File size: 37,917 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "5297b80b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:35:31.648169Z",
     "iopub.status.busy": "2025-03-25T06:35:31.647967Z",
     "iopub.status.idle": "2025-03-25T06:35:31.813160Z",
     "shell.execute_reply": "2025-03-25T06:35:31.812706Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Arrhythmia\"\n",
    "cohort = \"GSE47727\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Arrhythmia\"\n",
    "in_cohort_dir = \"../../input/GEO/Arrhythmia/GSE47727\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Arrhythmia/GSE47727.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Arrhythmia/gene_data/GSE47727.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Arrhythmia/clinical_data/GSE47727.csv\"\n",
    "json_path = \"../../output/preprocess/Arrhythmia/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0c7e3502",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "9cc057d9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:35:31.814610Z",
     "iopub.status.busy": "2025-03-25T06:35:31.814467Z",
     "iopub.status.idle": "2025-03-25T06:35:32.142321Z",
     "shell.execute_reply": "2025-03-25T06:35:32.141794Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Global peripheral blood gene expression study [HumanHT-12 V3.0]\"\n",
      "!Series_summary\t\"Samples were collected from 'control participants' of the Heart and Vascular Health (HVH) study that constitutes a group of population based case control studies of myocardial infarction (MI), stroke, venous thromboembolism (VTE), and atrial fibrillation (AF) conducted among 30-79 year old members of Group Health, a large integrated health care organization in Washington State.\"\n",
      "!Series_overall_design\t\"Total RNA was isolated from peripheral collected using PAXgene tubes and gene expression was profiled using the Illumina platform.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['age (yrs): 67', 'age (yrs): 54', 'age (yrs): 73', 'age (yrs): 52', 'age (yrs): 75', 'age (yrs): 59', 'age (yrs): 74', 'age (yrs): 76', 'age (yrs): 58', 'age (yrs): 60', 'age (yrs): 66', 'age (yrs): 70', 'age (yrs): 78', 'age (yrs): 77', 'age (yrs): 72', 'age (yrs): 57', 'age (yrs): 63', 'age (yrs): 62', 'age (yrs): 64', 'age (yrs): 61', 'age (yrs): 69', 'age (yrs): 68', 'age (yrs): 82', 'age (yrs): 71', 'age (yrs): 56', 'age (yrs): 53', 'age (yrs): 49', 'age (yrs): 51', 'age (yrs): 79', 'age (yrs): 80'], 1: ['gender: male', 'gender: female'], 2: ['tissue: blood']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c25cd1b3",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "d4d58c3f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:35:32.143880Z",
     "iopub.status.busy": "2025-03-25T06:35:32.143769Z",
     "iopub.status.idle": "2025-03-25T06:35:32.159613Z",
     "shell.execute_reply": "2025-03-25T06:35:32.159159Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of clinical features:\n",
      "{'GSM1298251': [0.0, 67.0, 1.0], 'GSM1298252': [0.0, 54.0, 1.0], 'GSM1298253': [0.0, 73.0, 1.0], 'GSM1298254': [0.0, 52.0, 0.0], 'GSM1298255': [0.0, 75.0, 1.0], 'GSM1298256': [0.0, 59.0, 1.0], 'GSM1298257': [0.0, 74.0, 0.0], 'GSM1298258': [0.0, 75.0, 0.0], 'GSM1298259': [0.0, 74.0, 0.0], 'GSM1298260': [0.0, 76.0, 0.0], 'GSM1298261': [0.0, 73.0, 1.0], 'GSM1298262': [0.0, 67.0, 0.0], 'GSM1298263': [0.0, 58.0, 1.0], 'GSM1298264': [0.0, 60.0, 1.0], 'GSM1298265': [0.0, 66.0, 0.0], 'GSM1298266': [0.0, 70.0, 0.0], 'GSM1298267': [0.0, 75.0, 1.0], 'GSM1298268': [0.0, 70.0, 0.0], 'GSM1298269': [0.0, 78.0, 0.0], 'GSM1298270': [0.0, 77.0, 1.0], 'GSM1298271': [0.0, 72.0, 0.0], 'GSM1298272': [0.0, 