File size: 14,115 Bytes
0d7438c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "3ff89209",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:47:07.682892Z",
"iopub.status.busy": "2025-03-25T05:47:07.682779Z",
"iopub.status.idle": "2025-03-25T05:47:07.849334Z",
"shell.execute_reply": "2025-03-25T05:47:07.849013Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Huntingtons_Disease\"\n",
"cohort = \"GSE95843\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Huntingtons_Disease\"\n",
"in_cohort_dir = \"../../input/GEO/Huntingtons_Disease/GSE95843\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Huntingtons_Disease/GSE95843.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Huntingtons_Disease/gene_data/GSE95843.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Huntingtons_Disease/clinical_data/GSE95843.csv\"\n",
"json_path = \"../../output/preprocess/Huntingtons_Disease/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "f2e4b034",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "7de7bbdb",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:47:07.850713Z",
"iopub.status.busy": "2025-03-25T05:47:07.850570Z",
"iopub.status.idle": "2025-03-25T05:47:07.976322Z",
"shell.execute_reply": "2025-03-25T05:47:07.976013Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Gene expression from embryoid bodies derived from HBG3 HB9 ES cells\"\n",
"!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
"!Series_overall_design\t\"Refer to individual Series\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['strain: F1 progeny of two different strains (C57BL/6 and SJL)', 'strain: B6CBA-Tg(HDexon1)62Gpb/3J'], 1: ['time point: 9 weeks cultures', 'time point: 10 weeks cultures', \"treatment: plasma from a Huntington's disease mouse model\"]}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "33dc60b8",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "545b1d9c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:47:07.977859Z",
"iopub.status.busy": "2025-03-25T05:47:07.977606Z",
"iopub.status.idle": "2025-03-25T05:47:08.000304Z",
"shell.execute_reply": "2025-03-25T05:47:07.999978Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information and sample characteristics, it appears this dataset contains\n",
"# information about amyloid beta levels, but not gene expression data\n",
"is_gene_available = False\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# Looking at the sample characteristics dictionary, we don't see any clear information about \n",
"# Huntington's Disease, age, or gender\n",
"\n",
"# 2.1 Data Availability\n",
"trait_row = None # No information about Huntington's Disease in the samples\n",
"age_row = None # No age information available\n",
"gender_row = None # No gender information available\n",
"\n",
"# 2.2 Data Type Conversion (defining functions even though data is unavailable)\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait value to binary (0 for control, 1 for Huntington's Disease)\"\"\"\n",
" if value is None:\n",
" return None\n",
" value = value.lower() if isinstance(value, str) else str(value).lower()\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" if \"disease\" in value or \"patient\" in value or \"case\" in value or \"huntington\" in value or \"hd\" in value:\n",
" return 1\n",
" elif \"control\" in value or \"healthy\" in value or \"normal\" in value:\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age value to continuous\"\"\"\n",
" if value is None:\n",
" return None\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" try:\n",
" return float(value)\n",
" except:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
" if value is None:\n",
" return None\n",
" value = value.lower() if isinstance(value, str) else str(value).lower()\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" if \"female\" in value or \"f\" == value.strip():\n",
" return 0\n",
" elif \"male\" in value or \"m\" == value.strip():\n",
" return 1\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# We'll set is_trait_available to False as we couldn't find trait information\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, \n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=is_trait_available)\n",
"\n",
"# 4. Clinical Feature Extraction - Skip this step as trait_row is None\n"
]
},
{
"cell_type": "markdown",
"id": "88d4e288",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "dbcd1c7c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:47:08.001603Z",
"iopub.status.busy": "2025-03-25T05:47:08.001500Z",
