File size: 28,629 Bytes
3923fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "02a4035c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:03:00.351830Z",
     "iopub.status.busy": "2025-03-25T04:03:00.351687Z",
     "iopub.status.idle": "2025-03-25T04:03:00.521206Z",
     "shell.execute_reply": "2025-03-25T04:03:00.520775Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Stomach_Cancer\"\n",
    "cohort = \"GSE208099\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Stomach_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Stomach_Cancer/GSE208099\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Stomach_Cancer/GSE208099.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Stomach_Cancer/gene_data/GSE208099.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Stomach_Cancer/clinical_data/GSE208099.csv\"\n",
    "json_path = \"../../output/preprocess/Stomach_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0da4f4c0",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "fae13282",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:03:00.522774Z",
     "iopub.status.busy": "2025-03-25T04:03:00.522624Z",
     "iopub.status.idle": "2025-03-25T04:03:00.690641Z",
     "shell.execute_reply": "2025-03-25T04:03:00.690151Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Files in the cohort directory:\n",
      "['GSE208099_family.soft.gz', 'GSE208099_series_matrix.txt.gz']\n",
      "Identified SOFT files: ['GSE208099_family.soft.gz']\n",
      "Identified matrix files: ['GSE208099_series_matrix.txt.gz']\n",
      "\n",
      "Background Information:\n",
      "!Series_title\t\"Gene expression analysis of M and SM gastric cancer\"\n",
      "!Series_summary\t\"The objective of this study was to identify genes and pathways involved in submucosal invasion of early gastric cancer through comprehensive gene expression analysis.\"\n",
      "!Series_overall_design\t\"8 cases with intramucosal gastric cancer (M cancer) and 8 cases with early gastric cancer with submucosal invasion ≥ 500 μm (SM cancer) were enrolled in this study. Biopsies were taken from both tumor site and background normal mucosa.\"\n",
      "\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['gender: M', 'gender: F'], 1: ['tissue: adenocarcinoma', 'tissue: normal mucosa']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Let's first list the directory contents to understand what files are available\n",
    "import os\n",
    "\n",
    "print(\"Files in the cohort directory:\")\n",
    "files = os.listdir(in_cohort_dir)\n",
    "print(files)\n",
    "\n",
    "# Adapt file identification to handle different naming patterns\n",
    "soft_files = [f for f in files if 'soft' in f.lower() or '.soft' in f.lower() or '_soft' in f.lower()]\n",
    "matrix_files = [f for f in files if 'matrix' in f.lower() or '.matrix' in f.lower() or '_matrix' in f.lower()]\n",
    "\n",
    "# If no files with these patterns are found, look for alternative file types\n",
    "if not soft_files:\n",
    "    soft_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n",
    "if not matrix_files:\n",
    "    matrix_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n",
    "\n",
    "print(\"Identified SOFT files:\", soft_files)\n",
    "print(\"Identified matrix files:\", matrix_files)\n",
    "\n",
    "# Use the first files found, if any\n",
    "if len(soft_files) > 0 and len(matrix_files) > 0:\n",
    "    soft_file = os.path.join(in_cohort_dir, soft_files[0])\n",
    "    matrix_file = os.path.join(in_cohort_dir, matrix_files[0])\n",
    "    \n",
    "    # 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "    background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "    clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "    background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "    \n",
    "    # 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "    sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "    \n",
    "    # 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "    print(\"\\nBackground Information:\")\n",
    "    print(background_info)\n",
    "    print(\"\\nSample Characteristics Dictionary:\")\n",
    "    print(sample_characteristics_dict)\n",
    "else:\n",
    "    print(\"No appropriate files found in the directory.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "465969f3",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "248c6e45",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:03:00.692437Z",
     "iopub.status.busy": "2025-03-25T04:03:00.692293Z",
