File size: 20,089 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f80836bc",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:56:31.548379Z",
     "iopub.status.busy": "2025-03-25T06:56:31.548269Z",
     "iopub.status.idle": "2025-03-25T06:56:31.712506Z",
     "shell.execute_reply": "2025-03-25T06:56:31.712136Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Bladder_Cancer\"\n",
    "cohort = \"GSE145261\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Bladder_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Bladder_Cancer/GSE145261\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Bladder_Cancer/GSE145261.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Bladder_Cancer/gene_data/GSE145261.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Bladder_Cancer/clinical_data/GSE145261.csv\"\n",
    "json_path = \"../../output/preprocess/Bladder_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "25dc6cb3",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "4b5a561a",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:56:31.713956Z",
     "iopub.status.busy": "2025-03-25T06:56:31.713817Z",
     "iopub.status.idle": "2025-03-25T06:56:31.815053Z",
     "shell.execute_reply": "2025-03-25T06:56:31.814728Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Urothelial-to-Neural Lineage Plasticity Drives Progression to Small Cell Bladder Cancer\"\n",
      "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
      "!Series_overall_design\t\"Small cell carcinoma (SCC) of the bladder displays a high propensity for distant metastasis and is associated with short survival. We report a comprehensive molecular analysis of 34 cases of SCC and 84 cases of conventional urothelial carcinoma (UC)\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['subject age: 72 years', 'subject age: 76 years', 'subject age: 79 years', 'subject age: 60 years', 'subject age: 65 years', 'subject age: 41 years', 'subject age: 67 years', 'subject age: 71 years', 'subject age: 57 years', 'subject age: 34 years', 'subject age: 62 years', 'subject age: 90 years', 'subject age: 58 years'], 1: ['subject gender: male', 'subject gender: female'], 2: ['tissue: bladder'], 3: ['tissue type: small cell carinoma (SCC)']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "da4a235f",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "d545fee7",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:56:31.816154Z",
     "iopub.status.busy": "2025-03-25T06:56:31.816042Z",
     "iopub.status.idle": "2025-03-25T06:56:31.837459Z",
     "shell.execute_reply": "2025-03-25T06:56:31.837159Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical data preview:\n",
      "{'GSM4310302': [1.0, 72.0, 1.0], 'GSM4310303': [1.0, 76.0, 1.0], 'GSM4310304': [1.0, 72.0, 1.0], 'GSM4310305': [1.0, 79.0, 1.0], 'GSM4310306': [1.0, 60.0, 1.0], 'GSM4310307': [1.0, 65.0, 1.0], 'GSM4310308': [1.0, 41.0, 1.0], 'GSM4310309': [1.0, 76.0, 0.0], 'GSM4310310': [1.0, 76.0, 0.0], 'GSM4310311': [1.0, 67.0, 1.0], 'GSM4310312': [1.0, 71.0, 1.0], 'GSM4310313': [1.0, 65.0, 1.0], 'GSM4310314': [1.0, 71.0, 1.0], 'GSM4310315': [1.0, 72.0, 1.0], 'GSM4310316': [1.0, 57.0, 1.0], 'GSM4310317': [1.0, 71.0, 1.0], 'GSM4310318': [1.0, 67.0, 1.0], 'GSM4310319': [1.0, 34.0, 1.0], 'GSM4310320': [1.0, 62.0, 1.0], 'GSM4310321': [1.0, 90.0, 0.0], 'GSM4310322': [1.0, 72.0, 1.0], 'GSM4310323': [1.0, 58.0, 1.0]}\n",
      "Clinical data saved to ../../output/preprocess/Bladder_Cancer/clinical_data/GSE145261.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on background information, this is a study on bladder cancer with molecular analysis,\n",
    "# likely to contain gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# For trait: Based on sample characteristics dict, tissue type is indicated in key 3\n",
    "trait_row = 3\n",
    "# For age: Age information is in key 0\n",
    "age_row = 0\n",
    "# For gender: Gender information is in key 1\n",
    "gender_row = 1\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert bladder cancer type to binary (0=not SCC, 1=SCC)\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary\n",
    "    if 'small cell' in value.lower() or 'scc' in value.lower():\n",
    "        return 1  # SCC bladder cancer\n",
    "    else:\n",
    "        return 0  # Not SCC bladder cancer\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age value to continuous numeric\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Extract numeric age value\n",
    "    import re\n",
    "    match = re.search(r'(\\d+)', value)\n",
    "    if match:\n",
    "        return int(match.group(1))\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary (0=female, 1=male)\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary\n",
    "    value = value.lower()\n",
    "    if 'female' in value:\n",
    "        return 0\n",
    "    elif 'male' in value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Trait data is available if trait_row is not None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Save initial filtering info\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Use the library function to extract clinical features\n",
    "    clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the data\n",
    "    print(\"Clinical data preview:\")\n",
