File size: 26,659 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "91fe87dd",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:42:53.381822Z",
     "iopub.status.busy": "2025-03-25T06:42:53.381706Z",
     "iopub.status.idle": "2025-03-25T06:42:53.549215Z",
     "shell.execute_reply": "2025-03-25T06:42:53.548814Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Atherosclerosis\"\n",
    "cohort = \"GSE123088\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Atherosclerosis\"\n",
    "in_cohort_dir = \"../../input/GEO/Atherosclerosis/GSE123088\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Atherosclerosis/GSE123088.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Atherosclerosis/gene_data/GSE123088.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Atherosclerosis/clinical_data/GSE123088.csv\"\n",
    "json_path = \"../../output/preprocess/Atherosclerosis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4f56bf40",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "bd783335",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:42:53.550631Z",
     "iopub.status.busy": "2025-03-25T06:42:53.550474Z",
     "iopub.status.idle": "2025-03-25T06:42:53.836236Z",
     "shell.execute_reply": "2025-03-25T06:42:53.835876Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases\"\n",
      "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
      "!Series_overall_design\t\"Refer to individual Series\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['cell type: CD4+ T cells'], 1: ['primary diagnosis: ASTHMA', 'primary diagnosis: ATHEROSCLEROSIS', 'primary diagnosis: BREAST_CANCER', 'primary diagnosis: CHRONIC_LYMPHOCYTIC_LEUKEMIA', 'primary diagnosis: CROHN_DISEASE', 'primary diagnosis: ATOPIC_ECZEMA', 'primary diagnosis: HEALTHY_CONTROL', 'primary diagnosis: INFLUENZA', 'primary diagnosis: OBESITY', 'primary diagnosis: PSORIASIS', 'primary diagnosis: SEASONAL_ALLERGIC_RHINITIS', 'primary diagnosis: TYPE_1_DIABETES', 'primary diagnosis: ACUTE_TONSILLITIS', 'primary diagnosis: ULCERATIVE_COLITIS', 'primary diagnosis: Breast cancer', 'primary diagnosis: Control'], 2: ['Sex: Male', 'diagnosis2: ATOPIC_ECZEMA', 'Sex: Female', 'diagnosis2: ATHEROSCLEROSIS', 'diagnosis2: ASTHMA_OBESITY', 'diagnosis2: ASTHMA', 'diagnosis2: ASTMHA_SEASONAL_ALLERGIC_RHINITIS', 'diagnosis2: OBESITY'], 3: ['age: 56', 'Sex: Male', 'age: 20', 'age: 51', 'age: 37', 'age: 61', 'age: 31', 'age: 41', 'age: 80', 'age: 53', 'age: 73', 'age: 60', 'age: 76', 'age: 77', 'age: 74', 'age: 69', 'age: 81', 'age: 70', 'age: 82', 'age: 67', 'age: 78', 'age: 72', 'age: 66', 'age: 36', 'age: 45', 'age: 65', 'age: 48', 'age: 50', 'age: 24', 'age: 42'], 4: [nan, 'age: 63', 'age: 74', 'age: 49', 'age: 60', 'age: 68', 'age: 38', 'age: 16', 'age: 12', 'age: 27']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e2fdf62c",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "dbd8240e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:42:53.837563Z",
     "iopub.status.busy": "2025-03-25T06:42:53.837443Z",
     "iopub.status.idle": "2025-03-25T06:42:53.879376Z",
     "shell.execute_reply": "2025-03-25T06:42:53.879096Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of selected clinical features:\n",
