File size: 20,753 Bytes
6bc7e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "b399e2f5",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:38.324562Z",
     "iopub.status.busy": "2025-03-25T06:41:38.324455Z",
     "iopub.status.idle": "2025-03-25T06:41:38.492988Z",
     "shell.execute_reply": "2025-03-25T06:41:38.492630Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Asthma\"\n",
    "cohort = \"GSE188424\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Asthma\"\n",
    "in_cohort_dir = \"../../input/GEO/Asthma/GSE188424\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Asthma/GSE188424.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Asthma/gene_data/GSE188424.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Asthma/clinical_data/GSE188424.csv\"\n",
    "json_path = \"../../output/preprocess/Asthma/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0dd7ac45",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "3f796413",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:38.494465Z",
     "iopub.status.busy": "2025-03-25T06:41:38.494328Z",
     "iopub.status.idle": "2025-03-25T06:41:38.789532Z",
     "shell.execute_reply": "2025-03-25T06:41:38.789157Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene expression profiling of peripheral blood from uncontrolled and controlled asthma\"\n",
      "!Series_summary\t\"We analyzed the transcriptomes of children with controlled and uncontrolled asthma in Taiwanese Consortium of Childhood Asthma Study (TCCAS). Hierarchical clustering, differentially expressed gene (DEG), weighted gene co-expression network analysis (WGCNA) and pathway enrichment methods were performed, to investigate important genes between two groups.\"\n",
      "!Series_overall_design\t\"Analysis of gene expression obtained from human whole blood comparing uncontrolled and controlled asthma.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['gender: female', 'gender: male']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d6284a22",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "6de9ed63",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:38.790897Z",
     "iopub.status.busy": "2025-03-25T06:41:38.790786Z",
     "iopub.status.idle": "2025-03-25T06:41:38.797220Z",
     "shell.execute_reply": "2025-03-25T06:41:38.796891Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Based on the provided information, let's analyze this dataset:\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# The series summary mentions \"transcriptomes\" and \"gene expression profiling\"\n",
    "# which strongly indicates gene expression data is available\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# Trait (Asthma control status) is mentioned in the background information\n",
    "# However, we cannot locate it in the sample characteristics dictionary\n",
    "trait_row = None  # Cannot find in sample characteristics\n",
    "is_trait_available = False  # Since trait_row is None\n",
    "\n",
    "# Age data is not available in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# Gender data is available at key 0\n",
    "gender_row = 0\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "# For trait (when we locate it):\n",
    "def convert_trait(val):\n",
    "    if val is None:\n",
    "        return None\n",
    "    val = val.lower().split(': ')[-1].strip()\n",
    "    if 'uncontrolled' in val:\n",
    "        return 1\n",
    "    elif 'controlled' in val:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "# For age (if we found it, which we didn't):\n",
    "def convert_age(val):\n",
    "    if val is None:\n",
    "        return None\n",
    "    try:\n",
    "        # Extract the value after the colon and convert to float\n",
    "        return float(val.split(': ')[-1].strip())\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "# For gender:\n",
    "def convert_gender(val):\n",
    "    if val is None:\n",
    "        return None\n",
    "    val = val.lower().split(': ')[-1].strip()\n",
    "    if 'female' in val:\n",
    "        return 0\n",
    "    elif 'male' in val:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Trait data is not available in the sample characteristics\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Skip this substep since trait_row is None\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "73a8faf5",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "181ccba0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:38.798444Z",
     "iopub.status.busy": "2025-03-25T06:41:38.798339Z",
     "iopub.status.idle": "2025-03-25T06:41:39.307150Z",
     "shell.execute_reply": "2025-03-25T06:41:39.306739Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Asthma/GSE188424/GSE188424_series_matrix.txt.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (47235, 99)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
      "       'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
      "       'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
      "       'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
      "       'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "acb57858",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "f484fbb0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:39.308589Z",
     "iopub.status.busy": "2025-03-25T06:41:39.308462Z",
     "iopub.status.idle": "2025-03-25T06:41:39.310567Z",
     "shell.execute_reply": "2025-03-25T06:41:39.310241Z"
    }
   },
   "outputs": [],
   "source": [
    "# The identifiers starting with ILMN_ are Illumina probe IDs, not human gene symbols\n",
    "# These are specific to Illumina microarray platforms and need to be mapped to human gene symbols\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1b0775a3",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "ec2b68cd",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:39.311678Z",
     "iopub.status.busy": "2025-03-25T06:41:39.311572Z",
     "iopub.status.idle": "2025-03-25T06:41:48.651871Z",
     "shell.execute_reply": "2025-03-25T06:41:48.651510Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "014ebb6b",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "ea26d19c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:48.653254Z",
