File size: 20,391 Bytes
3923fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fe5db780",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Stomach_Cancer\"\n",
    "cohort = \"GSE161533\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Stomach_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Stomach_Cancer/GSE161533\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Stomach_Cancer/GSE161533.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Stomach_Cancer/gene_data/GSE161533.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Stomach_Cancer/clinical_data/GSE161533.csv\"\n",
    "json_path = \"../../output/preprocess/Stomach_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "dd093a27",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "337ad9c6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Let's first list the directory contents to understand what files are available\n",
    "import os\n",
    "\n",
    "print(\"Files in the cohort directory:\")\n",
    "files = os.listdir(in_cohort_dir)\n",
    "print(files)\n",
    "\n",
    "# Adapt file identification to handle different naming patterns\n",
    "soft_files = [f for f in files if 'soft' in f.lower() or '.soft' in f.lower() or '_soft' in f.lower()]\n",
    "matrix_files = [f for f in files if 'matrix' in f.lower() or '.matrix' in f.lower() or '_matrix' in f.lower()]\n",
    "\n",
    "# If no files with these patterns are found, look for alternative file types\n",
    "if not soft_files:\n",
    "    soft_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n",
    "if not matrix_files:\n",
    "    matrix_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n",
    "\n",
    "print(\"Identified SOFT files:\", soft_files)\n",
    "print(\"Identified matrix files:\", matrix_files)\n",
    "\n",
    "# Use the first files found, if any\n",
    "if len(soft_files) > 0 and len(matrix_files) > 0:\n",
    "    soft_file = os.path.join(in_cohort_dir, soft_files[0])\n",
    "    matrix_file = os.path.join(in_cohort_dir, matrix_files[0])\n",
    "    \n",
    "    # 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "    background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "    clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "    background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "    \n",
    "    # 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "    sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "    \n",
    "    # 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "    print(\"\\nBackground Information:\")\n",
    "    print(background_info)\n",
    "    print(\"\\nSample Characteristics Dictionary:\")\n",
    "    print(sample_characteristics_dict)\n",
    "else:\n",
    "    print(\"No appropriate files found in the directory.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "71824a8b",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c5b4067b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# The dataset uses Affymetrix Gene Chip Human Genome U133 plus 2.0 Array, which contains gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait: Examining the tissue type which indicates stomach cancer status\n",
    "trait_row = 0  # 'tissue' field - has normal, paratumor, and tumor tissue types\n",
    "\n",
    "# For age: Age data is available in key 2\n",
    "age_row = 2  # 'age' field with multiple values\n",
    "\n",
    "# For gender: Gender data is available in key 3\n",
    "gender_row = 3  # 'gender' field with Male and Female values\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "\n",
    "# Convert trait to binary (tumor vs non-tumor)\n",
    "def convert_trait(value):\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.lower().strip()\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"tumor tissue\" in value:\n",
    "        return 1  # Tumor tissue (case)\n",
    "    elif \"normal tissue\" in value:\n",
    "        return 0  # Normal tissue (control)\n",
    "    elif \"paratumor tissue\" in value:\n",
    "        return None  # We'll exclude paratumor tissue as it's neither case nor control\n",
    "    return None\n",
    "\n",
    "# Convert age to continuous\n",
    "def convert_age(value):\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.lower().strip()\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "# Convert gender to binary (0=female, 1=male)\n",
    "def convert_gender(value):\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.lower().strip()\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"male\" in value:\n",
    "        return 1\n",
    "    elif \"female\" in value:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Initial validation - checking if gene and trait data are available\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(is_final=False, \n",
    "                             cohort=cohort, \n",
    "                             info_path=json_path, \n",
    "                             is_gene_available=is_gene_available, \n",
    "                             is_trait_available=is_trait_available)\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features using the function from the library\n",
    "    clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical data\n",
    "    preview = preview_df(clinical_df)\n",
    "    print(\"Preview of clinical data:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save clinical data to CSV\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f000ac35",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "dd404382",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Use the helper function to get the proper file paths\n",
    "soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Extract gene expression data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file_path)\n",
    "    \n",
    "    # Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "    \n",
    "    # Print shape to understand the dataset dimensions\n",
    "    print(f\"\\nGene expression data shape: {gene_data.shape}\")\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "81ac5eed",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "de29d4e5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Examining the gene identifiers shown in the previous step\n",
    "# These identifiers (e.g., '1007_s_at', '1053_at') appear to be Affymetrix probe IDs\n",
    "# rather than standard human gene symbols (which would be like BRCA1, TP53, etc.)\n",
    "# Affymetrix probe IDs need to be mapped to official gene symbols for biological interpretation\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7dfb6770",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2fef7c0f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "try:\n",
    "    # Use the correct variable name from previous steps\n",
    "    gene_annotation = get_gene_annotation(soft_file_path)\n",
    "    \n",
    "    # 2. Preview the gene annotation dataframe\n",
    "    print(\"Gene annotation preview:\")\n",
    "    print(preview_df(gene_annotation))\n",
    "    \n",
    "except UnicodeDecodeError as e:\n",
    "    print(f\"Unicode decoding error: {e}\")\n",
    "    print(\"Trying alternative approach...\")\n",
    "    \n",
    "    # Read the file with Latin-1 encoding which is more permissive\n",
    "    import gzip\n",
    "    import pandas as pd\n",
    "    \n",
