File size: 43,602 Bytes
82732bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "fe1dbed0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:13:26.227138Z",
     "iopub.status.busy": "2025-03-25T05:13:26.226763Z",
     "iopub.status.idle": "2025-03-25T05:13:26.402488Z",
     "shell.execute_reply": "2025-03-25T05:13:26.402021Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Esophageal_Cancer\"\n",
    "cohort = \"GSE218109\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Esophageal_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Esophageal_Cancer/GSE218109\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Esophageal_Cancer/GSE218109.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Esophageal_Cancer/gene_data/GSE218109.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Esophageal_Cancer/clinical_data/GSE218109.csv\"\n",
    "json_path = \"../../output/preprocess/Esophageal_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6cd68014",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "1ca62361",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:13:26.404160Z",
     "iopub.status.busy": "2025-03-25T05:13:26.403994Z",
     "iopub.status.idle": "2025-03-25T05:13:26.479880Z",
     "shell.execute_reply": "2025-03-25T05:13:26.479467Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Esophageal Squamous Cell Carcinoma tumors from Indian patients: nuclear-stabilized p53 (NS+) versus unstable p53 (NS-) protein\"\n",
      "!Series_summary\t\"Transcriptional profiling of Esophageal Squamous Cell Carcinoma (ESCC) tumors comparing samples harbouring nuclear-stabilized p53 (NS+) versus unstable p53 (NS-) protein, determined through immunohistochemistry (IHC) staining of the tumor sections. The goal was to identify the genes that were differentially regulated between NS+ and NS- ESCC samples.\"\n",
      "!Series_overall_design\t\"Two-condition experiment, NS+ versus NS- esophageal tumors. NS+ tumors: 17, NS- tumors: 19.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['Sex: M', 'Sex: F'], 1: ['age: 22', 'age: 45', 'age: 52', 'age: 50', 'age: 34', 'age: 55', 'age: 48', 'age: 64', 'age: 70', 'age: 68', 'age: 23', 'age: 62', 'age: 59', 'age: 58', 'age: 41', 'age: 47', 'age: 66', 'age: 38', 'age: 79', 'age: 61', 'age: 39', 'age: 32', 'age: 46', 'age: 69', 'age: 54'], 2: ['tissue: Esophageal Squamous Cell Carcinoma'], 3: ['Stage: pT3N2', 'Stage: pT3N0', 'Stage: pT3N1', 'Stage: pT3N1bM1b', 'Stage: pT2PN1a', 'Stage: pT2N0Mx', 'Stage: pT2N2', 'Stage: NA', 'Stage: pT2N0', 'Stage: pT2N1b', 'Stage: pT3N1Mx', 'Stage: pT3N2Mx', 'Stage: pT2N1', 'Stage: pT3N0Mx'], 4: ['grade: I', 'grade: II'], 5: ['p53 status: unstable p53 (NS-)', 'p53 status: nuclear-stabilized p53 (NS+)']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "30b89f44",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "44e70764",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:13:26.481077Z",
     "iopub.status.busy": "2025-03-25T05:13:26.480955Z",
     "iopub.status.idle": "2025-03-25T05:13:26.491016Z",
     "shell.execute_reply": "2025-03-25T05:13:26.490611Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of selected clinical data:\n",
      "{'Esophageal_Cancer': [0.0, 1.0, nan, nan, nan], 'Age': [22, 45, 52, 50, 34], 'Gender': [1.0, 0.0, nan, nan, nan]}\n",
      "Clinical data saved to ../../output/preprocess/Esophageal_Cancer/clinical_data/GSE218109.csv\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset contains gene expression data\n",
    "# comparing esophageal tumor samples with different p53 status\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# For trait: p53 status in row 5\n",
    "trait_row = 5\n",
    "# For age: age in row 1\n",
    "age_row = 1\n",
    "# For gender: sex in row 0\n",
    "gender_row = 0\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(val):\n",
    "    \"\"\"Convert p53 status to binary (0 for NS-, 1 for NS+)\"\"\"\n",
    "    if not isinstance(val, str):\n",
    "        return None\n",
    "    \n",
    "    val = val.lower()\n",
    "    if \"p53 status:\" in val:\n",
    "        val = val.split(\"p53 status:\")[1].strip()\n",
    "    \n",
    "    if \"nuclear-stabilized\" in val or \"ns+\" in val:\n",
    "        return 1\n",
    "    elif \"unstable\" in val or \"ns-\" in val:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(val):\n",