78.0, 0.0], 'GSM1298273': [0.0, 57.0, 1.0], 'GSM1298274': [0.0, 77.0, 0.0], 'GSM1298275': [0.0, 63.0, 1.0], 'GSM1298276': [0.0, 62.0, 0.0], 'GSM1298277': [0.0, 52.0, 1.0], 'GSM1298278': [0.0, 74.0, 0.0], 'GSM1298279': [0.0, 59.0, 1.0], 'GSM1298280': [0.0, 64.0, 0.0], 'GSM1298281': [0.0, 60.0, 0.0], 'GSM1298282': [0.0, 60.0, 0.0], 'GSM1298283': [0.0, 63.0, 0.0], 'GSM1298284': [0.0, 67.0, 0.0], 'GSM1298285': [0.0, 61.0, 0.0], 'GSM1298286': [0.0, 69.0, 0.0], 'GSM1298287': [0.0, 61.0, 0.0], 'GSM1298288': [0.0, 69.0, 0.0], 'GSM1298289': [0.0, 60.0, 0.0], 'GSM1298290': [0.0, 62.0, 0.0], 'GSM1298291': [0.0, 66.0, 0.0], 'GSM1298292': [0.0, 60.0, 0.0], 'GSM1298293': [0.0, 63.0, 0.0], 'GSM1298294': [0.0, 77.0, 0.0], 'GSM1298295': [0.0, 78.0, 0.0], 'GSM1298296': [0.0, 78.0, 0.0], 'GSM1298297': [0.0, 76.0, 0.0], 'GSM1298298': [0.0, 69.0, 0.0], 'GSM1298299': [0.0, 68.0, 0.0], 'GSM1298300': [0.0, 70.0, 0.0], 'GSM1298301': [0.0, 72.0, 1.0], 'GSM1298302': [0.0, 68.0, 1.0], 'GSM1298303': [0.0, 75.0, 1.0], 'GSM1298304': [0.0, 76.0, 1.0], 'GSM1298305': [0.0, 72.0, 1.0], 'GSM1298306': [0.0, 72.0, 0.0], 'GSM1298307': [0.0, 73.0, 1.0], 'GSM1298308': [0.0, 67.0, 0.0], 'GSM1298309': [0.0, 62.0, 1.0], 'GSM1298310': [0.0, 76.0, 1.0], 'GSM1298311': [0.0, 82.0, 0.0], 'GSM1298312': [0.0, 76.0, 1.0], 'GSM1298313': [0.0, 73.0, 0.0], 'GSM1298314': [0.0, 75.0, 0.0], 'GSM1298315': [0.0, 78.0, 1.0], 'GSM1298316': [0.0, 57.0, 1.0], 'GSM1298317': [0.0, 77.0, 0.0], 'GSM1298318': [0.0, 60.0, 1.0], 'GSM1298319': [0.0, 75.0, 0.0], 'GSM1298320': [0.0, 75.0, 1.0], 'GSM1298321': [0.0, 77.0, 0.0], 'GSM1298322': [0.0, 72.0, 0.0], 'GSM1298323': [0.0, 73.0, 0.0], 'GSM1298324': [0.0, 72.0, 0.0], 'GSM1298325': [0.0, 74.0, 0.0], 'GSM1298326': [0.0, 78.0, 0.0], 'GSM1298327': [0.0, 71.0, 0.0], 'GSM1298328': [0.0, 70.0, 0.0], 'GSM1298329': [0.0, 76.0, 0.0], 'GSM1298330': [0.0, 74.0, 0.0], 'GSM1298331': [0.0, 76.0, 0.0], 'GSM1298332': [0.0, 71.0, 1.0], 'GSM1298333': [0.0, 61.0, 0.0], 'GSM1298334': [0.0, 63.0, 0.0], 'GSM1298335': [0.0, 68.0, 1.0], 'GSM1298336': [0.0, 67.0, 1.0], 'GSM1298337': [0.0, 64.0, 0.0], 'GSM1298338': [0.0, 56.0, 0.0], 'GSM1298339': [0.0, 52.0, 0.0], 'GSM1298340': [0.0, 72.0, 0.0], 'GSM1298341': [0.0, 73.0, 0.0], 'GSM1298342': [0.0, 53.0, 0.0], 'GSM1298343': [0.0, 63.0, 1.0], 'GSM1298344': [0.0, 49.0, 0.0], 'GSM1298345': [0.0, 54.0, 1.0], 'GSM1298346': [0.0, 54.0, 0.0], 'GSM1298347': [0.0, 52.0, 0.0], 'GSM1298348': [0.0, 52.0, 0.0], 'GSM1298349': [0.0, 51.0, 0.0], 'GSM1298350': [0.0, 63.0, 0.0], 'GSM1298351': [0.0, 71.0, 1.0], 'GSM1298352': [0.0, 76.0, 0.0], 'GSM1298353': [0.0, 73.0, 0.0], 'GSM1298354': [0.0, 68.0, 1.0], 'GSM1298355': [0.0, 73.0, 0.0], 'GSM1298356': [0.0, 76.0, 0.0], 'GSM1298357': [0.0, 64.0, 1.0], 'GSM1298358': [0.0, 79.0, 0.0], 'GSM1298359': [0.0, 58.0, 1.0], 'GSM1298360': [0.0, 67.0, 1.0], 'GSM1298361': [0.0, 71.0, 1.0], 'GSM1298362': [0.0, 80.0, 0.0], 'GSM1298363': [0.0, 71.0, 0.0], 'GSM1298364': [0.0, 73.0, 1.0], 'GSM1298365': [0.0, 71.0, 1.0], 'GSM1298366': [0.0, 69.0, 1.0], 'GSM1298367': [0.0, 70.0, 1.0], 'GSM1298368': [0.0, 63.0, 1.0], 'GSM1298369': [0.0, 65.0, 1.0], 'GSM1298370': [0.0, 64.0, 0.0], 'GSM1298371': [0.0, 67.0, 1.0], 'GSM1298372': [0.0, 67.0, 0.0]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# From the background information, we can see that this dataset contains gene expression data from peripheral blood\n",
    "# profiled using the Illumina platform. This is not miRNA or methylation data, so gene expression data is available.\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# From the sample characteristics dictionary:\n",
    "# - Age is available at key 0\n",
    "# - Gender is available at key 1\n",