    "    print(preview_df(clinical_df))\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_df.to_csv(out_clinical_data_file, index=True)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9ef51899",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "4698d57b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:56:31.838487Z",
     "iopub.status.busy": "2025-03-25T06:56:31.838382Z",
     "iopub.status.idle": "2025-03-25T06:56:31.957539Z",
     "shell.execute_reply": "2025-03-25T06:56:31.957174Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
      "       'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
      "       'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
      "       'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
      "       'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ae538d6b",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "7cb15dc6",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:56:31.958798Z",
     "iopub.status.busy": "2025-03-25T06:56:31.958675Z",
     "iopub.status.idle": "2025-03-25T06:56:31.960546Z",
     "shell.execute_reply": "2025-03-25T06:56:31.960248Z"
    }
   },
   "outputs": [],
   "source": [
    "# These are Illumina BeadArray identifiers (ILMN_*), not human gene symbols\n",
    "# They need to be mapped to proper gene symbols for analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4b169b6f",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "4e4ea583",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:56:31.961662Z",
     "iopub.status.busy": "2025-03-25T06:56:31.961558Z",
     "iopub.status.idle": "2025-03-25T06:56:34.603507Z",
     "shell.execute_reply": "2025-03-25T06:56:34.603139Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c3add7e5",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "58050e01",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:56:34.604905Z",
     "iopub.status.busy": "2025-03-25T06:56:34.604687Z",
     "iopub.status.idle": "2025-03-25T06:56:34.749805Z",
     "shell.execute_reply": "2025-03-25T06:56:34.749440Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data after mapping (first 5 rows, 5 columns):\n",
      "       GSM4310302  GSM4310303  GSM4310304  GSM4310305  GSM4310306\n",
      "Gene                                                             \n",
      "A1BG    18.653255   18.667788   18.862924   18.728951   18.664749\n",
      "A1CF    27.961683   28.422059   27.961613   27.960573   27.959180\n",
      "A26C3   27.959176   29.677706   28.149562   28.236884   27.964586\n",
      "A2BP1   37.291573   38.591834   37.474717   38.672140   41.538859\n",
      "A2LD1    9.361814    9.418669    9.316703    9.596790    9.376270\n",
      "Shape after mapping: (21464, 22)\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the relevant columns in gene_annotation for mapping\n",
    "# From the previous output:\n",
    "# - 'ID' is the column with the same identifiers (ILMN_*) as in gene_expression data\n",
    "# - 'Symbol' contains the gene symbols we need to map to\n",
    "\n",
    "# 2. Create a gene mapping dataframe using get_gene_mapping function\n",
    "# The function extracts and processes these two columns\n",
    "gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'Symbol')\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "# This function handles the many-to-many relationships between probes and genes\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Show a preview of the new gene expression data\n",
    "print(\"Gene expression data after mapping (first 5 rows, 5 columns):\")\n",
    "preview_cols = min(5, len(gene_data.columns))\n",
    "print(gene_data.iloc[:5, :preview_cols])\n",
    "print(f\"Shape after mapping: {gene_data.shape}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "df0d3a86",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "68867eb4",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:56:34.751094Z",
     "iopub.status.busy": "2025-03-25T06:56:34.750970Z",
     "iopub.status.idle": "2025-03-25T06:56:41.119679Z",
     "shell.execute_reply": "2025-03-25T06:56:41.119371Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Bladder_Cancer/gene_data/GSE145261.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Quartiles for 'Bladder_Cancer':\n",
      "  25%: 1.0\n",
      "  50% (Median): 1.0\n",
      "  75%: 1.0\n",
      "Min: 1.0\n",
      "Max: 1.0\n",
      "The distribution of the feature 'Bladder_Cancer' in this dataset is severely biased.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: 62.75\n",
      "  50% (Median): 71.0\n",
      "  75%: 72.0\n",
      "Min: 34.0\n",
      "Max: 90.0\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '0.0' with 3 occurrences. This represents 13.64% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n",
      "Data was determined to be unusable and was not saved\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the previously saved clinical data and link with genetic data\n",
    "clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "\n",
    "# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information.\n",
    "is_usable = validate_and_save_cohort_info(True, cohort, json_path, True, True, is_trait_biased, unbiased_linked_data)\n",
    "\n",
    "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}