"iopub.status.idle": "2025-03-25T05:47:08.206862Z",
"shell.execute_reply": "2025-03-25T05:47:08.206481Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Matrix file found: ../../input/GEO/Huntingtons_Disease/GSE95843/GSE95843-GPL23148_series_matrix.txt.gz\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape: (19620, 65)\n",
"First 20 gene/probe identifiers:\n",
"Index(['a', 'A030009H04Rik', 'A130010J15Rik', 'A130023I24Rik', 'A1bg', 'A1cf',\n",
" 'A230006K03Rik', 'A230046K03Rik', 'A230050P20Rik', 'A230051G13Rik',\n",
" 'A230051N06Rik', 'A230083G16Rik', 'A2ld1', 'A2m', 'A330021E22Rik',\n",
" 'A330049M08Rik', 'A330070K13Rik', 'A3galt2', 'A430005L14Rik',\n",
" 'A430033K04Rik'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Get the SOFT and matrix file paths again \n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"Matrix file found: {matrix_file}\")\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" \n",
" # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "e6ea8fda",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ab3add52",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:47:08.208307Z",
"iopub.status.busy": "2025-03-25T05:47:08.208190Z",
"iopub.status.idle": "2025-03-25T05:47:08.210136Z",
"shell.execute_reply": "2025-03-25T05:47:08.209839Z"
}
},
"outputs": [],
"source": [
"# Based on the provided output, the gene identifiers appear to be human gene symbols.\n",
"# These are standard gene symbols like A1BG, A2M, AAAS, etc. that match official human gene nomenclature.\n",
"# They are not probe IDs (which would typically be numeric or have manufacturer prefixes)\n",
"# and they are not other types of identifiers that would require mapping.\n",
"\n",
"requires_gene_mapping = False\n"
]
},
{
"cell_type": "markdown",
"id": "b08f86be",
"metadata": {},
"source": [
"### Step 5: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "939f6a7f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:47:08.211437Z",
"iopub.status.busy": "2025-03-25T05:47:08.211334Z",
"iopub.status.idle": "2025-03-25T05:47:09.069110Z",
"shell.execute_reply": "2025-03-25T05:47:09.068706Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n",
"Gene data shape after normalization: (14859, 65)\n",
"First 10 normalized gene symbols:\n",
"Index(['A1BG', 'A1CF', 'A2M', 'A3GALT2', 'A4GALT', 'A4GNT', 'AAAS', 'AACS',\n",
" 'AADAC', 'AADACL3'],\n",
" dtype='object', name='ID')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to: ../../output/preprocess/Huntingtons_Disease/gene_data/GSE95843.csv\n",
"\n",
"Validating cohort usability...\n",
"Dataset usability: False\n",
"Dataset lacks trait information for Huntington's Disease, so no linked data will be saved.\n"
]
}
],
"source": [
"# Based on previous steps, this dataset does not contain Huntington's Disease trait information\n",
"# and trait_row was found to be None, so we need to adjust our approach\n",
"\n",
"# 1. First, normalize the gene symbols in the gene data we extracted in Step 3\n",
"print(\"Normalizing gene symbols...\")\n",
"# Make sure output directory exists\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"\n",
"# Normalize gene symbols directly from gene_data variable obtained in Step 3\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"print(\"First 10 normalized gene symbols:\")\n",
"print(normalized_gene_data.index[:10])\n",
"\n",
"# Save the normalized gene data\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to: {out_gene_data_file}\")\n",
"\n",
"# 2. Since we don't have trait data, we need to prepare a proper dataframe for validation\n",
"# and set is_biased=True since without trait data, the dataset is biased/unusable for trait analysis\n",
"dummy_df = normalized_gene_data.iloc[:5, :5].reset_index() # Create small sample for efficiency\n",
"is_biased = True # Without trait data, the dataset is considered biased/unusable\n",
"\n",
"print(\"\\nValidating cohort usability...\")\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True, # We did find gene expression data\n",
" is_trait_available=False, # Previous steps found no trait information\n",
" is_biased=is_biased, # Dataset is biased without trait data\n",
" df=dummy_df, # Use a small sample of the data for validation\n",
" note=\"This dataset contains gene expression data but lacks Huntington's Disease trait information.\"\n",
")\n",
"\n",
"print(f\"Dataset usability: {is_usable}\")\n",
"print(\"Dataset lacks trait information for Huntington's Disease, so no linked data will be saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|