      "{'GSM3494884': [0.0, 56.0, 1.0], 'GSM3494885': [0.0, nan, nan], 'GSM3494886': [0.0, 20.0, 0.0], 'GSM3494887': [0.0, 51.0, 0.0], 'GSM3494888': [0.0, 37.0, 1.0], 'GSM3494889': [0.0, 61.0, 1.0], 'GSM3494890': [0.0, nan, nan], 'GSM3494891': [0.0, 31.0, 1.0], 'GSM3494892': [0.0, 56.0, 0.0], 'GSM3494893': [0.0, 41.0, 0.0], 'GSM3494894': [0.0, 61.0, 0.0], 'GSM3494895': [1.0, nan, nan], 'GSM3494896': [1.0, 80.0, 1.0], 'GSM3494897': [1.0, 53.0, 1.0], 'GSM3494898': [1.0, 61.0, 1.0], 'GSM3494899': [1.0, 73.0, 1.0], 'GSM3494900': [1.0, 60.0, 1.0], 'GSM3494901': [1.0, 76.0, 1.0], 'GSM3494902': [1.0, 77.0, 0.0], 'GSM3494903': [1.0, 74.0, 0.0], 'GSM3494904': [1.0, 69.0, 1.0], 'GSM3494905': [0.0, 77.0, 0.0], 'GSM3494906': [0.0, 81.0, 0.0], 'GSM3494907': [0.0, 70.0, 0.0], 'GSM3494908': [0.0, 82.0, 0.0], 'GSM3494909': [0.0, 69.0, 0.0], 'GSM3494910': [0.0, 82.0, 0.0], 'GSM3494911': [0.0, 67.0, 0.0], 'GSM3494912': [0.0, 67.0, 0.0], 'GSM3494913': [0.0, 78.0, 0.0], 'GSM3494914': [0.0, 67.0, 0.0], 'GSM3494915': [0.0, 74.0, 1.0], 'GSM3494916': [0.0, nan, nan], 'GSM3494917': [0.0, 51.0, 1.0], 'GSM3494918': [0.0, 72.0, 1.0], 'GSM3494919': [0.0, 66.0, 1.0], 'GSM3494920': [0.0, 80.0, 0.0], 'GSM3494921': [0.0, 36.0, 1.0], 'GSM3494922': [0.0, 67.0, 0.0], 'GSM3494923': [0.0, 31.0, 0.0], 'GSM3494924': [0.0, 31.0, 0.0], 'GSM3494925': [0.0, 45.0, 0.0], 'GSM3494926': [0.0, 56.0, 0.0], 'GSM3494927': [0.0, 65.0, 0.0], 'GSM3494928': [0.0, 53.0, 0.0], 'GSM3494929': [0.0, 48.0, 0.0], 'GSM3494930': [0.0, 50.0, 0.0], 'GSM3494931': [0.0, 76.0, 1.0], 'GSM3494932': [0.0, nan, nan], 'GSM3494933': [0.0, 24.0, 0.0], 'GSM3494934': [0.0, 42.0, 0.0], 'GSM3494935': [0.0, 76.0, 1.0], 'GSM3494936': [0.0, 22.0, 1.0], 'GSM3494937': [0.0, nan, nan], 'GSM3494938': [0.0, 23.0, 0.0], 'GSM3494939': [0.0, 34.0, 1.0], 'GSM3494940': [0.0, 43.0, 1.0], 'GSM3494941': [0.0, 47.0, 1.0], 'GSM3494942': [0.0, 24.0, 0.0], 'GSM3494943': [0.0, 55.0, 1.0], 'GSM3494944': [0.0, 48.0, 1.0], 'GSM3494945': [0.0, 58.0, 1.0], 'GSM3494946': [0.0, 30.0, 0.0], 'GSM3494947': [0.0, 28.0, 1.0], 'GSM3494948': [0.0, 41.0, 0.0], 'GSM3494949': [0.0, 63.0, 1.0], 'GSM3494950': [0.0, 55.0, 0.0], 'GSM3494951': [0.0, 55.0, 0.0], 'GSM3494952': [0.0, 67.0, 1.0], 'GSM3494953': [0.0, 47.0, 0.0], 'GSM3494954': [0.0, 46.0, 0.0], 'GSM3494955': [0.0, 49.0, 1.0], 'GSM3494956': [0.0, 23.0, 1.0], 'GSM3494957': [0.0, 68.0, 1.0], 'GSM3494958': [0.0, 39.0, 1.0], 'GSM3494959': [0.0, 24.0, 1.0], 'GSM3494960': [0.0, 36.0, 0.0], 'GSM3494961': [0.0, 58.0, 0.0], 'GSM3494962': [0.0, 38.0, 0.0], 'GSM3494963': [0.0, 27.0, 0.0], 'GSM3494964': [0.0, 67.0, 0.0], 'GSM3494965': [0.0, 61.0, 1.0], 'GSM3494966': [0.0, 69.0, 1.0], 'GSM3494967': [0.0, 63.0, 1.0], 'GSM3494968': [0.0, 60.0, 0.0], 'GSM3494969': [0.0, 17.0, 1.0], 'GSM3494970': [0.0, 10.0, 0.0], 'GSM3494971': [0.0, 9.0, 1.0], 'GSM3494972': [0.0, 13.0, 0.0], 'GSM3494973': [0.0, 10.0, 1.0], 'GSM3494974': [0.0, 13.0, 0.0], 'GSM3494975': [0.0, 15.0, 1.0], 'GSM3494976': [0.0, 12.0, 1.0], 'GSM3494977': [0.0, 13.0, 1.0], 'GSM3494978': [0.0, 81.0, 0.0], 'GSM3494979': [0.0, 94.0, 0.0], 'GSM3494980': [0.0, 51.0, 1.0], 'GSM3494981': [0.0, 40.0, 1.0], 'GSM3494982': [0.0, nan, nan], 'GSM3494983': [0.0, 97.0, 1.0], 'GSM3494984': [0.0, 23.0, 1.0], 'GSM3494985': [0.0, 93.0, 0.0], 'GSM3494986': [0.0, 58.0, 1.0], 'GSM3494987': [0.0, 28.0, 0.0], 'GSM3494988': [0.0, 54.0, 1.0], 'GSM3494989': [0.0, 15.0, 1.0], 'GSM3494990': [0.0, 8.0, 1.0], 'GSM3494991': [0.0, 