File size: 36,484 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c9f5e849",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:06:59.430425Z",
     "iopub.status.busy": "2025-03-25T07:06:59.430317Z",
     "iopub.status.idle": "2025-03-25T07:06:59.596854Z",
     "shell.execute_reply": "2025-03-25T07:06:59.596488Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Cardiovascular_Disease\"\n",
    "cohort = \"GSE235307\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Cardiovascular_Disease\"\n",
    "in_cohort_dir = \"../../input/GEO/Cardiovascular_Disease/GSE235307\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Cardiovascular_Disease/GSE235307.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Cardiovascular_Disease/gene_data/GSE235307.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Cardiovascular_Disease/clinical_data/GSE235307.csv\"\n",
    "json_path = \"../../output/preprocess/Cardiovascular_Disease/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8e4e4ab0",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "db301040",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:06:59.598296Z",
     "iopub.status.busy": "2025-03-25T07:06:59.598148Z",
     "iopub.status.idle": "2025-03-25T07:07:00.020157Z",
     "shell.execute_reply": "2025-03-25T07:07:00.019763Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene expression and atrial fibrillation prediction\"\n",
      "!Series_summary\t\"The aim of this study was to identify a blood gene expression profile that predicts atrial fibrillation in heart failure patients\"\n",
      "!Series_overall_design\t\"Cardiac blood samples were obtained from the coronary sinus during CRT-D (Cardiac Resynchronization Therapy - Defibrillator) placement in heart failure patients. Patients were followed during 1 year.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['tissue: Whole blood'], 1: ['gender: Male', 'gender: Female'], 2: ['age: 63', 'age: 60', 'age: 72', 'age: 66', 'age: 70', 'age: 64', 'age: 61', 'age: 44', 'age: 54', 'age: 50', 'age: 79', 'age: 51', 'age: 55', 'age: 67', 'age: 52', 'age: 73', 'age: 76', 'age: 43', 'age: 68', 'age: 78', 'age: 69', 'age: 57', 'age: 59', 'age: 53', 'age: 65', 'age: 56', 'age: 74', 'age: 38', 'age: 71', 'age: 37'], 3: ['cardiopathy: ischemic', 'cardiopathy: non ischemic', 'cardiopathy: mixed'], 4: ['cardiac rhythm at start of the study: Sinus rhythm'], 5: ['cardiac rhythm after 1 year follow-up: Sinus rhythm', 'cardiac rhythm after 1 year follow-up: Atrial fibrillation']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "485069a5",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "73e6af5a",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:00.021587Z",
     "iopub.status.busy": "2025-03-25T07:07:00.021460Z",
     "iopub.status.idle": "2025-03-25T07:07:00.027523Z",
     "shell.execute_reply": "2025-03-25T07:07:00.027220Z"
    }
   },
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the dataset description, this appears to be gene expression data from blood samples\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait: The trait appears to be \"Atrial fibrillation\" which can be inferred from row 5\n",
    "# \"cardiac rhythm after 1 year follow-up: Sinus rhythm\" or \"cardiac rhythm after 1 year follow-up: Atrial fibrillation\"\n",
    "trait_row = 5\n",
    "\n",
    "# For age: Age data is available in row 2\n",
    "age_row = 2\n",
    "\n",
    "# For gender: Gender data is available in row 1\n",
    "gender_row = 1\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert atrial fibrillation status to binary (0: No AF, 1: AF).\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    value = value.strip() if isinstance(value, str) else value\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"Atrial fibrillation\" in value:\n",
    "        return 1  # Atrial fibrillation is present (positive case)\n",
    "    elif \"Sinus rhythm\" in value:\n",