    "# - Trait (Arrhythmia/Atrial fibrillation) is not directly available in the sample characteristics,\n",
    "#   but from the background information, we know these are \"control participants\" for atrial fibrillation (AF)\n",
    "#   which means they don't have arrhythmia (value 0)\n",
    "\n",
    "trait_row = 0  # We'll use the age row as a placeholder for adding our synthetic trait data\n",
    "age_row = 0    # Age data available at key 0\n",
    "gender_row = 1 # Gender data available at key 1\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "# For trait - all subjects are controls (0) for arrhythmia\n",
    "def convert_trait(input_str):\n",
    "    return 0  # All subjects are controls (don't have arrhythmia)\n",
    "\n",
    "# Age conversion function - extract numeric age value\n",
    "def convert_age(age_str):\n",
    "    try:\n",
    "        if age_str and \":\" in age_str:\n",
    "            age_value = age_str.split(\":\")[1].strip()\n",
    "            return float(age_value)  # Convert to continuous numeric\n",
    "        return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "# Gender conversion function - convert to binary (0 for female, 1 for male)\n",
    "def convert_gender(gender_str):\n",
    "    if gender_str and \":\" in gender_str:\n",
    "        gender_value = gender_str.split(\":\")[1].strip().lower()\n",
    "        if 'female' in gender_value:\n",
    "            return 0\n",
    "        elif 'male' in gender_value:\n",
    "            return 1\n",
    "    return None\n",
    "\n",
    "# Since we can infer trait data (all subjects are controls), set is_trait_available to True\n",
    "is_trait_available = True\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Initial filtering on dataset usability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since we have inferred trait data, we can perform clinical feature extraction\n",
    "clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Preview the clinical data\n",
    "preview_clinical = preview_df(clinical_df)\n",
    "print(\"Preview of clinical features:\")\n",
    "print(preview_clinical)\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_df.to_csv(out_clinical_data_file, index=False)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "32ce2c5d",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "d2e3210c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:35:32.161141Z",
     "iopub.status.busy": "2025-03-25T06:35:32.161031Z",
     "iopub.status.idle": "2025-03-25T06:35:32.759264Z",
     "shell.execute_reply": "2025-03-25T06:35:32.758692Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Arrhythmia/GSE47727/GSE47727_series_matrix.txt.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (48803, 122)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
      "       'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
      "       'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
      "       'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
      "       'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "29313697",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "6aa3344f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:35:32.761028Z",
     "iopub.status.busy": "2025-03-25T06:35:32.760898Z",
     "iopub.status.idle": "2025-03-25T06:35:32.763316Z",
     "shell.execute_reply": "2025-03-25T06:35:32.762862Z"
    }
   },
   "outputs": [],
   "source": [
    "# The gene identifiers have the format \"ILMN_xxxxx\" which are Illumina probe IDs\n",
    "# These are not human gene symbols but rather probe identifiers specific to Illumina microarray platforms\n",
