\n",
" for i, line in enumerate(file):\n",
" if i >= marker_row - 2 and i <= marker_row + 10:\n",
" print(f\"Line {i}: {line.strip()[:100]}...\")\n",
" if i > marker_row + 10:\n",
" break\n",
" else:\n",
" # If marker not found, print first 10 lines\n",
" for i, line in enumerate(file):\n",
" if i < 10:\n",
" print(f\"Line {i}: {line.strip()[:100]}...\")\n",
" else:\n",
" break\n",
" except Exception as e2:\n",
" print(f\"Error examining file: {e2}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error processing file: {e}\")\n",
" is_gene_available = False\n",
"\n",
"# Update validation information if gene data extraction failed\n",
"if not is_gene_available:\n",
" print(\"Gene expression data could not be successfully extracted from this dataset.\")\n",
" # Update the validation record since gene data isn't available\n",
" is_trait_available = False # We already determined trait data isn't available in step 2\n",
" validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,\n",
" is_gene_available=is_gene_available, is_trait_available=is_trait_available)\n"
]
},
{
"cell_type": "markdown",
"id": "3d14ffdc",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ab06f05b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:31:11.830252Z",
"iopub.status.busy": "2025-03-25T08:31:11.830128Z",
"iopub.status.idle": "2025-03-25T08:31:11.832075Z",
"shell.execute_reply": "2025-03-25T08:31:11.831770Z"
}
},
"outputs": [],
"source": [
"# These identifiers (A_19_P...) are Agilent microarray probe IDs, not human gene symbols\n",
"# They need to be mapped to official gene symbols for downstream analysis\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "3de4cadf",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "ed052b4b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:31:11.833236Z",
"iopub.status.busy": "2025-03-25T08:31:11.833119Z",
"iopub.status.idle": "2025-03-25T08:31:15.716377Z",
"shell.execute_reply": "2025-03-25T08:31:15.716022Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene annotation preview:\n",
"Columns in gene annotation: ['ID', 'CONTROL_TYPE', 'REFSEQ', 'GB_ACC', 'LOCUSLINK_ID', 'GENE_SYMBOL', 'GENE_NAME', 'UNIGENE_ID', 'ENSEMBL_ID', 'ACCESSION_STRING', 'CHROMOSOMAL_LOCATION', 'CYTOBAND', 'DESCRIPTION', 'GO_ID', 'SEQUENCE', 'SPOT_ID']\n",
"{'ID': ['GE_BrightCorner', 'DarkCorner', 'A_21_P0014386'], 'CONTROL_TYPE': ['pos', 'pos', 'FALSE'], 'REFSEQ': [nan, nan, nan], 'GB_ACC': [nan, nan, nan], 'LOCUSLINK_ID': [nan, nan, nan], 'GENE_SYMBOL': [nan, nan, nan], 'GENE_NAME': [nan, nan, nan], 'UNIGENE_ID': [nan, nan, nan], 'ENSEMBL_ID': [nan, nan, nan], 'ACCESSION_STRING': [nan, nan, nan], 'CHROMOSOMAL_LOCATION': [nan, nan, 'unmapped'], 'CYTOBAND': [nan, nan, nan], 'DESCRIPTION': [nan, nan, nan], 'GO_ID': [nan, nan, nan], 'SEQUENCE': [nan, nan, 'AATACATGTTTTGGTAAACACTCGGTCAGAGCACCCTCTTTCTGTGGAATCAGACTGGCA'], 'SPOT_ID': ['GE_BrightCorner', 'DarkCorner', 'A_21_P0014386']}\n",
"\n",
"Examining gene mapping columns:\n",
"Column 'ID' examples:\n",
"Example 1: GE_BrightCorner\n",
"Example 2: DarkCorner\n",
"Example 3: A_21_P0014386\n",
"Example 4: A_33_P3396872\n",
"Example 5: A_33_P3267760\n",
"\n",
"Column 'GENE_SYMBOL' examples:\n",
"Example 1: nan\n",
"Example 2: nan\n",
"Example 3: nan\n",
"Example 4: CPED1\n",
"Example 5: BCOR\n",
"\n",
"Gene symbol column completeness: 48862/2452521 rows (1.99%)\n",
"\n",
"Columns identified for gene mapping:\n",
"- 'ID': Contains probe IDs\n",
"- 'GENE_SYMBOL': Contains gene symbols for mapping\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
"print(\"\\nGene annotation preview:\")\n",
"print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
"print(preview_df(gene_annotation, n=3))\n",
"\n",
"# Examine the GENE_SYMBOL column which contains gene symbol information\n",
"print(\"\\nExamining gene mapping columns:\")\n",
"print(\"Column 'ID' examples:\")\n",
"id_samples = gene_annotation['ID'].head(5).tolist()\n",
"for i, sample in enumerate(id_samples):\n",
" print(f\"Example {i+1}: {sample}\")\n",
"\n",
"print(\"\\nColumn 'GENE_SYMBOL' examples:\")\n",
"if 'GENE_SYMBOL' in gene_annotation.columns:\n",
" # Display a few examples of the GENE_SYMBOL column\n",
" symbol_samples = gene_annotation['GENE_SYMBOL'].head(5).tolist()\n",
" for i, sample in enumerate(symbol_samples):\n",
" print(f\"Example {i+1}: {sample}\")\n",
" \n",
" # Check the quality and completeness of the GENE_SYMBOL column\n",
" non_null_symbols = gene_annotation['GENE_SYMBOL'].notna().sum()\n",
" total_rows = len(gene_annotation)\n",
" print(f\"\\nGene symbol column completeness: {non_null_symbols}/{total_rows} rows ({non_null_symbols/total_rows:.2%})\")\n",
" \n",
" # Identify the columns needed for gene mapping\n",
" print(\"\\nColumns identified for gene mapping:\")\n",
" print(\"- 'ID': Contains probe IDs\")\n",
" print(\"- 'GENE_SYMBOL': Contains gene symbols for mapping\")\n",
"else:\n",
" print(\"Error: 'GENE_SYMBOL' column not found in annotation data.\")\n"
]
},
{
"cell_type": "markdown",
"id": "af076b8f",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "62dbfb65",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:31:15.717762Z",