    "        return 0  # Normal sinus rhythm (negative case)\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age to continuous numeric value.\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    value = value.strip() if isinstance(value, str) else value\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary (0: Female, 1: Male).\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    value = value.strip() if isinstance(value, str) else value\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"Male\" in value or value.lower() == \"male\":\n",
    "        return 1\n",
    "    elif \"Female\" in value or value.lower() == \"female\":\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata - Initial Filtering\n",
    "# Trait data availability is determined by whether trait_row is None\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Load clinical data\n",
    "    clinical_df_path = os.path.join(in_cohort_dir, \"clinical_data.csv\")\n",
    "    if os.path.exists(clinical_df_path):\n",
    "        clinical_data = pd.read_csv(clinical_df_path)\n",
    "        \n",
    "        # Extract clinical features\n",
    "        clinical_features_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the extracted features\n",
    "        preview = preview_df(clinical_features_df)\n",
    "        print(\"Preview of clinical features:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Create directory if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        \n",
    "        # Save to CSV\n",
    "        clinical_features_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical features saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8366cd1d",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "9862983c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:00.028687Z",
     "iopub.status.busy": "2025-03-25T07:07:00.028577Z",
     "iopub.status.idle": "2025-03-25T07:07:00.810364Z",
     "shell.execute_reply": "2025-03-25T07:07:00.809966Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Cardiovascular_Disease/GSE235307/GSE235307_series_matrix.txt.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (58717, 119)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15', '16',\n",
      "       '17', '18', '19', '20', '21', '22', '23'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "08213599",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "48d98187",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:00.811773Z",
     "iopub.status.busy": "2025-03-25T07:07:00.811662Z",
     "iopub.status.idle": "2025-03-25T07:07:00.813568Z",
     "shell.execute_reply": "2025-03-25T07:07:00.813292Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examine the gene identifiers\n",
    "# These appear to be numeric identifiers (4, 5, 6, etc.) which are not standard human gene symbols\n",
    "# Standard human gene symbols would be like BRCA1, TP53, etc.\n",
    "# Therefore, these identifiers need to be mapped to proper gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bd8aaa0c",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "26aa25a9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:00.814754Z",
     "iopub.status.busy": "2025-03-25T07:07:00.814654Z",
     "iopub.status.idle": "2025-03-25T07:07:12.419016Z",
     "shell.execute_reply": "2025-03-25T07:07:12.418663Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'COL', 'ROW', 'NAME', 'SPOT_ID', 'CONTROL_TYPE', 'REFSEQ', 'GB_ACC', 'LOCUSLINK_ID', 'GENE_SYMBOL', 'GENE_NAME', 'UNIGENE_ID', 'ENSEMBL_ID', 'ACCESSION_STRING', 'CHROMOSOMAL_LOCATION', 'CYTOBAND', 'DESCRIPTION', 'GO_ID', 'SEQUENCE']\n",