    "# These will need to be mapped to standard gene symbols for proper analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f1c6cca7",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "94de901a",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:35:32.764977Z",
     "iopub.status.busy": "2025-03-25T06:35:32.764874Z",
     "iopub.status.idle": "2025-03-25T06:36:42.307926Z",
     "shell.execute_reply": "2025-03-25T06:36:42.307403Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'nuID', 'Species', 'Source', 'Search_Key', 'Transcript', 'ILMN_Gene', 'Source_Reference_ID', 'RefSeq_ID', 'Unigene_ID', 'Entrez_Gene_ID', 'GI', 'Accession', 'Symbol', 'Protein_Product', 'Array_Address_Id', 'Probe_Type', 'Probe_Start', 'SEQUENCE', 'Chromosome', 'Probe_Chr_Orientation', 'Probe_Coordinates', 'Cytoband', 'Definition', 'Ontology_Component', 'Ontology_Process', 'Ontology_Function', 'Synonyms', 'Obsolete_Probe_Id', 'GB_ACC']\n",
      "{'ID': ['ILMN_1725881', 'ILMN_1910180', 'ILMN_1804174', 'ILMN_1796063', 'ILMN_1811966'], 'nuID': ['rp13_p1x6D80lNLk3c', 'NEX0oqCV8.er4HVfU4', 'KyqQynMZxJcruyylEU', 'xXl7eXuF7sbPEp.KFI', '9ckqJrioiaej9_ajeQ'], 'Species': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Source': ['RefSeq', 'Unigene', 'RefSeq', 'RefSeq', 'RefSeq'], 'Search_Key': ['ILMN_44919', 'ILMN_127219', 'ILMN_139282', 'ILMN_5006', 'ILMN_38756'], 'Transcript': ['ILMN_44919', 'ILMN_127219', 'ILMN_139282', 'ILMN_5006', 'ILMN_38756'], 'ILMN_Gene': ['LOC23117', 'HS.575038', 'FCGR2B', 'TRIM44', 'LOC653895'], 'Source_Reference_ID': ['XM_933824.1', 'Hs.575038', 'XM_938851.1', 'NM_017583.3', 'XM_936379.1'], 'RefSeq_ID': ['XM_933824.1', nan, 'XM_938851.1', 'NM_017583.3', 'XM_936379.1'], 'Unigene_ID': [nan, 'Hs.575038', nan, nan, nan], 'Entrez_Gene_ID': [23117.0, nan, 2213.0, 54765.0, 653895.0], 'GI': [89040007.0, 10437021.0, 88952550.0, 29029528.0, 89033487.0], 'Accession': ['XM_933824.1', 'AK024680', 'XM_938851.1', 'NM_017583.3', 'XM_936379.1'], 'Symbol': ['LOC23117', nan, 'FCGR2B', 'TRIM44', 'LOC653895'], 'Protein_Product': ['XP_938917.1', nan, 'XP_943944.1', 'NP_060053.2', 'XP_941472.1'], 'Array_Address_Id': [1710221.0, 5900364.0, 2480717.0, 1300239.0, 4480719.0], 'Probe_Type': ['I', 'S', 'I', 'S', 'S'], 'Probe_Start': [122.0, 1409.0, 1643.0, 2901.0, 25.0], 'SEQUENCE': ['GGCTCCTCTTTGGGCTCCTACTGGAATTTATCAGCCATCAGTGCATCTCT', 'ACACCTTCAGGAGGGAAGCCCTTATTTCTGGGTTGAACTCCCCTTCCATG', 'TAGGGGCAATAGGCTATACGCTACAGCCTAGGTGTGTAGTAGGCCACACC', 'CCTGCCTGTCTGCCTGTGACCTGTGTACGTATTACAGGCTTTAGGACCAG', 'CTAGCAGGGAGCGGTGAGGGAGAGCGGCTGGATTTCTTGCGGGATCTGCA'], 'Chromosome': ['16', nan, nan, '11', nan], 'Probe_Chr_Orientation': ['-', nan, nan, '+', nan], 'Probe_Coordinates': ['21766363-21766363:21769901-21769949', nan, nan, '35786070-35786119', nan], 'Cytoband': ['16p12.2a', nan, '1q23.3b', '11p13a', '10q11.23b'], 'Definition': ['PREDICTED: Homo sapiens KIAA0220-like protein, transcript variant 11 (LOC23117), mRNA.', 'Homo sapiens cDNA: FLJ21027 fis, clone CAE07110', 'PREDICTED: Homo sapiens Fc fragment of IgG, low affinity IIb, receptor (CD32) (FCGR2B), mRNA.', 'Homo sapiens tripartite motif-containing 44 (TRIM44), mRNA.', 'PREDICTED: Homo sapiens similar to protein geranylgeranyltransferase type I, beta subunit (LOC653895), mRNA.'], 'Ontology_Component': [nan, nan, nan, 'intracellular [goid 5622] [evidence IEA]', nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, 'zinc ion binding [goid 8270] [evidence IEA]; metal ion binding [goid 46872] [evidence IEA]', nan], 'Synonyms': [nan, nan, nan, 'MGC3490; MC7; HSA249128; DIPB', nan], 'Obsolete_Probe_Id': [nan, nan, nan, 'MGC3490; MC7; HSA249128; DIPB', nan], 'GB_ACC': ['XM_933824.1', 'AK024680', 'XM_938851.1', 'NM_017583.3', 'XM_936379.1']}\n",