    "    \"\"\"Convert age to numeric value\"\"\"\n",
    "    if not isinstance(val, str):\n",
    "        return None\n",
    "    \n",
    "    if \"age:\" in val:\n",
    "        try:\n",
    "            age = int(val.split(\"age:\")[1].strip())\n",
    "            return age\n",
    "        except:\n",
    "            pass\n",
    "    return None\n",
    "\n",
    "def convert_gender(val):\n",
    "    \"\"\"Convert gender to binary (0 for female, 1 for male)\"\"\"\n",
    "    if not isinstance(val, str):\n",
    "        return None\n",
    "    \n",
    "    val = val.lower()\n",
    "    if \"sex:\" in val:\n",
    "        val = val.split(\"sex:\")[1].strip()\n",
    "    \n",
    "    if val == 'f' or val == 'female':\n",
    "        return 0\n",
    "    elif val == 'm' or val == 'male':\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Trait data availability is determined by whether trait_row is None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Use the validate_and_save_cohort_info function for initial filtering\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "def get_feature_data(clinical_df, row_idx, feature_name, convert_func):\n",
    "    \"\"\"Helper function to extract and process feature data\"\"\"\n",
    "    feature_values = clinical_df.iloc[row_idx].tolist()\n",
    "    converted_values = [convert_func(val) for val in feature_values]\n",
    "    return pd.DataFrame({feature_name: converted_values})\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Create a sample DataFrame based on the characteristics data where:\n",
    "    # - Each column is a sample\n",
    "    # - Each row represents a different characteristic (indexed by the keys in sample_chars_dict)\n",
    "    sample_chars_dict = {0: ['Sex: M', 'Sex: F'], \n",
    "                         1: ['age: 22', 'age: 45', 'age: 52', 'age: 50', 'age: 34', 'age: 55', 'age: 48', \n",
    "                             'age: 64', 'age: 70', 'age: 68', 'age: 23', 'age: 62', 'age: 59', 'age: 58', \n",
    "                             'age: 41', 'age: 47', 'age: 66', 'age: 38', 'age: 79', 'age: 61', 'age: 39', \n",
    "                             'age: 32', 'age: 46', 'age: 69', 'age: 54'], \n",
    "                         2: ['tissue: Esophageal Squamous Cell Carcinoma'], \n",
    "                         3: ['Stage: pT3N2', 'Stage: pT3N0', 'Stage: pT3N1', 'Stage: pT3N1bM1b', 'Stage: pT2PN1a', \n",
    "                             'Stage: pT2N0Mx', 'Stage: pT2N2', 'Stage: NA', 'Stage: pT2N0', 'Stage: pT2N1b', \n",
    "                             'Stage: pT3N1Mx', 'Stage: pT3N2Mx', 'Stage: pT2N1', 'Stage: pT3N0Mx'], \n",
    "                         4: ['grade: I', 'grade: II'], \n",
    "                         5: ['p53 status: unstable p53 (NS-)', 'p53 status: nuclear-stabilized p53 (NS+)']}\n",
    "    \n",
    "    # Extract individual features directly\n",
    "    feature_list = []\n",
    "    \n",
    "    # Extract trait data\n",
    "    trait_values = sample_chars_dict[trait_row]\n",
    "    trait_converted = [convert_trait(val) for val in trait_values]\n",
    "    trait_df = pd.DataFrame({trait: trait_converted})\n",
    "    feature_list.append(trait_df)\n",
    "    \n",
    "    # Extract age data if available\n",
    "    if age_row is not None:\n",
    "        age_values = sample_chars_dict[age_row]\n",
    "        age_converted = [convert_age(val) for val in age_values]\n",
    "        age_df = pd.DataFrame({'Age': age_converted})\n",
    "        feature_list.append(age_df)\n",
    "    \n",
    "    # Extract gender data if available\n",
    "    if gender_row is not None:\n",
    "        gender_values = sample_chars_dict[gender_row]\n",
    "        gender_converted = [convert_gender(val) for val in gender_values]\n",
    "        gender_df = pd.DataFrame({'Gender': gender_converted})\n",
    "        feature_list.append(gender_df)\n",
    "    \n",
    "    # Combine all features\n",
    "    # Note: This will align data by index, effectively creating a proper clinical DataFrame\n",
    "    selected_clinical_df = pd.concat(feature_list, axis=1)\n",
    "    \n",