"iopub.status.busy": "2025-03-25T08:31:15.717628Z",
"iopub.status.idle": "2025-03-25T08:31:16.864550Z",
"shell.execute_reply": "2025-03-25T08:31:16.864104Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene mapping shape: (48862, 2)\n",
"Gene mapping preview:\n",
"{'ID': ['A_33_P3396872', 'A_33_P3267760', 'A_32_P194264', 'A_23_P153745', 'A_21_P0014180'], 'Gene': ['CPED1', 'BCOR', 'CHAC2', 'IFI30', 'GPR146']}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data shape after mapping: (17305, 94)\n",
"First few gene symbols after mapping:\n",
"['A1BG', 'A1BG-AS1', 'A2M-AS1', 'A4GALT', 'AAAS', 'AAAS-1', 'AACS', 'AADACL3', 'AADACP1', 'AAED1']\n",
"Gene expression data shape after normalization: (14593, 94)\n",
"First few normalized gene symbols:\n",
"['A1BG', 'A1BG-AS1', 'A2M-AS1', 'A4GALT', 'AAAS', 'AACS', 'AADACL3', 'AADACP1', 'AAGAB', 'AAK1']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/COVID-19/gene_data/GSE213313.csv\n"
]
}
],
"source": [
"# 1. Identify which columns to use for mapping\n",
"# From the gene expression data output, we have IDs like A_19_P00315452\n",
"# From the gene annotation data, we see the 'ID' column contains similar identifiers\n",
"# and 'GENE_SYMBOL' contains the human gene symbols we need to map to\n",
"\n",
"# 2. Get gene mapping dataframe by extracting the required columns\n",
"prob_col = 'ID'\n",
"gene_col = 'GENE_SYMBOL'\n",
"\n",
"# Extract the mapping between probe IDs and gene symbols\n",
"gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
"print(f\"Gene mapping shape: {gene_mapping.shape}\")\n",
"print(\"Gene mapping preview:\")\n",
"print(preview_df(gene_mapping, n=5))\n",
"\n",
"# 3. Convert probe-level measurements to gene expression values\n",
"# Apply the gene mapping to convert from probe IDs to gene symbols\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
"print(\"First few gene symbols after mapping:\")\n",
"print(list(gene_data.index[:10]))\n",
"\n",
"# Normalize gene symbols to handle synonyms\n",
"gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene expression data shape after normalization: {gene_data.shape}\")\n",
"print(\"First few normalized gene symbols:\")\n",
"print(list(gene_data.index[:10]))\n",
"\n",
"# Save gene data to the specified output file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "49061ebc",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "89299b2c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:31:16.865937Z",
"iopub.status.busy": "2025-03-25T08:31:16.865802Z",
"iopub.status.idle": "2025-03-25T08:31:25.439581Z",
"shell.execute_reply": "2025-03-25T08:31:25.438944Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape after normalization: (14593, 94)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/COVID-19/gene_data/GSE213313.csv\n",
"Clinical features saved to ../../output/preprocess/COVID-19/clinical_data/GSE213313.csv\n",
"Clinical features preview:\n",
"{'COVID-19': [1.0, 1.0, 1.0, 1.0, 1.0]}\n",
"Linked data shape: (94, 14594)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (94, 14594)\n",
"For the feature 'COVID-19', the least common label is '0.0' with 11 occurrences. This represents 11.70% of the dataset.\n",
"The distribution of the feature 'COVID-19' in this dataset is fine.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/COVID-19/GSE213313.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"\n",
"# Create output directory if it doesn't exist\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"\n",
"# Save the normalized gene data\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Extract clinical features using the previously identified feature rows\n",
"# Use the clinical data from Step 1 and the row identifiers from Step 2\n",
"clinical_features = geo_select_clinical_features(\n",
" clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"# Create directory for clinical data output\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"\n",
"# Save the clinical features\n",
"clinical_features.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
"\n",
"# Preview the clinical features\n",
"clinical_features_preview = preview_df(clinical_features.T)\n",
"print(\"Clinical features preview:\")\n",
"print(clinical_features_preview)\n",
"\n",
"# 3. Link clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 4. Handle missing values in the linked data\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 5. Determine if trait and demographic features are biased\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 6. Validate and save cohort info\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=True, # We have trait data as identified in Step 2\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=\"Dataset contains gene expression data for COVID-19 severity analysis.\"\n",
")\n",
"\n",
"# 7. Save the linked data if it's usable\n",
"if is_usable:\n",
" # Create output directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" \n",
" # Save the linked data\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Linked data not saved due to quality issues.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|