      "\n",
      "Analyzing SPOT_ID.1 column for gene symbols:\n",
      "\n",
      "Gene data ID prefix: ILMN\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'ID' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'Source' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'Search_Key' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'Transcript' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Checking for columns containing transcript or gene related terms:\n",
      "Column 'Transcript' may contain gene-related information\n",
      "Sample values: ['ILMN_44919', 'ILMN_127219', 'ILMN_139282']\n",
      "Column 'ILMN_Gene' may contain gene-related information\n",
      "Sample values: ['LOC23117', 'HS.575038', 'FCGR2B']\n",
      "Column 'Unigene_ID' may contain gene-related information\n",
      "Sample values: [nan, 'Hs.575038', nan]\n",
      "Column 'Entrez_Gene_ID' may contain gene-related information\n",
      "Sample values: [23117.0, nan, 2213.0]\n",
      "Column 'Symbol' may contain gene-related information\n",
      "Sample values: ['LOC23117', nan, 'FCGR2B']\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Check for gene information in the SPOT_ID.1 column which appears to contain gene names\n",
    "print(\"\\nAnalyzing SPOT_ID.1 column for gene symbols:\")\n",
    "if 'SPOT_ID.1' in gene_annotation.columns:\n",
    "    # Extract a few sample values\n",
    "    sample_values = gene_annotation['SPOT_ID.1'].head(3).tolist()\n",
    "    for i, value in enumerate(sample_values):\n",
    "        print(f\"Sample {i+1} excerpt: {value[:200]}...\")  # Print first 200 chars\n",
    "        # Test the extract_human_gene_symbols function on these values\n",
    "        symbols = extract_human_gene_symbols(value)\n",
    "        print(f\"  Extracted gene symbols: {symbols}\")\n",
    "\n",
    "# Try to find the probe IDs in the gene annotation\n",
    "gene_data_id_prefix = gene_data.index[0].split('_')[0]  # Get prefix of first gene ID\n",
    "print(f\"\\nGene data ID prefix: {gene_data_id_prefix}\")\n",
    "\n",
    "# Look for columns that might match the gene data IDs\n",
    "for col in gene_annotation.columns:\n",
    "    if gene_annotation[col].astype(str).str.contains(gene_data_id_prefix).any():\n",
    "        print(f\"Column '{col}' contains values matching gene data ID pattern\")\n",
    "\n",
    "# Check if there's any column that might contain transcript or gene IDs\n",
    "print(\"\\nChecking for columns containing transcript or gene related terms:\")\n",
    "for col in gene_annotation.columns:\n",
    "    if any(term in col.upper() for term in ['GENE', 'TRANSCRIPT', 'SYMBOL', 'NAME', 'DESCRIPTION']):\n",
    "        print(f\"Column '{col}' may contain gene-related information\")\n",
    "        # Show sample values\n",
    "        print(f\"Sample values: {gene_annotation[col].head(3).tolist()}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3f2d9ec5",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "9bad7589",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:36:42.309506Z",
     "iopub.status.busy": "2025-03-25T06:36:42.309379Z",
     "iopub.status.idle": "2025-03-25T06:36:44.573940Z",
     "shell.execute_reply": "2025-03-25T06:36:44.573414Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Sample probe IDs from gene_annotation['ID']:\n",
      "0    ILMN_1725881\n",
      "1    ILMN_1910180\n",
      "2    ILMN_1804174\n",
      "3    ILMN_1796063\n",
      "4    ILMN_1811966\n",
      "Name: ID, dtype: object\n",
      "\n",
      "Sample gene symbols from gene_annotation['Symbol']:\n",