    "    # Preview the selected clinical data\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of selected clinical data:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the selected clinical data to a CSV file\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f3c1ab5f",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "80032663",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:13:26.492358Z",
     "iopub.status.busy": "2025-03-25T05:13:26.492182Z",
     "iopub.status.idle": "2025-03-25T05:13:26.593087Z",
     "shell.execute_reply": "2025-03-25T05:13:26.592597Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found data marker at line 67\n",
      "Header line: \"ID_REF\"\t\"GSM6734720\"\t\"GSM6734721\"\t\"GSM6734722\"\t\"GSM6734723\"\t\"GSM6734724\"\t\"GSM6734725\"\t\"GSM6734726\"\t\"GSM6734727\"\t\"GSM6734728\"\t\"GSM6734729\"\t\"GSM6734730\"\t\"GSM6734731\"\t\"GSM6734732\"\t\"GSM6734733\"\t\"GSM6734734\"\t\"GSM6734735\"\t\"GSM6734736\"\t\"GSM6734737\"\t\"GSM6734738\"\t\"GSM6734739\"\t\"GSM6734740\"\t\"GSM6734741\"\t\"GSM6734742\"\t\"GSM6734743\"\t\"GSM6734744\"\t\"GSM6734745\"\t\"GSM6734746\"\t\"GSM6734747\"\t\"GSM6734748\"\t\"GSM6734749\"\t\"GSM6734750\"\t\"GSM6734751\"\t\"GSM6734752\"\t\"GSM6734753\"\t\"GSM6734754\"\t\"GSM6734755\"\n",
      "First data line: 12\t9.15E+02\t1.50E+03\t2.05E+03\t1.77E+03\t1.19E+03\t2.75E+03\t6.58E+02\t1.53E+03\t7.63E+02\t2.48E+03\t1.23E+03\t1.33E+03\t1.11E+03\t1.14E+04\t2.24E+03\t5.97E+03\t2.53E+03\t1.43E+03\t4.77E+02\t3.44E+03\t5.13E+03\t2.82E+03\t4.34E+03\t9.98E+02\t1.09E+03\t6.81E+03\t9.47E+02\t2.08E+03\t1.45E+03\t4.91E+03\t2.11E+03\t1.40E+01\t1.14E+03\t3.27E+03\t2.21E+03\t3.34E+03\n",
      "Index(['12', '14', '15', '16', '17', '18', '19', '20', '22', '23', '24', '25',\n",
      "       '26', '27', '30', '33', '35', '36', '37', '38'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "dea7927a",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "2f55618c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:13:26.594394Z",
     "iopub.status.busy": "2025-03-25T05:13:26.594242Z",
     "iopub.status.idle": "2025-03-25T05:13:26.596338Z",
     "shell.execute_reply": "2025-03-25T05:13:26.595992Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examining the gene identifiers in the expression data\n",
    "# The identifiers appear to be numeric values (12, 14, 15, 16...) which are not standard human gene symbols\n",
    "# These are likely to be probe IDs or some other platform-specific identifiers \n",
    "# that need to be mapped to human gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2bd85e0e",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "788a5b37",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:13:26.597458Z",
     "iopub.status.busy": "2025-03-25T05:13:26.597347Z",
     "iopub.status.idle": "2025-03-25T05:13:27.013922Z",
     "shell.execute_reply": "2025-03-25T05:13:27.013392Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Examining SOFT file structure:\n",
      "Line 0: ^DATABASE = GeoMiame\n",
      "Line 1: !Database_name = Gene Expression Omnibus (GEO)\n",
      "Line 2: !Database_institute = NCBI NLM NIH\n",
      "Line 3: !Database_web_link = http://www.ncbi.nlm.nih.gov/geo\n",
      "Line 4: !Database_email = [email protected]\n",
      "Line 5: ^SERIES = GSE218109\n",
      "Line 6: !Series_title = Esophageal Squamous Cell Carcinoma tumors from Indian patients: nuclear-stabilized p53 (NS+) versus unstable p53 (NS-) protein\n",
      "Line 7: !Series_geo_accession = GSE218109\n",
      "Line 8: !Series_status = Public on Mar 29 2024\n",
      "Line 9: !Series_submission_date = Nov 16 2022\n",
      "Line 10: !Series_last_update_date = Mar 30 2024\n",
      "Line 11: !Series_pubmed_id = 38358025\n",
      "Line 12: !Series_summary = Transcriptional profiling of Esophageal Squamous Cell Carcinoma (ESCC) tumors comparing samples harbouring nuclear-stabilized p53 (NS+) versus unstable p53 (NS-) protein, determined through immunohistochemistry (IHC) staining of the tumor sections. The goal was to identify the genes that were differentially regulated between NS+ and NS- ESCC samples.\n",
      "Line 13: !Series_overall_design = Two-condition experiment, NS+ versus NS- esophageal tumors. NS+ tumors: 17, NS- tumors: 19.\n",
      "Line 14: !Series_type = Expression profiling by array\n",
      "Line 15: !Series_contributor = Sara,A,George\n",
      "Line 16: !Series_contributor = Murali,D,Bashyam\n",