      "{'ID': ['1', '2', '3', '4', '5'], 'COL': ['192', '192', '192', '192', '192'], 'ROW': [328.0, 326.0, 324.0, 322.0, 320.0], 'NAME': ['GE_BrightCorner', 'DarkCorner', 'DarkCorner', 'A_23_P117082', 'A_33_P3246448'], 'SPOT_ID': ['CONTROL', 'CONTROL', 'CONTROL', 'A_23_P117082', 'A_33_P3246448'], 'CONTROL_TYPE': ['pos', 'pos', 'pos', 'FALSE', 'FALSE'], 'REFSEQ': [nan, nan, nan, 'NM_015987', 'NM_080671'], 'GB_ACC': [nan, nan, nan, 'NM_015987', 'NM_080671'], 'LOCUSLINK_ID': [nan, nan, nan, 50865.0, 23704.0], 'GENE_SYMBOL': [nan, nan, nan, 'HEBP1', 'KCNE4'], 'GENE_NAME': [nan, nan, nan, 'heme binding protein 1', 'potassium voltage-gated channel, Isk-related family, member 4'], 'UNIGENE_ID': [nan, nan, nan, 'Hs.642618', 'Hs.348522'], 'ENSEMBL_ID': [nan, nan, nan, 'ENST00000014930', 'ENST00000281830'], 'ACCESSION_STRING': [nan, nan, nan, 'ref|NM_015987|ens|ENST00000014930|gb|AF117615|gb|BC016277', 'ref|NM_080671|ens|ENST00000281830|tc|THC2655788'], 'CHROMOSOMAL_LOCATION': [nan, nan, nan, 'chr12:13127906-13127847', 'chr2:223920197-223920256'], 'CYTOBAND': [nan, nan, nan, 'hs|12p13.1', 'hs|2q36.1'], 'DESCRIPTION': [nan, nan, nan, 'Homo sapiens heme binding protein 1 (HEBP1), mRNA [NM_015987]', 'Homo sapiens potassium voltage-gated channel, Isk-related family, member 4 (KCNE4), mRNA [NM_080671]'], 'GO_ID': [nan, nan, nan, 'GO:0005488(binding)|GO:0005576(extracellular region)|GO:0005737(cytoplasm)|GO:0005739(mitochondrion)|GO:0005829(cytosol)|GO:0007623(circadian rhythm)|GO:0020037(heme binding)', 'GO:0005244(voltage-gated ion channel activity)|GO:0005249(voltage-gated potassium channel activity)|GO:0006811(ion transport)|GO:0006813(potassium ion transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0016324(apical plasma membrane)'], 'SEQUENCE': [nan, nan, nan, 'AAGGGGGAAAATGTGATTTGTGCCTGATCTTTCATCTGTGATTCTTATAAGAGCTTTGTC', 'GCAAGTCTCTCTGCACCTATTAAAAAGTGATGTATATACTTCCTTCTTATTCTGTTGAGT']}\n",
      "\n",
      "Searching for platform information in SOFT file:\n",
      "Platform ID not found in first 100 lines\n",
      "\n",
      "Searching for gene symbol information in SOFT file:\n",
      "Found references to gene symbols:\n",
      "#GENE_SYMBOL = Gene Symbol\n",
      "ID\tCOL\tROW\tNAME\tSPOT_ID\tCONTROL_TYPE\tREFSEQ\tGB_ACC\tLOCUSLINK_ID\tGENE_SYMBOL\tGENE_NAME\tUNIGENE_ID\tENSEMBL_ID\tACCESSION_STRING\tCHROMOSOMAL_LOCATION\tCYTOBAND\tDESCRIPTION\tGO_ID\tSEQUENCE\n",
      "8\t192\t314\tA_33_P3319925\tA_33_P3319925\tFALSE\tXM_001133269\tXM_001133269\t730249\tIRG1\timmunoresponsive 1 homolog (mouse)\tHs.160789\tENST00000449753\tens|ENST00000449753|ens|ENST00000377462|ref|XM_001133269|ref|XM_003403661\tchr13:77532009-77532068\ths|13q22.3\timmunoresponsive 1 homolog (mouse) [Source:HGNC Symbol;Acc:33904] [ENST00000449753]\tGO:0019543(propionate catabolic process)|GO:0032496(response to lipopolysaccharide)|GO:0047547(2-methylcitrate dehydratase activity)\tAGAAGACCTAGAAGACTGTTCTGTGTTAACTACACTTCTCAAAGGACCCTCTCCACCAGA\n",
      "21\t192\t288\tA_33_P3261373\tens|ENST00000319813|tc|NP511499\tFALSE\t\t\t\t\t\t\tENST00000319813\tens|ENST00000319813|tc|NP511499\tchr11:48387097-48387038\ths|11p11.2\tolfactory receptor, family 4, subfamily C, member 5 [Source:HGNC Symbol;Acc:14702] [ENST00000319813]\t\tGAAAAATGCCATGAAGCAGCTCTGGAGCCAAATAATCTGGGGTAACAATTTGTGTGATTA\n",
      "25\t192\t280\tA_24_P286898\tA_24_P286898\tFALSE\t\tAB074280\t5599\tMAPK8\tmitogen-activated protein kinase 8\tHs.522924\tENST00000374189\tens|ENST00000374189|ens|ENST00000374182|ens|ENST00000374179|ens|ENST00000374176\tchr10:49647005-49647064\ths|10q11.22\tmitogen-activated protein kinase 8 [Source:HGNC Symbol;Acc:6881] [ENST00000374189]\tGO:0000166(nucleotide binding)|GO:0001503(ossification)|GO:0002224(toll-like receptor signaling pathway)|GO:0002755(MyD88-dependent toll-like receptor signaling pathway)|GO:0002756(MyD88-independent toll-like receptor signaling pathway)|GO:0004674(protein serine/threonine kinase activity)|GO:0004705(JUN kinase activity)|GO:0004707(MAP kinase activity)|GO:0005515(protein binding)|GO:0005524(ATP binding)|GO:0005634(nucleus)|GO:0005654(nucleoplasm)|GO:0005737(cytoplasm)|GO:0005739(mitochondrion)|GO:0005829(cytosol)|GO:0006915(apoptosis)|GO:0006950(response