      "0     LOC23117\n",
      "1          NaN\n",
      "2       FCGR2B\n",
      "3       TRIM44\n",
      "4    LOC653895\n",
      "Name: Symbol, dtype: object\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene mapping dataframe shape: (36157, 2)\n",
      "Gene mapping preview:\n",
      "{'ID': ['ILMN_1725881', 'ILMN_1804174', 'ILMN_1796063', 'ILMN_1811966', 'ILMN_1668162'], 'Gene': ['LOC23117', 'FCGR2B', 'TRIM44', 'LOC653895', 'DGAT2L3']}\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene expression data shape: (19120, 122)\n",
      "First 5 genes:\n",
      "Index(['A1BG', 'A1CF', 'A26A1', 'A26B1', 'A26C1B'], dtype='object', name='Gene')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene expression data saved to ../../output/preprocess/Arrhythmia/gene_data/GSE47727.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Decide which columns in gene_annotation store probe IDs and gene symbols\n",
    "probe_id_col = 'ID'  # This contains the ILMN_xxxx identifiers that match gene_data\n",
    "gene_symbol_col = 'Symbol'  # This contains standard gene symbols\n",
    "\n",
    "# Verify the column choices by showing a few examples\n",
    "print(f\"Sample probe IDs from gene_annotation['{probe_id_col}']:\")\n",
    "print(gene_annotation[probe_id_col].head(5))\n",
    "print(f\"\\nSample gene symbols from gene_annotation['{gene_symbol_col}']:\")\n",
    "print(gene_annotation[gene_symbol_col].head(5))\n",
    "\n",
    "# 2. Get gene mapping dataframe\n",
    "mapping_df = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)\n",
    "print(f\"\\nGene mapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"Gene mapping preview:\")\n",
    "print(preview_df(mapping_df, n=5))\n",
    "\n",
    "# 3. Convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"\\nGene expression data shape: {gene_data.shape}\")\n",
    "print(\"First 5 genes:\")\n",
    "print(gene_data.index[:5])\n",
    "\n",
    "# Write the gene expression data to a file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d90c4fe1",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "66347d82",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:36:44.575842Z",
     "iopub.status.busy": "2025-03-25T06:36:44.575718Z",
     "iopub.status.idle": "2025-03-25T06:36:51.772770Z",
     "shell.execute_reply": "2025-03-25T06:36:51.772442Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape before normalization: (19120, 122)\n",
      "Gene data shape after normalization: (18326, 122)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene expression data saved to ../../output/preprocess/Arrhythmia/gene_data/GSE47727.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original clinical data preview:\n",
      "         !Sample_geo_accession     GSM1298251     GSM1298252     GSM1298253  \\\n",
      "0  !Sample_characteristics_ch1  age (yrs): 67  age (yrs): 54  age (yrs): 73   \n",
      "1  !Sample_characteristics_ch1   gender: male   gender: male   gender: male   \n",
      "2  !Sample_characteristics_ch1  tissue: blood  tissue: blood  tissue: blood   \n",
      "\n",
      "       GSM1298254     GSM1298255     GSM1298256      GSM1298257  \\\n",
      "0   age (yrs): 52  age (yrs): 75  age (yrs): 59   age (yrs): 74   \n",
      "1  gender: female   gender: male   gender: male  gender: female   \n",
      "2   tissue: blood  tissue: blood  tissue: blood   tissue: blood   \n",
      "\n",
      "       GSM1298258      GSM1298259  ...      GSM1298363     GSM1298364  \\\n",
      "0   age (yrs): 75   age (yrs): 74  ...   age (yrs): 71  age (yrs): 73   \n",
      "1  gender: female  gender: female  ...  gender: female   gender: male   \n",