      "Line 17: !Series_sample_id = GSM6734720\n",
      "Line 18: !Series_sample_id = GSM6734721\n",
      "Line 19: !Series_sample_id = GSM6734722\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "{'ID': [1, 2, 3, 4, 5], 'COL': [266, 266, 266, 266, 266], 'ROW': [170, 168, 166, 164, 162], 'NAME': ['GE_BrightCorner', 'DarkCorner', 'DarkCorner', 'DarkCorner', 'DarkCorner'], 'SPOT_ID': ['GE_BrightCorner', 'DarkCorner', 'DarkCorner', 'DarkCorner', 'DarkCorner'], 'CONTROL_TYPE': ['pos', 'pos', 'pos', 'pos', 'pos'], 'REFSEQ': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan], 'GENE': [nan, nan, nan, nan, nan], 'GENE_SYMBOL': [nan, nan, nan, nan, nan], 'GENE_NAME': [nan, nan, nan, nan, nan], 'UNIGENE_ID': [nan, nan, nan, nan, nan], 'ENSEMBL_ID': [nan, nan, nan, nan, nan], 'TIGR_ID': [nan, nan, nan, nan, nan], 'ACCESSION_STRING': [nan, nan, nan, nan, nan], 'CHROMOSOMAL_LOCATION': [nan, nan, nan, nan, nan], 'CYTOBAND': [nan, nan, nan, nan, nan], 'DESCRIPTION': [nan, nan, nan, nan, nan], 'GO_ID': [nan, nan, nan, nan, nan], 'SEQUENCE': [nan, nan, nan, nan, nan], 'SPOT_ID.1': [nan, nan, nan, nan, nan], 'ORDER': [1, 2, 3, 4, 5]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
    "import gzip\n",
    "\n",
    "# Look at the first few lines of the SOFT file to understand its structure\n",
    "print(\"Examining SOFT file structure:\")\n",
    "try:\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        # Read first 20 lines to understand the file structure\n",
    "        for i, line in enumerate(file):\n",
    "            if i < 20:\n",
    "                print(f\"Line {i}: {line.strip()}\")\n",
    "            else:\n",
    "                break\n",
    "except Exception as e:\n",
    "    print(f\"Error reading SOFT file: {e}\")\n",
    "\n",
    "# 2. Now let's try a more robust approach to extract the gene annotation\n",
    "# Instead of using the library function which failed, we'll implement a custom approach\n",
    "try:\n",
    "    # First, look for the platform section which contains gene annotation\n",
    "    platform_data = []\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        in_platform_section = False\n",
    "        for line in file:\n",
    "            if line.startswith('^PLATFORM'):\n",
    "                in_platform_section = True\n",
    "                continue\n",
    "            if in_platform_section and line.startswith('!platform_table_begin'):\n",
    "                # Next line should be the header\n",
    "                header = next(file).strip()\n",
    "                platform_data.append(header)\n",
    "                # Read until the end of the platform table\n",
    "                for table_line in file:\n",
    "                    if table_line.startswith('!platform_table_end'):\n",
    "                        break\n",
    "                    platform_data.append(table_line.strip())\n",
    "                break\n",
    "    \n",
    "    # If we found platform data, convert it to a DataFrame\n",
    "    if platform_data:\n",
    "        import pandas as pd\n",
    "        import io\n",
    "        platform_text = '\\n'.join(platform_data)\n",
    "        gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
    "                                      low_memory=False, on_bad_lines='skip')\n",
    "        print(\"\\nGene annotation preview:\")\n",
    "        print(preview_df(gene_annotation))\n",
    "    else:\n",
    "        print(\"Could not find platform table in SOFT file\")\n",
    "        \n",
    "        # Try an alternative approach - extract mapping from other sections\n",
    "        with gzip.open(soft_file, 'rt') as file:\n",
    "            for line in file:\n",
    "                if 'ANNOTATION information' in line or 'annotation information' in line:\n",
    "                    print(f\"Found annotation information: {line.strip()}\")\n",
    "                if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
    "                    print(f\"Platform title: {line.strip()}\")\n",
    "            \n",
    "except Exception as e:\n",
    "    print(f\"Error processing gene annotation: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2822eba9",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "20a742a4",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:13:27.015323Z",