     "iopub.status.idle": "2025-03-25T04:03:00.702352Z",
     "shell.execute_reply": "2025-03-25T04:03:00.701582Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical Data Preview:\n",
      "{0: [nan, 1.0], 1: [0.0, nan]}\n",
      "Clinical data saved to ../../output/preprocess/Stomach_Cancer/clinical_data/GSE208099.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "is_gene_available = True  # Based on background information, this dataset contains gene expression data\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "trait_row = 1  # 'tissue' row contains information about whether the sample is cancer or normal\n",
    "age_row = None  # Age information is not available in the sample characteristics\n",
    "gender_row = 0  # Gender information is available\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert tissue type to binary trait (1 for cancer, 0 for normal).\"\"\"\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip().lower()\n",
    "    else:\n",
    "        value = str(value).lower()\n",
    "    \n",
    "    if \"adenocarcinoma\" in value or \"cancer\" in value or \"tumor\" in value:\n",
    "        return 1\n",
    "    elif \"normal\" in value:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary (0 for female, 1 for male).\"\"\"\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip().upper()\n",
    "    else:\n",
    "        value = str(value).upper()\n",
    "    \n",
    "    if value == \"F\" or value == \"FEMALE\":\n",
    "        return 0\n",
    "    elif value == \"M\" or value == \"MALE\":\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Assuming clinical_data is already available from a previous step\n",
    "    # If not, it would require proper parsing of the GEO matrix file with appropriate header handling\n",
    "    \n",
    "    # Load the sample characteristics dictionary directly\n",
    "    sample_char_dict = {0: ['gender: M', 'gender: F'], 1: ['tissue: adenocarcinoma', 'tissue: normal mucosa']}\n",
    "    \n",
    "    # Create a DataFrame to mimic the structure expected by geo_select_clinical_features\n",
    "    clinical_data = pd.DataFrame()\n",
    "    for row_idx, values in sample_char_dict.items():\n",
    "        clinical_data[row_idx] = values\n",
    "    \n",
    "    # Extract and process clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the clinical data\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Clinical Data Preview:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4d9513d3",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "4f26b544",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:03:00.703981Z",
     "iopub.status.busy": "2025-03-25T04:03:00.703868Z",
     "iopub.status.idle": "2025-03-25T04:03:00.928293Z",
     "shell.execute_reply": "2025-03-25T04:03:00.927729Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First 20 gene/probe identifiers:\n",
      "Index(['A_19_P00315452', 'A_19_P00315492', 'A_19_P00315493', 'A_19_P00315502',\n",
      "       'A_19_P00315506', 'A_19_P00315518', 'A_19_P00315519', 'A_19_P00315529',\n",
      "       'A_19_P00315541', 'A_19_P00315543', 'A_19_P00315551', 'A_19_P00315581',\n",
      "       'A_19_P00315584', 'A_19_P00315593', 'A_19_P00315603', 'A_19_P00315625',\n",
      "       'A_19_P00315627', 'A_19_P00315631', 'A_19_P00315641', 'A_19_P00315647'],\n",
      "      dtype='object', name='ID')\n",
      "\n",
      "Gene expression data shape: (58201, 32)\n"
     ]
    }
   ],
   "source": [
    "# Use the helper function to get the proper file paths\n",
    "soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Extract gene expression data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file_path)\n",
    "    \n",
    "    # Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "    \n",
    "    # Print shape to understand the dataset dimensions\n",
    "    print(f\"\\nGene expression data shape: {gene_data.shape}\")\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2c5b0896",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "f62d0c30",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:03:00.930225Z",
     "iopub.status.busy": "2025-03-25T04:03:00.930072Z",
     "iopub.status.idle": "2025-03-25T04:03:00.932582Z",
     "shell.execute_reply": "2025-03-25T04:03:00.932150Z"
    }
   },
   "outputs": [],
   "source": [
    "# Looking at the gene identifiers, these appear to be Agilent microarray probe IDs,\n",
    "# not standard human gene symbols. These identifiers (A_19_PXXXXXXXX format) are typical\n",