    "    # Manually read the file line by line with error handling\n",
    "    data_lines = []\n",
    "    with gzip.open(soft_file_path, 'rb') as f:\n",
    "        for line in f:\n",
    "            # Skip lines starting with prefixes we want to filter out\n",
    "            line_str = line.decode('latin-1')\n",
    "            if not line_str.startswith('^') and not line_str.startswith('!') and not line_str.startswith('#'):\n",
    "                data_lines.append(line_str)\n",
    "    \n",
    "    # Create dataframe from collected lines\n",
    "    if data_lines:\n",
    "        gene_data_str = '\\n'.join(data_lines)\n",
    "        gene_annotation = pd.read_csv(pd.io.common.StringIO(gene_data_str), sep='\\t', low_memory=False)\n",
    "        print(\"Gene annotation preview (alternative method):\")\n",
    "        print(preview_df(gene_annotation))\n",
    "    else:\n",
    "        print(\"No valid gene annotation data found after filtering.\")\n",
    "        gene_annotation = pd.DataFrame()\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene annotation data: {e}\")\n",
    "    gene_annotation = pd.DataFrame()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0938a050",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c1ad5024",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify the relevant columns in the gene annotation dataframe\n",
    "# The gene expression data uses identifiers like '1007_s_at', which matches the 'ID' column in the gene annotation\n",
    "# The gene symbols are stored in the 'Gene Symbol' column\n",
    "\n",
    "# 2. Create the gene mapping dataframe using the get_gene_mapping function\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')\n",
    "print(\"\\nGene mapping dataframe (first 5 rows):\")\n",
    "print(mapping_df.head())\n",
    "print(f\"Shape of mapping dataframe: {mapping_df.shape}\")\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(\"\\nConverted gene expression data (first 5 genes, 5 samples):\")\n",
    "if not gene_data.empty:\n",
    "    print(gene_data.iloc[:5, :5])\n",
    "    print(f\"\\nShape of gene expression data: {gene_data.shape}\")\n",
    "else:\n",
    "    print(\"Gene expression data is empty after mapping.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e2d618be",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c2e1f3d4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the obtained gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(f\"First few normalized gene symbols: {list(normalized_gene_data.index[:10])}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the clinical data created in Step 2\n",
    "# Inspect clinical data structure before manipulating\n",
    "clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "print(f\"Loaded clinical data shape: {clinical_df.shape}\")\n",
    "print(f\"Loaded clinical data columns: {clinical_df.columns.tolist()}\")\n",
    "\n",
    "# Create clinical features DataFrame with proper structure \n",
    "# In this dataset, we know from step 2 that the first column is unnamed and contains feature names\n",
    "clinical_features = clinical_df.copy()\n",
    "# Set the first unnamed column as index if it exists\n",
    "if 'Unnamed: 0' in clinical_features.columns:\n",
    "    clinical_features = clinical_features.set_index('Unnamed: 0') \n",
    "clinical_features = clinical_features.T  # Transpose to get samples as rows and features as columns\n",
    "print(f\"Clinical features shape after format adjustment: {clinical_features.shape}\")\n",
    "\n",
    "# Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_features.T, normalized_gene_data)\n",
    "print(f\"Linked data shape after linking: {linked_data.shape}\")\n",
    "\n",
    "# 3. Handle missing values\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 4. Determine whether the trait and demographic features are biased\n",
    "is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "print(f\"Is trait biased: {is_trait_biased}\")\n",
    "print(f\"Linked data shape after removing biased features: {linked_data.shape}\")\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True,  \n",
    "    is_trait_available=True,\n",
    "    is_biased=is_trait_biased, \n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains gene expression data from esophageal squamous cell carcinoma patients, with normal, paratumor, and tumor tissue samples.\"\n",
    ")\n",
    "\n",
    "# 6. Save the linked data if it's usable\n",
    "print(f\"Data quality check result: {'Usable' if is_usable else 'Not usable'}\")\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(f\"Data not saved due to quality issues.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9973ed83",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3b202f75",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the obtained gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(f\"First few normalized gene symbols: {list(normalized_gene_data.index[:10])}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the clinical data created in Step 2\n",
    "clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "print(f\"Loaded clinical data shape: {clinical_df.shape}\")\n",
    "\n",
    "# Prepare clinical data properly, understanding the data structure from previous steps\n",
    "# The DataFrame needs to be transposed to have samples as rows and features as columns\n",
    "clinical_features = pd.DataFrame()\n",
    "for col in clinical_df.columns:\n",
    "    if col != 'Unnamed: 0':  # Skip the unnamed index column if it exists\n",
    "        sample_id = col\n",
    "        # Get trait, age, gender values for this sample\n",
    "        values = clinical_df[col].values\n",
    "        if len(values) >= 3:  # Make sure we have enough values\n",
    "            clinical_features.loc[sample_id, trait] = values[0]  # Stomach_Cancer status\n",
    "            clinical_features.loc[sample_id, 'Age'] = values[1]  # Age\n",
    "            clinical_features.loc[sample_id, 'Gender'] = values[2]  # Gender\n",
    "\n",
    "print(f\"Prepared clinical features shape: {clinical_features.shape}\")\n",
    "print(clinical_features.head())\n",
    "\n",
    "# Link clinical and genetic data\n",
    "linked_data = pd.concat([clinical_features, normalized_gene_data.T], axis=1)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# 3. Handle missing values\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 4. Determine whether the trait and demographic features are biased\n",
    "is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "print(f\"Is trait biased: {is_trait_biased}\")\n",
    "print(f\"Linked data shape after removing biased features: {linked_data.shape}\")\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True,  \n",
    "    is_trait_available=True,\n",
    "    is_biased=is_trait_biased, \n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains gene expression data from esophageal squamous cell carcinoma patients, with normal, paratumor, and tumor tissue samples.\"\n",
    ")\n",
    "\n",
    "# 6. Save the linked data if it's usable\n",
    "print(f\"Data quality check result: {'Usable' if is_usable else 'Not usable'}\")\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(f\"Data not saved due to quality issues.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}