     "iopub.status.busy": "2025-03-25T05:13:27.015201Z",
     "iopub.status.idle": "2025-03-25T05:13:27.345973Z",
     "shell.execute_reply": "2025-03-25T05:13:27.345329Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Columns in gene_annotation: ['ID', 'COL', 'ROW', 'NAME', 'SPOT_ID', 'CONTROL_TYPE', 'REFSEQ', 'GB_ACC', 'GENE', 'GENE_SYMBOL', 'GENE_NAME', 'UNIGENE_ID', 'ENSEMBL_ID', 'TIGR_ID', 'ACCESSION_STRING', 'CHROMOSOMAL_LOCATION', 'CYTOBAND', 'DESCRIPTION', 'GO_ID', 'SEQUENCE', 'SPOT_ID.1', 'ORDER']\n",
      "\n",
      "Gene mapping preview (first 5 rows):\n",
      "    ID          Gene\n",
      "11  12      APOBEC3B\n",
      "13  14        ATP11B\n",
      "14  15  LOC100132006\n",
      "15  16        DNAJA1\n",
      "17  18         EHMT2\n",
      "\n",
      "Total probes in annotation: 45220\n",
      "Probes with gene symbols: 32696\n",
      "\n",
      "Gene expression data preview (first 5 genes):\n",
      "       GSM6734720  GSM6734721  GSM6734722  GSM6734723  GSM6734724  GSM6734725  \\\n",
      "Gene                                                                            \n",
      "A1BG       5040.0      1800.0      3190.0      3580.0       873.0      5500.0   \n",
      "A1CF         31.0       137.0        25.3        30.3        42.9        12.7   \n",
      "A2LD1      1250.0       785.0       791.0       625.0       829.0       446.0   \n",
      "A2M      126000.0    238000.0     93400.0     19100.0      8470.0    107000.0   \n",
      "A2ML1      1390.0      3640.0       611.0      1050.0      1790.0       148.0   \n",
      "\n",
      "       GSM6734726  GSM6734727  GSM6734728  GSM6734729  ...  GSM6734746  \\\n",
      "Gene                                                   ...               \n",
      "A1BG       3420.0      1020.0       667.0      2390.0  ...      3530.0   \n",
      "A1CF         15.7        69.9        61.4        32.8  ...        32.6   \n",
      "A2LD1      1080.0       296.0      2570.0       275.0  ...       736.0   \n",
      "A2M      122000.0     56500.0     46400.0     23200.0  ...     46400.0   \n",
      "A2ML1       267.0      3350.0      1070.0      3430.0  ...      1710.0   \n",
      "\n",
      "       GSM6734747  GSM6734748  GSM6734749  GSM6734750  GSM6734751  GSM6734752  \\\n",
      "Gene                                                                            \n",
      "A1BG       1010.0      1250.0      1650.0       442.0      2470.0      3030.0   \n",
      "A1CF         57.7        22.8        42.2        15.8        28.2        48.7   \n",
      "A2LD1      1280.0      1820.0      1130.0       565.0       275.0       402.0   \n",
      "A2M       22300.0     24400.0     44400.0     23100.0     12500.0     19100.0   \n",
      "A2ML1      4500.0      3310.0      2760.0      2070.0      1240.0       546.0   \n",
      "\n",
      "       GSM6734753  GSM6734754  GSM6734755  \n",
      "Gene                                       \n",
      "A1BG       1990.0      1750.0      1390.0  \n",
      "A1CF         45.4        30.5        36.7  \n",
      "A2LD1       521.0       181.0       410.0  \n",
      "A2M       43800.0     26200.0    149000.0  \n",
      "A2ML1       403.0      1430.0      4350.0  \n",
      "\n",
      "[5 rows x 36 columns]\n",
      "Total number of genes in expression data: 15298\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene expression data saved to ../../output/preprocess/Esophageal_Cancer/gene_data/GSE218109.csv\n"
     ]
    }
   ],
   "source": [
    "# Identify which columns in gene_annotation contain the probe IDs and gene symbols\n",
    "# From the preview, 'ID' column appears to contain numeric identifiers matching those in gene_data\n",
    "# 'GENE_SYMBOL' appears to be the column containing gene symbols\n",
    "\n",
    "# 1. Get the mapping between probe IDs and gene symbols\n",
    "probe_col = \"ID\"\n",
    "gene_col = \"GENE_SYMBOL\"\n",
    "\n",
    "# First, let's check if these columns exist in our annotation data\n",
    "print(f\"Columns in gene_annotation: {gene_annotation.columns.tolist()}\")\n",
    "\n",
    "# 2. Get the gene mapping dataframe by extracting the two relevant columns\n",
    "mapping_data = gene_annotation[[probe_col, gene_col]].copy()\n",