to stress)|GO:0007254(JNK cascade)|GO:0007258(JUN phosphorylation)|GO:0008063(Toll signaling pathway)|GO:0008624(induction of apoptosis by extracellular signals)|GO:0008629(induction of apoptosis by intracellular signals)|GO:0008633(activation of pro-apoptotic gene products)|GO:0009411(response to UV)|GO:0018105(peptidyl-serine phosphorylation)|GO:0018107(peptidyl-threonine phosphorylation)|GO:0031063(regulation of histone deacetylation)|GO:0031558(induction of apoptosis in response to chemical stimulus)|GO:0032091(negative regulation of protein binding)|GO:0032880(regulation of protein localization)|GO:0034130(toll-like receptor 1 signaling pathway)|GO:0034134(toll-like receptor 2 signaling pathway)|GO:0034138(toll-like receptor 3 signaling pathway)|GO:0034142(toll-like receptor 4 signaling pathway)|GO:0035033(histone deacetylase regulator activity)|GO:0042826(histone deacetylase binding)|GO:0043066(negative regulation of apoptosis)|GO:0045087(innate immune response)|GO:0046686(response to cadmium ion)|GO:0048011(nerve growth factor receptor signaling pathway)|GO:0051090(regulation of sequence-specific DNA binding transcription factor activity)|GO:0051403(stress-activated MAPK cascade)|GO:0071260(cellular response to mechanical stimulus)|GO:0090045(positive regulation of deacetylase activity)|GO:2000017(positive regulation of determination of dorsal identity)\tTTTGAGAAGCTGTTAATCTTTTAGCTGAATAATGAAGTTAGACTGAATTACGTGTCTCCC\n",
      "\n",
      "Checking for additional annotation files in the directory:\n",
      "[]\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Let's look for platform information in the SOFT file to understand the annotation better\n",
    "print(\"\\nSearching for platform information in SOFT file:\")\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for i, line in enumerate(f):\n",
    "        if '!Series_platform_id' in line:\n",
    "            print(line.strip())\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Platform ID not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# Check if the SOFT file includes any reference to gene symbols\n",
    "print(\"\\nSearching for gene symbol information in SOFT file:\")\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    gene_symbol_lines = []\n",
    "    for i, line in enumerate(f):\n",
    "        if 'GENE_SYMBOL' in line or 'gene_symbol' in line.lower() or 'symbol' in line.lower():\n",
    "            gene_symbol_lines.append(line.strip())\n",
    "        if i > 1000 and len(gene_symbol_lines) > 0:  # Limit search but ensure we found something\n",
    "            break\n",
    "    \n",
    "    if gene_symbol_lines:\n",
    "        print(\"Found references to gene symbols:\")\n",
    "        for line in gene_symbol_lines[:5]:  # Show just first 5 matches\n",
    "            print(line)\n",
    "    else:\n",
    "        print(\"No explicit gene symbol references found in first 1000 lines\")\n",
    "\n",
    "# Look for alternative annotation files or references in the directory\n",
    "print(\"\\nChecking for additional annotation files in the directory:\")\n",
    "all_files = os.listdir(in_cohort_dir)\n",
    "print([f for f in all_files if 'annotation' in f.lower() or 'platform' in f.lower() or 'gpl' in f.lower()])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "de7c8663",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "1d0891b7",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:12.420378Z",
     "iopub.status.busy": "2025-03-25T07:07:12.420244Z",
     "iopub.status.idle": "2025-03-25T07:07:14.574295Z",
     "shell.execute_reply": "2025-03-25T07:07:14.573914Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping preview:\n",
      "{'ID': ['4', '5', '6', '7', '8'], 'Gene': ['HEBP1', 'KCNE4', 'BPIFA3', 'LOC100129869', 'IRG1']}\n",