11.0, 1.0], 'GSM3494992': [0.0, 12.0, 1.0], 'GSM3494993': [0.0, 8.0, 0.0], 'GSM3494994': [0.0, 14.0, 1.0], 'GSM3494995': [0.0, 8.0, 0.0], 'GSM3494996': [0.0, 10.0, 1.0], 'GSM3494997': [0.0, 14.0, 1.0], 'GSM3494998': [0.0, 13.0, 1.0], 'GSM3494999': [0.0, 40.0, 0.0], 'GSM3495000': [0.0, 52.0, 0.0], 'GSM3495001': [0.0, 42.0, 0.0], 'GSM3495002': [0.0, 29.0, 0.0], 'GSM3495003': [0.0, 43.0, 0.0], 'GSM3495004': [0.0, 41.0, 0.0], 'GSM3495005': [0.0, 54.0, 1.0], 'GSM3495006': [0.0, 42.0, 1.0], 'GSM3495007': [0.0, 49.0, 1.0], 'GSM3495008': [0.0, 45.0, 0.0], 'GSM3495009': [0.0, 56.0, 1.0], 'GSM3495010': [0.0, 64.0, 0.0], 'GSM3495011': [0.0, 71.0, 0.0], 'GSM3495012': [0.0, 48.0, 0.0], 'GSM3495013': [0.0, 20.0, 1.0], 'GSM3495014': [0.0, 53.0, 0.0], 'GSM3495015': [0.0, 32.0, 0.0], 'GSM3495016': [0.0, 26.0, 0.0], 'GSM3495017': [0.0, 28.0, 0.0], 'GSM3495018': [0.0, 47.0, 0.0], 'GSM3495019': [0.0, 24.0, 0.0], 'GSM3495020': [0.0, 48.0, 0.0], 'GSM3495021': [0.0, nan, nan], 'GSM3495022': [0.0, 19.0, 0.0], 'GSM3495023': [0.0, 41.0, 0.0], 'GSM3495024': [0.0, 38.0, 0.0], 'GSM3495025': [0.0, nan, nan], 'GSM3495026': [0.0, 15.0, 0.0], 'GSM3495027': [0.0, 12.0, 1.0], 'GSM3495028': [0.0, 13.0, 0.0], 'GSM3495029': [0.0, nan, nan], 'GSM3495030': [0.0, 11.0, 1.0], 'GSM3495031': [0.0, nan, nan], 'GSM3495032': [0.0, 16.0, 1.0], 'GSM3495033': [0.0, 11.0, 1.0], 'GSM3495034': [0.0, nan, nan], 'GSM3495035': [0.0, 35.0, 0.0], 'GSM3495036': [0.0, 26.0, 0.0], 'GSM3495037': [0.0, 39.0, 0.0], 'GSM3495038': [0.0, 46.0, 0.0], 'GSM3495039': [0.0, 42.0, 0.0], 'GSM3495040': [0.0, 20.0, 1.0], 'GSM3495041': [0.0, 69.0, 1.0], 'GSM3495042': [0.0, 69.0, 0.0], 'GSM3495043': [0.0, 47.0, 1.0], 'GSM3495044': [0.0, 47.0, 1.0], 'GSM3495045': [0.0, 56.0, 0.0], 'GSM3495046': [0.0, 54.0, 0.0], 'GSM3495047': [0.0, 53.0, 0.0], 'GSM3495048': [0.0, 50.0, 0.0], 'GSM3495049': [0.0, 22.0, 1.0], 'GSM3495050': [0.0, 62.0, 0.0], 'GSM3495051': [0.0, 74.0, 0.0], 'GSM3495052': [0.0, 57.0, 0.0], 'GSM3495053': [0.0, 47.0, 0.0], 'GSM3495054': [0.0, 70.0, 0.0], 'GSM3495055': [0.0, 50.0, 0.0], 'GSM3495056': [0.0, 52.0, 0.0], 'GSM3495057': [0.0, 43.0, 0.0], 'GSM3495058': [0.0, 57.0, 0.0], 'GSM3495059': [0.0, 53.0, 0.0], 'GSM3495060': [0.0, 70.0, 0.0], 'GSM3495061': [0.0, 41.0, 0.0], 'GSM3495062': [0.0, 61.0, 0.0], 'GSM3495063': [0.0, 39.0, 0.0], 'GSM3495064': [0.0, 58.0, 0.0], 'GSM3495065': [0.0, 55.0, 0.0], 'GSM3495066': [0.0, 63.0, 0.0], 'GSM3495067': [0.0, 60.0, 0.0], 'GSM3495068': [0.0, 43.0, 0.0], 'GSM3495069': [0.0, 68.0, 0.0], 'GSM3495070': [0.0, 67.0, 0.0], 'GSM3495071': [0.0, 50.0, 0.0], 'GSM3495072': [0.0, 67.0, 0.0], 'GSM3495073': [0.0, 51.0, 0.0], 'GSM3495074': [0.0, 59.0, 0.0], 'GSM3495075': [0.0, 44.0, 0.0], 'GSM3495076': [0.0, 35.0, 0.0], 'GSM3495077': [0.0, 83.0, 0.0], 'GSM3495078': [0.0, 78.0, 0.0], 'GSM3495079': [0.0, 88.0, 0.0], 'GSM3495080': [0.0, 41.0, 0.0], 'GSM3495081': [0.0, 60.0, 0.0], 'GSM3495082': [0.0, 72.0, 0.0], 'GSM3495083': [0.0, 53.0, 0.0]}\n",
      "Clinical data saved to: ../../output/preprocess/Atherosclerosis/clinical_data/GSE123088.csv\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Callable, Optional, Dict, Any\n",
    "\n",
    "# 1. Determine gene expression data availability\n",
    "# Based on the background information, this dataset appears to be a SuperSeries containing gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Identify variable availability and create conversion functions\n",