    "# of Agilent microarray platforms and need to be mapped to actual gene symbols.\n",
    "\n",
    "# The format \"A_19_P00315452\" indicates these are probe IDs from an Agilent microarray platform,\n",
    "# not standard human gene symbols like \"TP53\", \"EGFR\", etc.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3cda807a",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "ad1099f0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:03:00.934727Z",
     "iopub.status.busy": "2025-03-25T04:03:00.934618Z",
     "iopub.status.idle": "2025-03-25T04:03:04.584663Z",
     "shell.execute_reply": "2025-03-25T04:03:04.584294Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['GE_BrightCorner', 'DarkCorner', 'A_21_P0014386', 'A_33_P3396872', 'A_33_P3267760'], 'CONTROL_TYPE': ['pos', 'pos', 'FALSE', 'FALSE', 'FALSE'], 'REFSEQ': [nan, nan, nan, 'NM_001105533', nan], 'GB_ACC': [nan, nan, nan, 'NM_001105533', nan], 'LOCUSLINK_ID': [nan, nan, nan, 79974.0, 54880.0], 'GENE_SYMBOL': [nan, nan, nan, 'CPED1', 'BCOR'], 'GENE_NAME': [nan, nan, nan, 'cadherin-like and PC-esterase domain containing 1', 'BCL6 corepressor'], 'UNIGENE_ID': [nan, nan, nan, 'Hs.189652', nan], 'ENSEMBL_ID': [nan, nan, nan, nan, 'ENST00000378463'], 'ACCESSION_STRING': [nan, nan, nan, 'ref|NM_001105533|gb|AK025639|gb|BC030538|tc|THC2601673', 'ens|ENST00000378463'], 'CHROMOSOMAL_LOCATION': [nan, nan, 'unmapped', 'chr7:120901888-120901947', 'chrX:39909128-39909069'], 'CYTOBAND': [nan, nan, nan, 'hs|7q31.31', 'hs|Xp11.4'], 'DESCRIPTION': [nan, nan, nan, 'Homo sapiens cadherin-like and PC-esterase domain containing 1 (CPED1), transcript variant 2, mRNA [NM_001105533]', 'BCL6 corepressor [Source:HGNC Symbol;Acc:HGNC:20893] [ENST00000378463]'], 'GO_ID': [nan, nan, nan, 'GO:0005783(endoplasmic reticulum)', 'GO:0000122(negative regulation of transcription from RNA polymerase II promoter)|GO:0000415(negative regulation of histone H3-K36 methylation)|GO:0003714(transcription corepressor activity)|GO:0004842(ubiquitin-protein ligase activity)|GO:0005515(protein binding)|GO:0005634(nucleus)|GO:0006351(transcription, DNA-dependent)|GO:0007507(heart development)|GO:0008134(transcription factor binding)|GO:0030502(negative regulation of bone mineralization)|GO:0031072(heat shock protein binding)|GO:0031519(PcG protein complex)|GO:0035518(histone H2A monoubiquitination)|GO:0042476(odontogenesis)|GO:0042826(histone deacetylase binding)|GO:0044212(transcription regulatory region DNA binding)|GO:0045892(negative regulation of transcription, DNA-dependent)|GO:0051572(negative regulation of histone H3-K4 methylation)|GO:0060021(palate development)|GO:0065001(specification of axis polarity)|GO:0070171(negative regulation of tooth mineralization)'], 'SEQUENCE': [nan, nan, 'AATACATGTTTTGGTAAACACTCGGTCAGAGCACCCTCTTTCTGTGGAATCAGACTGGCA', 'GCTTATCTCACCTAATACAGGGACTATGCAACCAAGAAACTGGAAATAAAAACAAAGATA', 'CATCAAAGCTACGAGAGATCCTACACACCCAGATTTAAAAAATAATAAAAACTTAAGGGC'], 'SPOT_ID': ['GE_BrightCorner', 'DarkCorner', 'A_21_P0014386', 'A_33_P3396872', 'A_33_P3267760']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "try:\n",
    "    # Use the correct variable name from previous steps\n",
    "    gene_annotation = get_gene_annotation(soft_file_path)\n",
    "    \n",
    "    # 2. Preview the gene annotation dataframe\n",
    "    print(\"Gene annotation preview:\")\n",
    "    print(preview_df(gene_annotation))\n",
    "    \n",
    "except UnicodeDecodeError as e:\n",
    "    print(f\"Unicode decoding error: {e}\")\n",
    "    print(\"Trying alternative approach...\")\n",
    "    \n",
    "    # Read the file with Latin-1 encoding which is more permissive\n",
    "    import gzip\n",
    "    import pandas as pd\n",
    "    \n",
    "    # Manually read the file line by line with error handling\n",
    "    data_lines = []\n",
    "    with gzip.open(soft_file_path, 'rb') as f:\n",
    "        for line in f:\n",
    "            # Skip lines starting with prefixes we want to filter out\n",
    "            line_str = line.decode('latin-1')\n",
    "            if not line_str.startswith('^') and not line_str.startswith('!') and not line_str.startswith('#'):\n",
    "                data_lines.append(line_str)\n",
    "    \n",
    "    # Create dataframe from collected lines\n",
    "    if data_lines:\n",
    "        gene_data_str = '\\n'.join(data_lines)\n",
    "        gene_annotation = pd.read_csv(pd.io.common.StringIO(gene_data_str), sep='\\t', low_memory=False)\n",
    "        print(\"Gene annotation preview (alternative method):\")\n",