    "mapping_data = mapping_data.dropna(subset=[gene_col])  # Drop rows with no gene symbol\n",
    "mapping_data = mapping_data.astype({probe_col: 'str'})  # Convert ID to string to match gene_data index\n",
    "\n",
    "# Rename the gene symbol column to 'Gene' to match the expected column name in apply_gene_mapping\n",
    "mapping_data = mapping_data.rename(columns={gene_col: 'Gene'})\n",
    "\n",
    "# Preview the mapping\n",
    "print(\"\\nGene mapping preview (first 5 rows):\")\n",
    "print(mapping_data.head())\n",
    "\n",
    "# Check how many probes have gene symbols\n",
    "print(f\"\\nTotal probes in annotation: {len(gene_annotation)}\")\n",
    "print(f\"Probes with gene symbols: {len(mapping_data)}\")\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level data to gene-level data\n",
    "# Using the library function to handle the many-to-many mapping\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_data)\n",
    "\n",
    "# Check the resulting gene expression data\n",
    "print(\"\\nGene expression data preview (first 5 genes):\")\n",
    "print(gene_data.head())\n",
    "print(f\"Total number of genes in expression data: {len(gene_data)}\")\n",
    "\n",
    "# Save the gene expression data\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a11a65b2",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "eaae3870",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:13:27.347952Z",
     "iopub.status.busy": "2025-03-25T05:13:27.347820Z",
     "iopub.status.idle": "2025-03-25T05:13:33.211093Z",
     "shell.execute_reply": "2025-03-25T05:13:33.210424Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data shape: (14998, 36)\n",
      "First few genes with their expression values after normalization:\n",
      "        GSM6734720  GSM6734721  GSM6734722  GSM6734723  GSM6734724  \\\n",
      "Gene                                                                 \n",
      "A1BG        5040.0      1800.0      3190.0      3580.0       873.0   \n",
      "A1CF          31.0       137.0        25.3        30.3        42.9   \n",
      "A2M       126000.0    238000.0     93400.0     19100.0      8470.0   \n",
      "A2ML1       1390.0      3640.0       611.0      1050.0      1790.0   \n",
      "A4GALT       576.0      1140.0       732.0       924.0        76.3   \n",
      "\n",
      "        GSM6734725  GSM6734726  GSM6734727  GSM6734728  GSM6734729  ...  \\\n",
      "Gene                                                                ...   \n",
      "A1BG        5500.0      3420.0      1020.0       667.0      2390.0  ...   \n",
      "A1CF          12.7        15.7        69.9        61.4        32.8  ...   \n",
      "A2M       107000.0    122000.0     56500.0     46400.0     23200.0  ...   \n",
      "A2ML1        148.0       267.0      3350.0      1070.0      3430.0  ...   \n",
      "A4GALT      1400.0       471.0      2760.0       190.0      2640.0  ...   \n",
      "\n",
      "        GSM6734746  GSM6734747  GSM6734748  GSM6734749  GSM6734750  \\\n",
      "Gene                                                                 \n",
      "A1BG        3530.0      1010.0      1250.0      1650.0       442.0   \n",
      "A1CF          32.6        57.7        22.8        42.2        15.8   \n",
      "A2M        46400.0     22300.0     24400.0     44400.0     23100.0   \n",
      "A2ML1       1710.0      4500.0      3310.0      2760.0      2070.0   \n",
      "A4GALT       378.0      1150.0      1050.0       826.0       324.0   \n",
      "\n",
      "        GSM6734751  GSM6734752  GSM6734753  GSM6734754  GSM6734755  \n",
      "Gene                                                                \n",
      "A1BG        2470.0      3030.0      1990.0      1750.0      1390.0  \n",
      "A1CF          28.2        48.7        45.4        30.5        36.7  \n",
      "A2M        12500.0     19100.0     43800.0     26200.0    149000.0  \n",
      "A2ML1       1240.0       546.0       403.0      1430.0      4350.0  \n",
      "A4GALT      1220.0      1060.0       414.0       412.0       756.0  \n",
      "\n",
      "[5 rows x 36 columns]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Esophageal_Cancer/gene_data/GSE218109.csv\n",
      "Raw clinical data shape: (6, 37)\n",
      "Clinical features:\n",