    "\n",
    "# 2.1 For trait (Atherosclerosis)\n",
    "trait_row = 1  # \"primary diagnosis\" in row 1 contains the trait information\n",
    "\n",
    "def convert_trait(value: str) -> int:\n",
    "    \"\"\"Convert trait value to binary (0 or 1).\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary based on Atherosclerosis diagnosis\n",
    "    if \"ATHEROSCLEROSIS\" in value.upper():\n",
    "        return 1\n",
    "    elif \"HEALTHY_CONTROL\" in value.upper() or \"CONTROL\" in value.upper():\n",
    "        return 0\n",
    "    else:\n",
    "        # Other diagnoses are not related to Atherosclerosis\n",
    "        return 0\n",
    "\n",
    "# 2.2 For age\n",
    "age_row = 3  # \"age\" appears in row 3 and 4, but primarily in row 3\n",
    "\n",
    "def convert_age(value: str) -> float:\n",
    "    \"\"\"Convert age value to continuous numeric value.\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "# 2.3 For gender\n",
    "gender_row = 2  # \"Sex\" appears in row 2 and 3, but primarily in row 2\n",
    "\n",
    "def convert_gender(value: str) -> int:\n",
    "    \"\"\"Convert gender value to binary (0 for female, 1 for male).\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip().upper()\n",
    "    \n",
    "    if \"FEMALE\" in value:\n",
    "        return 0\n",
    "    elif \"MALE\" in value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save metadata\n",
    "# Trait data is available since trait_row is not None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Extract clinical features if trait data is available\n",
    "if trait_row is not None:\n",
    "    try:\n",
    "        # Use the clinical_data variable that should be available from a previous step\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the selected clinical features\n",
    "        preview = preview_df(selected_clinical_df)\n",
    "        print(\"Preview of selected clinical features:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Create directory if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        \n",
    "        # Save the selected clinical features to a CSV file\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical data saved to: {out_clinical_data_file}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error processing clinical data: {e}\")\n",
    "        # If clinical data is not available or there's an error, we'll proceed without it\n",
    "        print(\"Proceeding without clinical data.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "53062ab1",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "766d17b8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:42:53.880511Z",
     "iopub.status.busy": "2025-03-25T06:42:53.880401Z",
     "iopub.status.idle": "2025-03-25T06:42:54.402583Z",
     "shell.execute_reply": "2025-03-25T06:42:54.402179Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Atherosclerosis/GSE123088/GSE123088_series_matrix.txt.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (24166, 204)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['1', '2', '3', '9', '10', '12', '13', '14', '15', '16', '18', '19',\n",