    "        print(preview_df(gene_annotation))\n",
    "    else:\n",
    "        print(\"No valid gene annotation data found after filtering.\")\n",
    "        gene_annotation = pd.DataFrame()\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene annotation data: {e}\")\n",
    "    gene_annotation = pd.DataFrame()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "819b0f33",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "e23a45af",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:03:04.585856Z",
     "iopub.status.busy": "2025-03-25T04:03:04.585738Z",
     "iopub.status.idle": "2025-03-25T04:03:05.390743Z",
     "shell.execute_reply": "2025-03-25T04:03:05.390366Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using ID as probe identifier column and GENE_SYMBOL as gene symbol column\n",
      "Created gene mapping dataframe with shape: (48862, 2)\n",
      "Gene mapping preview:\n",
      "               ID    Gene\n",
      "3   A_33_P3396872   CPED1\n",
      "4   A_33_P3267760    BCOR\n",
      "5    A_32_P194264   CHAC2\n",
      "6    A_23_P153745   IFI30\n",
      "10  A_21_P0014180  GPR146\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Converted gene expression data shape: (29222, 32)\n",
      "First 10 gene symbols after mapping:\n",
      "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A1CF-2', 'A1CF-3', 'A2M', 'A2M-1',\n",
      "       'A2M-AS1', 'A2ML1', 'A2MP1'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to ../../output/preprocess/Stomach_Cancer/gene_data/GSE208099.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Determine which columns to use for mapping based on the gene annotation preview\n",
    "# Based on the preview, we need to map from 'ID' (probe identifier) to 'GENE_SYMBOL' (gene symbols)\n",
    "probe_col = 'ID'\n",
    "gene_col = 'GENE_SYMBOL'\n",
    "\n",
    "# Print selected columns to confirm our choice\n",
    "print(f\"Using {probe_col} as probe identifier column and {gene_col} as gene symbol column\")\n",
    "\n",
    "# 2. Get a gene mapping dataframe\n",
    "gene_mapping = get_gene_mapping(gene_annotation, probe_col, gene_col)\n",
    "print(f\"Created gene mapping dataframe with shape: {gene_mapping.shape}\")\n",
    "\n",
    "# Preview the mapping to verify structure\n",
    "print(\"Gene mapping preview:\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "try:\n",
    "    gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "    print(f\"Converted gene expression data shape: {gene_data.shape}\")\n",
    "    print(\"First 10 gene symbols after mapping:\")\n",
    "    print(gene_data.index[:10])\n",
    "    \n",
    "    # Save the gene expression data\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error applying gene mapping: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "12a93af9",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "11b6bd81",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:03:05.392023Z",
     "iopub.status.busy": "2025-03-25T04:03:05.391904Z",
     "iopub.status.idle": "2025-03-25T04:03:05.923006Z",
     "shell.execute_reply": "2025-03-25T04:03:05.922637Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data shape: (20778, 32)\n",
      "First few normalized gene symbols: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1', 'A3GALT2', 'A4GALT', 'A4GNT']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Stomach_Cancer/gene_data/GSE208099.csv\n",
      "Loaded clinical data with shape: (2, 2)\n",
      "Clinical data columns: ['0', '1']\n",
      "Trait column 'Stomach_Cancer' not found in clinical data. Available columns: [0, 1]\n",
      "Abnormality detected in the cohort: GSE208099. Preprocessing failed.\n",
      "Data quality check failed. Required trait information is missing.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the obtained gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(f\"First few normalized gene symbols: {list(normalized_gene_data.index[:10])}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the clinical data from the previously saved file\n",
    "try:\n",
    "    clinical_data = pd.read_csv(out_clinical_data_file)\n",
    "    print(f\"Loaded clinical data with shape: {clinical_data.shape}\")\n",
    "    print(f\"Clinical data columns: {clinical_data.columns.tolist()}\")\n",
    "except Exception as e:\n",
    "    print(f\"Error loading clinical data: {e}\")\n",
    "    # If there's an issue loading the data, attempt to recreate it\n",
    "    clinical_data = pd.DataFrame()\n",