      "Shape of gene mapping dataframe: (54295, 2)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene expression data after mapping:\n",
      "Shape of gene expression data: (20353, 119)\n",
      "First 10 gene symbols:\n",
      "['A1BG', 'A1BG-AS1', 'A1CF', 'A2LD1', 'A2M', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT', 'AA06']\n",
      "\n",
      "Gene expression data after normalization:\n",
      "Shape of gene expression data after normalization: (19847, 119)\n",
      "First 10 normalized gene symbols:\n",
      "['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT', 'AA06', 'AAA1']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene expression data saved to ../../output/preprocess/Cardiovascular_Disease/gene_data/GSE235307.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Observe the gene identifier and gene symbol columns in the gene annotation\n",
    "# From the preview, we can see:\n",
    "# - The gene identifiers in gene_data are numeric IDs (like '4', '5', '6')\n",
    "# - In gene_annotation, the 'ID' column contains similar numeric identifiers\n",
    "# - The 'GENE_SYMBOL' column contains the human gene symbols like 'HEBP1', 'KCNE4'\n",
    "\n",
    "# 2. Extract the gene identifier and gene symbol columns\n",
    "gene_mapping_df = get_gene_mapping(\n",
    "    annotation=gene_annotation,\n",
    "    prob_col='ID',  # The column with probe IDs matching gene_data index\n",
    "    gene_col='GENE_SYMBOL'  # The column with human gene symbols\n",
    ")\n",
    "\n",
    "print(\"Gene mapping preview:\")\n",
    "print(preview_df(gene_mapping_df, n=5))\n",
    "print(f\"Shape of gene mapping dataframe: {gene_mapping_df.shape}\")\n",
    "\n",
    "# 3. Apply gene mapping to convert from probe-level to gene-level expression\n",
    "gene_data = apply_gene_mapping(\n",
    "    expression_df=gene_data,\n",
    "    mapping_df=gene_mapping_df\n",
    ")\n",
    "\n",
    "print(\"\\nGene expression data after mapping:\")\n",
    "print(f\"Shape of gene expression data: {gene_data.shape}\")\n",
    "print(\"First 10 gene symbols:\")\n",
    "print(list(gene_data.index[:10]))\n",
    "\n",
    "# Apply gene symbol normalization to standardize symbols and aggregate duplicates\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(\"\\nGene expression data after normalization:\")\n",
    "print(f\"Shape of gene expression data after normalization: {gene_data.shape}\")\n",
    "print(\"First 10 normalized gene symbols:\")\n",
    "print(list(gene_data.index[:10]))\n",
    "\n",
    "# Create directory if it doesn't exist\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "\n",
    "# Save the gene expression data to the specified output file\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c54021b0",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "fce3430b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:14.575915Z",
     "iopub.status.busy": "2025-03-25T07:07:14.575794Z",
     "iopub.status.idle": "2025-03-25T07:07:28.528574Z",
     "shell.execute_reply": "2025-03-25T07:07:28.527965Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical features shape: (3, 119)\n",
      "Clinical features preview:\n",
      "{'GSM7498589': [0.0, 63.0, 1.0], 'GSM7498590': [0.0, 60.0, 1.0], 'GSM7498591': [0.0, 60.0, 1.0], 'GSM7498592': [0.0, 72.0, 1.0], 'GSM7498593': [0.0, 63.0, 1.0], 'GSM7498594': [0.0, 66.0, 0.0], 'GSM7498595': [0.0, 70.0, 1.0], 'GSM7498596': [0.0, 64.0, 1.0], 'GSM7498597': [0.0, 63.0, 1.0], 'GSM7498598': [0.0, 61.0, 1.0], 'GSM7498599': [0.0, 70.0, 0.0], 'GSM7498600': [0.0, 64.0, 1.0], 'GSM7498601': [0.0, 63.0, 1.0], 'GSM7498602': [0.0, 44.0, 1.0], 'GSM7498603': [0.0, 54.0, 1.0], 'GSM7498604': [0.0, 44.0, 1.0], 'GSM7498605': [0.0, 50.0, 1.0], 'GSM7498606': [1.0, 79.0, 1.0], 'GSM7498607': [0.0, 63.0, 1.0], 'GSM7498608': [0.0, 63.0, 0.0], 'GSM7498609': [1.0, 64.0, 1.0], 'GSM7498610': [0.0, 60.0, 1.0], 'GSM7498611': [0.0, 51.0, 1.0], 'GSM7498612': [0.0, 55.0, 1.0], 