     "iopub.status.busy": "2025-03-25T06:41:48.653125Z",
     "iopub.status.idle": "2025-03-25T06:41:50.435635Z",
     "shell.execute_reply": "2025-03-25T06:41:50.435236Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mapping dataframe shape: (44837, 2)\n",
      "First few rows of mapping dataframe:\n",
      "             ID                     Gene\n",
      "0  ILMN_1343048      phage_lambda_genome\n",
      "1  ILMN_1343049      phage_lambda_genome\n",
      "2  ILMN_1343050  phage_lambda_genome:low\n",
      "3  ILMN_1343052  phage_lambda_genome:low\n",
      "4  ILMN_1343059                     thrB\n",
      "Gene-level expression data shape: (21440, 99)\n",
      "First few gene symbols:\n",
      "Index(['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2',\n",
      "       'A4GALT', 'A4GNT'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene expression data shape: (20238, 99)\n",
      "First few normalized gene symbols:\n",
      "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT',\n",
      "       'A4GNT', 'AAA1', 'AAAS'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Saved gene expression data to ../../output/preprocess/Asthma/gene_data/GSE188424.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the relevant columns for gene mapping\n",
    "# From examining the preview, we can see:\n",
    "# - 'ID' column contains identifiers matching those in the gene expression data (ILMN_*)\n",
    "# - 'Symbol' column contains gene symbols we want to map to\n",
    "\n",
    "# 2. Get the gene mapping dataframe by extracting the identifier and symbol columns\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
    "print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"First few rows of mapping dataframe:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level data to gene-level expression\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"Gene-level expression data shape: {gene_data.shape}\")\n",
    "print(\"First few gene symbols:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# 4. Normalize gene symbols to ensure consistency (optional but recommended)\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene expression data shape: {gene_data.shape}\")\n",
    "print(\"First few normalized gene symbols:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# 5. Save the processed gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Saved gene expression data to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "30c21032",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "ade5f9e8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:50.437053Z",
     "iopub.status.busy": "2025-03-25T06:41:50.436918Z",
     "iopub.status.idle": "2025-03-25T06:41:53.975418Z",
     "shell.execute_reply": "2025-03-25T06:41:53.975020Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical data shape: (1, 100)\n",
      "Clinical data column names: ['!Sample_geo_accession', 'GSM5681954', 'GSM5681955', 'GSM5681956', 'GSM5681957', 'GSM5681958', 'GSM5681959', 'GSM5681960', 'GSM5681961', 'GSM5681962', 'GSM5681963', 'GSM5681964', 'GSM5681965', 'GSM5681966', 'GSM5681967', 'GSM5681968', 'GSM5681969', 'GSM5681970', 'GSM5681971', 'GSM5681972', 'GSM5681973', 'GSM5681974', 'GSM5681975', 'GSM5681976', 'GSM5681977', 'GSM5681978', 'GSM5681979', 'GSM5681980', 'GSM5681981', 'GSM5681982', 'GSM5681983', 'GSM5681984', 'GSM5681985', 'GSM5681986', 'GSM5681987', 'GSM5681988', 'GSM5681989', 'GSM5681990', 'GSM5681991', 'GSM5681992', 'GSM5681993', 'GSM5681994', 'GSM5681995', 'GSM5681996', 'GSM5681997', 'GSM5681998', 'GSM5681999', 'GSM5682000', 'GSM5682001', 'GSM5682002', 'GSM5682003', 'GSM5682004', 'GSM5682005', 'GSM5682006', 'GSM5682007', 'GSM5682008', 'GSM5682009', 'GSM5682010', 'GSM5682011', 'GSM5682012', 'GSM5682013', 'GSM5682014', 'GSM5682015', 'GSM5682016', 'GSM5682017', 'GSM5682018', 'GSM5682019', 'GSM5682020', 'GSM5682021', 'GSM5682022', 'GSM5682023', 'GSM5682024', 'GSM5682025', 'GSM5682026', 'GSM5682027', 'GSM5682028', 'GSM5682029', 'GSM5682030', 'GSM5682031', 'GSM5682032', 'GSM5682033', 'GSM5682034', 'GSM5682035', 'GSM5682036', 'GSM5682037', 'GSM5682038', 'GSM5682039', 'GSM5682040', 'GSM5682041', 'GSM5682042', 'GSM5682043', 'GSM5682044', 'GSM5682045', 'GSM5682046', 'GSM5682047', 'GSM5682048', 'GSM5682049', 'GSM5682050', 'GSM5682051', 'GSM5682052']\n",
      "Sample characteristics: {0: ['gender: female', 'gender: male']}\n",
      "Gene data shape: (47235, 99)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data saved to ../../output/preprocess/Asthma/gene_data/GSE188424.csv\n",
      "Dataset usability status: False\n",
      "No linked data file saved since trait data is unavailable.\n"
     ]
    }
   ],
   "source": [
    "# First, re-extract the necessary files from the cohort directory\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Get the gene data again \n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# Read background information and clinical data again\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Examine the clinical data structure to see what's actually available\n",
    "print(\"Clinical data shape:\", clinical_data.shape)\n",
    "print(\"Clinical data column names:\", clinical_data.columns.tolist())\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "print(\"Sample characteristics:\", sample_characteristics_dict)\n",
    "\n",
    "# Since we previously determined trait data is not available (trait_row = None),\n",
    "# we can't create proper clinical data for this dataset\n",
    "is_trait_available = False\n",
    "\n",
    "# The gene data has already been normalized and saved in previous steps\n",
    "print(f\"Gene data shape: {gene_data.shape}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Since trait data is not available, use is_final=False in validate_and_save_cohort_info\n",
    "# This bypasses the need for the is_biased parameter\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "print(f\"Dataset usability status: {is_usable}\")\n",
    "print(\"No linked data file saved since trait data is unavailable.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}