    "    if trait_row is not None:\n",
    "        print(\"Regenerating clinical data from original sources...\")\n",
    "        # Get clinical data from the matrix file again\n",
    "        _, clinical_raw = get_background_and_clinical_data(matrix_file_path)\n",
    "        clinical_data = geo_select_clinical_features(\n",
    "            clinical_df=clinical_raw,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "\n",
    "# Transpose clinical data to ensure proper format for linking\n",
    "if not clinical_data.empty:\n",
    "    clinical_data_transposed = clinical_data.T\n",
    "    # Rename the index column to ensure proper linking\n",
    "    if trait in clinical_data_transposed.columns:\n",
    "        # Link clinical and genetic data\n",
    "        linked_data = geo_link_clinical_genetic_data(clinical_data_transposed, normalized_gene_data)\n",
    "        print(f\"Linked data shape: {linked_data.shape}\")\n",
    "        print(f\"Linked data columns (first few): {linked_data.columns[:10].tolist()}\")\n",
    "        \n",
    "        # Check if trait column exists in linked data\n",
    "        if trait in linked_data.columns:\n",
    "            # 3. Handle missing values in the linked data\n",
    "            linked_data = handle_missing_values(linked_data, trait)\n",
    "            print(f\"After handling missing values, linked data shape: {linked_data.shape}\")\n",
    "            \n",
    "            # 4. Check if the trait and demographic features are biased\n",
    "            is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "            \n",
    "            # 5. Validate the data quality and save the validation results\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True, \n",
    "                cohort=cohort, \n",
    "                info_path=json_path, \n",
    "                is_gene_available=True,  \n",
    "                is_trait_available=True,\n",
    "                is_biased=is_trait_biased, \n",
    "                df=linked_data,\n",
    "                note=\"Dataset contains gene expression data comparing adenocarcinoma vs normal mucosa in stomach tissue.\"\n",
    "            )\n",
    "            \n",
    "            # 6. Save the linked data if it's usable\n",
    "            print(f\"Data quality check result: {'Usable' if is_usable else 'Not usable'}\")\n",
    "            if is_usable:\n",
    "                os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "                linked_data.to_csv(out_data_file, index=True)\n",
    "                print(f\"Linked data saved to {out_data_file}\")\n",
    "            else:\n",
    "                print(f\"Data quality check failed. The dataset cannot be used for association studies.\")\n",
    "        else:\n",
    "            print(f\"Trait column '{trait}' not found in linked data. Available columns: {linked_data.columns[:5].tolist()}\")\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True, \n",
    "                cohort=cohort, \n",
    "                info_path=json_path, \n",
    "                is_gene_available=True,  \n",
    "                is_trait_available=False,\n",
    "                is_biased=True, \n",
    "                df=pd.DataFrame(),\n",
    "                note=\"Clinical data structure incompatible with trait analysis requirements.\"\n",
    "            )\n",
    "            print(\"Data quality check failed. The trait column was not properly linked.\")\n",
    "    else:\n",
    "        print(f\"Trait column '{trait}' not found in clinical data. Available columns: {clinical_data_transposed.columns.tolist()}\")\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=True,  \n",
    "            is_trait_available=False,\n",
    "            is_biased=True, \n",
    "            df=pd.DataFrame(),\n",
    "            note=\"Clinical data lacks the specific trait column needed for analysis.\"\n",
    "        )\n",
    "        print(\"Data quality check failed. Required trait information is missing.\")\n",
    "else:\n",
    "    print(\"No clinical data available for this cohort.\")\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True,  \n",
    "        is_trait_available=False,\n",
    "        is_biased=True, \n",
    "        df=pd.DataFrame(),\n",
    "        note=\"Dataset lacks clinical annotations required for association studies.\"\n",
    "    )\n",
    "    print(\"Data quality check failed. No clinical data available.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}