'GSM7498613': [0.0, 55.0, 1.0], 'GSM7498614': [1.0, 67.0, 1.0], 'GSM7498615': [0.0, 52.0, 1.0], 'GSM7498616': [0.0, 70.0, 0.0], 'GSM7498617': [0.0, 54.0, 1.0], 'GSM7498618': [0.0, 54.0, 1.0], 'GSM7498619': [0.0, 73.0, 1.0], 'GSM7498620': [0.0, 54.0, 0.0], 'GSM7498621': [0.0, 76.0, 1.0], 'GSM7498622': [0.0, 76.0, 1.0], 'GSM7498623': [0.0, 43.0, 0.0], 'GSM7498624': [0.0, 64.0, 1.0], 'GSM7498625': [0.0, 64.0, 1.0], 'GSM7498626': [0.0, 68.0, 0.0], 'GSM7498627': [0.0, 43.0, 1.0], 'GSM7498628': [1.0, 54.0, 1.0], 'GSM7498629': [0.0, 72.0, 0.0], 'GSM7498630': [0.0, 51.0, 1.0], 'GSM7498631': [0.0, 68.0, 0.0], 'GSM7498632': [0.0, 50.0, 0.0], 'GSM7498633': [0.0, 78.0, 1.0], 'GSM7498634': [1.0, 69.0, 1.0], 'GSM7498635': [0.0, 64.0, 0.0], 'GSM7498636': [0.0, 54.0, 1.0], 'GSM7498637': [0.0, 54.0, 1.0], 'GSM7498638': [0.0, 57.0, 1.0], 'GSM7498639': [0.0, 55.0, 0.0], 'GSM7498640': [0.0, 60.0, 1.0], 'GSM7498641': [0.0, 59.0, 1.0], 'GSM7498642': [0.0, 54.0, 1.0], 'GSM7498643': [0.0, 54.0, 1.0], 'GSM7498644': [0.0, 54.0, 1.0], 'GSM7498645': [0.0, 54.0, 1.0], 'GSM7498646': [0.0, 53.0, 1.0], 'GSM7498647': [0.0, 52.0, 0.0], 'GSM7498648': [0.0, 68.0, 1.0], 'GSM7498649': [0.0, 72.0, 0.0], 'GSM7498650': [0.0, 70.0, 1.0], 'GSM7498651': [0.0, 65.0, 1.0], 'GSM7498652': [0.0, 64.0, 1.0], 'GSM7498653': [0.0, 56.0, 0.0], 'GSM7498654': [0.0, 56.0, 0.0], 'GSM7498655': [0.0, 63.0, 1.0], 'GSM7498656': [0.0, 57.0, 1.0], 'GSM7498657': [0.0, 63.0, 1.0], 'GSM7498658': [0.0, 68.0, 1.0], 'GSM7498659': [0.0, 66.0, 0.0], 'GSM7498660': [0.0, 74.0, 0.0], 'GSM7498661': [0.0, 38.0, 1.0], 'GSM7498662': [0.0, 56.0, 1.0], 'GSM7498663': [0.0, 57.0, 1.0], 'GSM7498664': [0.0, 71.0, 0.0], 'GSM7498665': [1.0, 78.0, 0.0], 'GSM7498666': [0.0, 51.0, 1.0], 'GSM7498667': [0.0, 50.0, 1.0], 'GSM7498668': [0.0, 37.0, 1.0], 'GSM7498669': [0.0, 37.0, 1.0], 'GSM7498670': [0.0, 70.0, 0.0], 'GSM7498671': [0.0, 72.0, 0.0], 'GSM7498672': [0.0, 73.0, 1.0], 'GSM7498673': [0.0, 69.0, 0.0], 'GSM7498674': [0.0, 69.0, 0.0], 'GSM7498675': [1.0, 63.0, 1.0], 'GSM7498676': [0.0, 62.0, 0.0], 'GSM7498677': [0.0, 59.0, 0.0], 'GSM7498678': [0.0, 67.0, 1.0], 'GSM7498679': [0.0, 76.0, 1.0], 'GSM7498680': [0.0, 63.0, 1.0], 'GSM7498681': [0.0, 55.0, 1.0], 'GSM7498682': [0.0, 57.0, 1.0], 'GSM7498683': [0.0, 53.0, 1.0], 'GSM7498684': [0.0, 59.0, 1.0], 'GSM7498685': [1.0, 77.0, 1.0], 'GSM7498686': [0.0, 54.0, 1.0], 'GSM7498687': [1.0, 64.0, 1.0], 'GSM7498688': [0.0, 75.0, 0.0], 'GSM7498689': [0.0, 75.0, 0.0], 'GSM7498690': [0.0, 72.0, 0.0], 'GSM7498691': [0.0, 58.0, 0.0], 'GSM7498692': [0.0, 75.0, 1.0], 'GSM7498693': [0.0, 78.0, 1.0], 'GSM7498694': [0.0, 58.0, 1.0], 'GSM7498695': [0.0, 64.0, 1.0], 'GSM7498696': [0.0, 63.0, 1.0], 'GSM7498697': [0.0, 61.0, 1.0], 'GSM7498698': [0.0, 60.0, 1.0], 'GSM7498699': [0.0, 59.0, 0.0], 'GSM7498700': [0.0, 68.0, 1.0], 'GSM7498701': [0.0, 77.0, 1.0], 'GSM7498702': [1.0, 57.0, 1.0], 'GSM7498703': [0.0, 62.0, 0.0], 'GSM7498704': [1.0, 66.0, 1.0], 'GSM7498705': [1.0, 57.0, 1.0], 'GSM7498706': [1.0, 65.0, 1.0], 'GSM7498707': [0.0, 59.0, 1.0]}\n",
      "Clinical data saved to ../../output/preprocess/Cardiovascular_Disease/clinical_data/GSE235307.csv\n",
      "Linked data shape: (119, 19850)\n",
      "Linked data preview (first 5 rows, 5 columns):\n",
      "            Cardiovascular_Disease   Age  Gender         A1BG    A1BG-AS1\n",
      "GSM7498589                     0.0  63.0     1.0  1215.921532  167.933502\n",
      "GSM7498590                     0.0  60.0     1.0  1042.240181  156.514231\n",
      "GSM7498591                     0.0  60.0     1.0   860.505266  153.778492\n",
      "GSM7498592                     0.0  72.0     1.0  1016.786080  164.688762\n",
      "GSM7498593                     0.0  63.0     1.0   930.371907  153.624856\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data shape after handling missing values: (119, 19850)\n",