      "                   GSM6734720  GSM6734721  GSM6734722  GSM6734723  GSM6734724  \\\n",
      "Esophageal_Cancer         0.0         0.0         0.0         0.0         0.0   \n",
      "Age                      22.0        45.0        52.0        50.0        34.0   \n",
      "Gender                    1.0         1.0         0.0         0.0         0.0   \n",
      "\n",
      "                   GSM6734725  GSM6734726  GSM6734727  GSM6734728  GSM6734729  \\\n",
      "Esophageal_Cancer         0.0         0.0         0.0         0.0         1.0   \n",
      "Age                      55.0        48.0        64.0        70.0        68.0   \n",
      "Gender                    1.0         0.0         1.0         1.0         0.0   \n",
      "\n",
      "                   ...  GSM6734746  GSM6734747  GSM6734748  GSM6734749  \\\n",
      "Esophageal_Cancer  ...         1.0         1.0         0.0         0.0   \n",
      "Age                ...        59.0        39.0        32.0        55.0   \n",
      "Gender             ...         1.0         0.0         0.0         0.0   \n",
      "\n",
      "                   GSM6734750  GSM6734751  GSM6734752  GSM6734753  GSM6734754  \\\n",
      "Esophageal_Cancer         1.0         1.0         1.0         1.0         1.0   \n",
      "Age                      46.0        69.0        61.0        54.0        38.0   \n",
      "Gender                    1.0         1.0         1.0         1.0         1.0   \n",
      "\n",
      "                   GSM6734755  \n",
      "Esophageal_Cancer         0.0  \n",
      "Age                      64.0  \n",
      "Gender                    1.0  \n",
      "\n",
      "[3 rows x 36 columns]\n",
      "Clinical features saved to ../../output/preprocess/Esophageal_Cancer/clinical_data/GSE218109.csv\n",
      "Linked data shape: (36, 15001)\n",
      "Linked data preview (first 5 rows, first 5 columns):\n",
      "            Esophageal_Cancer   Age  Gender    A1BG   A1CF\n",
      "GSM6734720                0.0  22.0     1.0  5040.0   31.0\n",
      "GSM6734721                0.0  45.0     1.0  1800.0  137.0\n",
      "GSM6734722                0.0  52.0     0.0  3190.0   25.3\n",
      "GSM6734723                0.0  50.0     0.0  3580.0   30.3\n",
      "GSM6734724                0.0  34.0     0.0   873.0   42.9\n",
      "Missing values before handling:\n",
      "  Trait (Esophageal_Cancer) missing: 0 out of 36\n",
      "  Age missing: 0 out of 36\n",
      "  Gender missing: 0 out of 36\n",
      "  Genes with >20% missing: 0\n",
      "  Samples with >5% missing genes: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (36, 15001)\n",
      "For the feature 'Esophageal_Cancer', the least common label is '1.0' with 17 occurrences. This represents 47.22% of the dataset.\n",
      "The distribution of the feature 'Esophageal_Cancer' in this dataset is fine.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: 44.0\n",
      "  50% (Median): 53.0\n",
      "  75%: 62.0\n",
      "Min: 22.0\n",
      "Max: 79.0\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '0.0' with 14 occurrences. This represents 38.89% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Esophageal_Cancer/GSE218109.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(\"First few genes with their expression values after normalization:\")\n",
    "print(normalized_gene_data.head())\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Check if trait data is available before proceeding with clinical data extraction\n",
    "if trait_row is None:\n",
    "    print(\"Trait row is None. Cannot extract trait information from clinical data.\")\n",
    "    # Create an empty dataframe for clinical features\n",
    "    clinical_features = pd.DataFrame()\n",
    "    \n",
    "    # Create an empty dataframe for linked data\n",
    "    linked_data = pd.DataFrame()\n",
    "    \n",
    "    # Validate and save cohort info\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=False,  # Trait data is not available\n",
    "        is_biased=True,  # Not applicable but required\n",
    "        df=pd.DataFrame(),  # Empty dataframe\n",
    "        note=\"Dataset contains gene expression data but lacks clear trait indicators for Duchenne Muscular Dystrophy status.\"\n",
    "    )\n",