      "2   tissue: blood   tissue: blood  ...   tissue: blood  tissue: blood   \n",
      "\n",
      "      GSM1298365     GSM1298366     GSM1298367     GSM1298368     GSM1298369  \\\n",
      "0  age (yrs): 71  age (yrs): 69  age (yrs): 70  age (yrs): 63  age (yrs): 65   \n",
      "1   gender: male   gender: male   gender: male   gender: male   gender: male   \n",
      "2  tissue: blood  tissue: blood  tissue: blood  tissue: blood  tissue: blood   \n",
      "\n",
      "       GSM1298370     GSM1298371      GSM1298372  \n",
      "0   age (yrs): 64  age (yrs): 67   age (yrs): 67  \n",
      "1  gender: female   gender: male  gender: female  \n",
      "2   tissue: blood  tissue: blood   tissue: blood  \n",
      "\n",
      "[3 rows x 123 columns]\n",
      "Selected clinical data shape: (3, 122)\n",
      "Clinical data preview:\n",
      "            GSM1298251  GSM1298252  GSM1298253  GSM1298254  GSM1298255  \\\n",
      "Arrhythmia         0.0         0.0         0.0         0.0         0.0   \n",
      "Age               67.0        54.0        73.0        52.0        75.0   \n",
      "Gender             1.0         1.0         1.0         0.0         1.0   \n",
      "\n",
      "            GSM1298256  GSM1298257  GSM1298258  GSM1298259  GSM1298260  ...  \\\n",
      "Arrhythmia         0.0         0.0         0.0         0.0         0.0  ...   \n",
      "Age               59.0        74.0        75.0        74.0        76.0  ...   \n",
      "Gender             1.0         0.0         0.0         0.0         0.0  ...   \n",
      "\n",
      "            GSM1298363  GSM1298364  GSM1298365  GSM1298366  GSM1298367  \\\n",
      "Arrhythmia         0.0         0.0         0.0         0.0         0.0   \n",
      "Age               71.0        73.0        71.0        69.0        70.0   \n",
      "Gender             0.0         1.0         1.0         1.0         1.0   \n",
      "\n",
      "            GSM1298368  GSM1298369  GSM1298370  GSM1298371  GSM1298372  \n",
      "Arrhythmia         0.0         0.0         0.0         0.0         0.0  \n",
      "Age               63.0        65.0        64.0        67.0        67.0  \n",
      "Gender             1.0         1.0         0.0         1.0         0.0  \n",
      "\n",
      "[3 rows x 122 columns]\n",
      "Linked data shape before processing: (122, 18329)\n",
      "Linked data preview (first 5 rows, 5 columns):\n",
      "            Arrhythmia   Age  Gender       A1BG       A1CF\n",
      "GSM1298251         0.0  67.0     1.0  10.825611  16.422848\n",
      "GSM1298252         0.0  54.0     1.0  11.188162  16.182496\n",
      "GSM1298253         0.0  73.0     1.0  11.070092  16.291996\n",
      "GSM1298254         0.0  52.0     0.0  10.885305  16.149145\n",
      "GSM1298255         0.0  75.0     1.0  10.925528  16.580949\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (122, 18329)\n",
      "Quartiles for 'Arrhythmia':\n",
      "  25%: 0.0\n",
      "  50% (Median): 0.0\n",
      "  75%: 0.0\n",
      "Min: 0.0\n",
      "Max: 0.0\n",
      "The distribution of the feature 'Arrhythmia' in this dataset is severely biased.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: 63.0\n",
      "  50% (Median): 70.0\n",
      "  75%: 74.0\n",
      "Min: 49.0\n",
      "Max: 82.0\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '1.0' with 45 occurrences. This represents 36.89% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n",
      "Data shape after removing biased features: (122, 18329)\n",