      "For the feature 'Cardiovascular_Disease', the least common label is '1.0' with 13 occurrences. This represents 10.92% of the dataset.\n",
      "The distribution of the feature 'Cardiovascular_Disease' in this dataset is fine.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: 55.0\n",
      "  50% (Median): 63.0\n",
      "  75%: 68.0\n",
      "Min: 37.0\n",
      "Max: 79.0\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '0.0' with 32 occurrences. This represents 26.89% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Cardiovascular_Disease/GSE235307.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols  \n",
    "# (Note: We already normalized in step 6, but let's explicitly ensure it's done properly)\n",
    "\n",
    "# 2. Load the clinical data and extract features using the correct trait_row and conversion functions from Step 2\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "_, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Define correct conversion functions matching the ones in Step 2\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert atrial fibrillation status to binary (0: No AF, 1: AF).\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    value = value.strip() if isinstance(value, str) else value\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"Atrial fibrillation\" in value:\n",
    "        return 1  # Atrial fibrillation is present (positive case)\n",
    "    elif \"Sinus rhythm\" in value:\n",
    "        return 0  # Normal sinus rhythm (negative case)\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age to continuous numeric value.\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    value = value.strip() if isinstance(value, str) else value\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary (0: Female, 1: Male).\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    value = value.strip() if isinstance(value, str) else value\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"Male\" in value or value.lower() == \"male\":\n",
    "        return 1\n",
    "    elif \"Female\" in value or value.lower() == \"female\":\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "# Extract clinical features using the correct row indices from Step 2\n",
    "clinical_features = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data, \n",
    "    trait=trait, \n",
    "    trait_row=5,  # Correctly using cardiac rhythm row as identified in Step 2\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=2,  # Age information from row 2\n",
    "    convert_age=convert_age,\n",
    "    gender_row=1,  # Gender information from row 1\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "print(f\"Clinical features shape: {clinical_features.shape}\")\n",
    "print(\"Clinical features preview:\")\n",
    "print(preview_df(clinical_features))\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 3. Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "print(linked_data.iloc[:5, :5])\n",
    "\n",
    "# 4. Handle missing values\n",
    "linked_data_clean = handle_missing_values(linked_data, trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data_clean.shape}\")\n",
    "\n",
    "# 5. Check for bias in the dataset\n",
    "is_biased, linked_data_clean = judge_and_remove_biased_features(linked_data_clean, trait)\n",
    "\n",
    "# 6. Conduct final quality validation\n",
    "note = \"Dataset contains gene expression data from cardiac blood samples of heart failure patients, with atrial fibrillation status tracked over 1 year.\"\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data_clean,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 7. Save the linked data if it's usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data_clean.to_csv(out_data_file, index=True)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset deemed not usable for associative studies. Linked data not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}