    "    print(\"Data was determined to be unusable due to missing trait indicators and was not saved\")\n",
    "else:\n",
    "    try:\n",
    "        # Get the file paths for the matrix file to extract clinical data\n",
    "        _, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "        \n",
    "        # Get raw clinical data from the matrix file\n",
    "        _, clinical_raw = get_background_and_clinical_data(matrix_file)\n",
    "        \n",
    "        # Verify clinical data structure\n",
    "        print(\"Raw clinical data shape:\", clinical_raw.shape)\n",
    "        \n",
    "        # Extract clinical features using the defined conversion functions\n",
    "        clinical_features = geo_select_clinical_features(\n",
    "            clinical_df=clinical_raw,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        print(\"Clinical features:\")\n",
    "        print(clinical_features)\n",
    "        \n",
    "        # Save clinical features to file\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        clinical_features.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "        \n",
    "        # 3. Link clinical and genetic data\n",
    "        linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
    "        print(f\"Linked data shape: {linked_data.shape}\")\n",
    "        print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
    "        print(linked_data.iloc[:5, :5])\n",
    "        \n",
    "        # 4. Handle missing values\n",
    "        print(\"Missing values before handling:\")\n",
    "        print(f\"  Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
    "        if 'Age' in linked_data.columns:\n",
    "            print(f\"  Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n",
    "        if 'Gender' in linked_data.columns:\n",
    "            print(f\"  Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n",
    "        \n",
    "        gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n",
    "        print(f\"  Genes with >20% missing: {sum(linked_data[gene_cols].isna().mean() > 0.2)}\")\n",
    "        print(f\"  Samples with >5% missing genes: {sum(linked_data[gene_cols].isna().mean(axis=1) > 0.05)}\")\n",
    "        \n",
    "        cleaned_data = handle_missing_values(linked_data, trait)\n",
    "        print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
    "        \n",
    "        # 5. Evaluate bias in trait and demographic features\n",
    "        is_trait_biased = False\n",
    "        if len(cleaned_data) > 0:\n",
    "            trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
    "            is_trait_biased = trait_biased\n",
    "        else:\n",
    "            print(\"No data remains after handling missing values.\")\n",
    "            is_trait_biased = True\n",
    "        \n",
    "        # 6. Final validation and save\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=True, \n",
    "            is_trait_available=True, \n",
    "            is_biased=is_trait_biased, \n",
    "            df=cleaned_data,\n",
    "            note=\"Dataset contains gene expression data comparing Duchenne muscular dystrophy vs healthy samples.\"\n",
    "        )\n",
    "        \n",
    "        # 7. Save if usable\n",
    "        if is_usable and len(cleaned_data) > 0:\n",
    "            os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "            cleaned_data.to_csv(out_data_file)\n",
    "            print(f\"Linked data saved to {out_data_file}\")\n",
    "        else:\n",
    "            print(\"Data was determined to be unusable or empty and was not saved\")\n",
    "            \n",
    "    except Exception as e:\n",
    "        print(f\"Error processing data: {e}\")\n",
    "        # Handle the error case by still recording cohort info\n",
    "        validate_and_save_cohort_info(\n",
    "            is_final=True, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=True, \n",
    "            is_trait_available=False,  # Mark as not available due to processing issues\n",
    "            is_biased=True, \n",
    "            df=pd.DataFrame(),  # Empty dataframe\n",
    "            note=f\"Error processing data: {str(e)}\"\n",
    "        )\n",
    "        print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}