      "       '20', '21', '22', '23', '24', '25', '26', '27'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "36411bf2",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "e3ccf7f9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:42:54.404015Z",
     "iopub.status.busy": "2025-03-25T06:42:54.403879Z",
     "iopub.status.idle": "2025-03-25T06:42:54.405816Z",
     "shell.execute_reply": "2025-03-25T06:42:54.405516Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examining the gene identifiers from the previous step\n",
    "# These appear to be simple numeric identifiers (1, 2, 3, etc.), not human gene symbols\n",
    "# These are likely probe IDs or some other type of numeric identifiers that need mapping to gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6553e21c",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "2cfb2a40",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:42:54.407135Z",
     "iopub.status.busy": "2025-03-25T06:42:54.407011Z",
     "iopub.status.idle": "2025-03-25T06:42:59.433645Z",
     "shell.execute_reply": "2025-03-25T06:42:59.433239Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'ENTREZ_GENE_ID', 'SPOT_ID']\n",
      "{'ID': ['1', '2', '3', '9', '10'], 'ENTREZ_GENE_ID': ['1', '2', '3', '9', '10'], 'SPOT_ID': [1.0, 2.0, 3.0, 9.0, 10.0]}\n",
      "\n",
      "Checking the SOFT file structure:\n",
      "^DATABASE = GeoMiame\n",
      "!Database_name = Gene Expression Omnibus (GEO)\n",
      "!Database_institute = NCBI NLM NIH\n",
      "!Database_web_link = http://www.ncbi.nlm.nih.gov/geo\n",
      "!Database_email = [email protected]\n",
      "^SERIES = GSE123088\n",
      "!Series_title = A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases\n",
      "!Series_geo_accession = GSE123088\n",
      "!Series_status = Public on Nov 23 2021\n",
      "!Series_submission_date = Nov 28 2018\n",
      "!Series_last_update_date = Apr 21 2023\n",
      "!Series_pubmed_id = 31358043\n",
      "!Series_summary = This SuperSeries is composed of the SubSeries listed below.\n",
      "!Series_overall_design = Refer to individual Series\n",
      "!Series_type = Expression profiling by array\n",
      "!Series_sample_id = GSM3494884\n",
      "!Series_sample_id = GSM3494885\n",
      "!Series_sample_id = GSM3494886\n",
      "!Series_sample_id = GSM3494887\n",
      "!Series_sample_id = GSM3494888\n",
      "\n",
      "Let's create a mapping using ENTREZ_GENE_ID as this corresponds to gene identifiers in NCBI\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mapping data shape: (4740924, 2)\n",
      "Sample mapping data:\n",
      "{'ID': ['1', '2', '3', '9', '10'], 'Gene': ['1', '2', '3', '9', '10']}\n",
      "\n",
      "Found gene identifiers for 4740924 out of 4740924 probes (100.00%)\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Based on the preview, we can see that we have ID and ENTREZ_GENE_ID\n",
    "# We need to check if there's any other information in the SOFT file that could help us map to gene symbols\n",
    "\n",
    "# Check the first few rows of the SOFT file to better understand its structure\n",
    "print(\"\\nChecking the SOFT file structure:\")\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for i, line in enumerate(f):\n",
    "        if i < 20:  # Just check the first 20 lines\n",
    "            print(line.strip())\n",
    "        else:\n",
    "            break\n",