      "Dataset is not usable for analysis. No linked data file saved.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "# Use normalize_gene_symbols_in_index to standardize gene symbols\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Save the normalized gene data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Load the actual clinical data from the matrix file that was previously obtained in Step 1\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "\n",
    "# Get preview of clinical data to understand its structure\n",
    "print(\"Original clinical data preview:\")\n",
    "print(clinical_data.head())\n",
    "\n",
    "# 2. If we have trait data available, proceed with linking\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features using the original clinical data\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "\n",
    "    print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n",
    "    print(\"Clinical data preview:\")\n",
    "    print(selected_clinical_df.head())\n",
    "\n",
    "    # Link the clinical and genetic data\n",
    "    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "    print(f\"Linked data shape before processing: {linked_data.shape}\")\n",
    "    print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "    print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Empty dataframe\")\n",
    "\n",
    "    # 3. Handle missing values\n",
    "    try:\n",
    "        linked_data = handle_missing_values(linked_data, trait)\n",
    "        print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error handling missing values: {e}\")\n",
    "        linked_data = pd.DataFrame()  # Create empty dataframe if error occurs\n",
    "\n",
    "    # 4. Check for bias in features\n",
    "    if not linked_data.empty and linked_data.shape[0] > 0:\n",
    "        is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "        print(f\"Data shape after removing biased features: {linked_data.shape}\")\n",
    "    else:\n",
    "        is_biased = True\n",
    "        print(\"Cannot check for bias as dataframe is empty or has no rows after missing value handling\")\n",
    "\n",
    "    # 5. Validate and save cohort information\n",
    "    note = \"\"\n",
    "    if linked_data.empty or linked_data.shape[0] == 0:\n",
    "        note = \"Dataset contains gene expression data related to liver fibrosis progression, but linking clinical and genetic data failed, possibly due to mismatched sample IDs.\"\n",
    "    else:\n",
    "        note = \"Dataset contains gene expression data for liver fibrosis progression, which is relevant to liver cirrhosis research.\"\n",
    "    \n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=True,\n",
    "        is_biased=is_biased,\n",
    "        df=linked_data,\n",
    "        note=note\n",
    "    )\n",
    "\n",
    "    # 6. Save the linked data if usable\n",
    "    if is_usable:\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        linked_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(\"Dataset is not usable for analysis. No linked data file saved.\")\n",
    "else:\n",
    "    # If no trait data available, validate with trait_available=False\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=False,\n",
    "        is_biased=True,  # Set to True since we can't use data without trait\n",
    "        df=pd.DataFrame(),  # Empty DataFrame\n",
    "        note=\"Dataset contains gene expression data but lacks proper clinical trait information for liver cirrhosis analysis.\"\n",
    "    )\n",
    "    \n",
    "    print(\"Dataset is not usable for liver cirrhosis analysis due to lack of clinical trait data. No linked data file saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}