    "\n",
    "print(\"\\nLet's create a mapping using ENTREZ_GENE_ID as this corresponds to gene identifiers in NCBI\")\n",
    "# Create a mapping dataframe with probe IDs and ENTREZ_GENE_ID (which are numeric gene identifiers)\n",
    "mapping_data = gene_annotation[['ID', 'ENTREZ_GENE_ID']].copy()\n",
    "mapping_data = mapping_data.dropna(subset=['ENTREZ_GENE_ID'])\n",
    "\n",
    "# Since ENTREZ_GENE_ID is already in the format of gene identifiers, we'll use those directly\n",
    "mapping_data = mapping_data.rename(columns={'ENTREZ_GENE_ID': 'Gene'})\n",
    "\n",
    "# Filter out rows with empty gene values\n",
    "mapping_data = mapping_data[mapping_data['Gene'] != '']\n",
    "print(f\"Mapping data shape: {mapping_data.shape}\")\n",
    "print(\"Sample mapping data:\")\n",
    "print(preview_df(mapping_data, n=5))\n",
    "\n",
    "# Count how many probes map to at least one gene identifier\n",
    "genes_mapped = mapping_data.shape[0]\n",
    "total_probes = gene_annotation.shape[0]\n",
    "mapping_percentage = (genes_mapped / total_probes) * 100 if total_probes > 0 else 0\n",
    "print(f\"\\nFound gene identifiers for {genes_mapped} out of {total_probes} probes ({mapping_percentage:.2f}%)\")\n",
    "\n",
    "# Save the mapping for later use\n",
    "gene_mapping = mapping_data\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3f023ddc",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "306f04a3",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:42:59.435187Z",
     "iopub.status.busy": "2025-03-25T06:42:59.434948Z",
     "iopub.status.idle": "2025-03-25T06:43:07.493153Z",
     "shell.execute_reply": "2025-03-25T06:43:07.492757Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mapped gene expression data shape: (0, 204)\n",
      "First 5 gene symbols in the mapped data:\n",
      "[]\n",
      "Gene expression data saved to: ../../output/preprocess/Atherosclerosis/gene_data/GSE123088.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Based on the gene identifiers in the gene expression data and the gene annotation data:\n",
    "# - Gene expression data identifiers: numeric IDs like '1', '2', '3', etc. (probe IDs)\n",
    "# - Gene annotation contains 'ID', 'ENTREZ_GENE_ID', 'SPOT_ID' columns\n",
    "# - 'ID' in gene_annotation matches the index of gene_data (probe IDs)\n",
    "# - 'ENTREZ_GENE_ID' contains Entrez Gene IDs which can be mapped to human gene symbols\n",
    "\n",
    "# 2. Create a gene mapping dataframe \n",
    "# We need 'ID' as the identifier and 'ENTREZ_GENE_ID' as the gene reference\n",
    "mapping_df = gene_annotation[['ID', 'ENTREZ_GENE_ID']].copy()\n",
    "mapping_df = mapping_df.rename(columns={'ENTREZ_GENE_ID': 'Gene'})\n",
    "mapping_df = mapping_df.dropna(subset=['Gene'])\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "# The function apply_gene_mapping handles the many-to-many relation between probes and genes\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "print(f\"Mapped gene expression data shape: {gene_data.shape}\")\n",
    "print(\"First 5 gene symbols in the mapped data:\")\n",
    "print(gene_data.index[:5].tolist())\n",
    "\n",
    "# Save the gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to: {out_gene_data_file}\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}