File size: 31,934 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "4b0c5d2c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:46.479228Z",
     "iopub.status.busy": "2025-03-25T07:07:46.479048Z",
     "iopub.status.idle": "2025-03-25T07:07:46.640466Z",
     "shell.execute_reply": "2025-03-25T07:07:46.640128Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Cardiovascular_Disease\"\n",
    "cohort = \"GSE285666\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Cardiovascular_Disease\"\n",
    "in_cohort_dir = \"../../input/GEO/Cardiovascular_Disease/GSE285666\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Cardiovascular_Disease/GSE285666.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Cardiovascular_Disease/gene_data/GSE285666.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Cardiovascular_Disease/clinical_data/GSE285666.csv\"\n",
    "json_path = \"../../output/preprocess/Cardiovascular_Disease/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "89f49db4",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "f5b8acc8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:46.641835Z",
     "iopub.status.busy": "2025-03-25T07:07:46.641699Z",
     "iopub.status.idle": "2025-03-25T07:07:46.723729Z",
     "shell.execute_reply": "2025-03-25T07:07:46.723438Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Exon- and gene-Level transcriptional profiling in Lymphoblastoid Cell Lines (LCLs) from Williams syndrome patients and controls\"\n",
      "!Series_summary\t\"Williams syndrome (WS), characterized by positive sociality, provides a unique model for studying transcriptional networks underlying social dysfunction, relevant to disorders like autism spectrum disorder (ASD) and schizophrenia (SCHZ). In a cohort lymphoblastoid cell lines derived from 52 individuals (34 WS patients, 18 parental controls), genome-wide exon-level arrays identified a core set of differentially expressed genes (DEGs), with WS-deleted genes ranking among the top transcripts. Findings were validated by PCR, RNA-seq, and western blots.\"\n",
      "!Series_summary\t\"Network analyses revealed perturbed actin cytoskeletal signaling in excitatory dendritic spines, alongside interactions in MAPK, IGF1-PI3K-AKT-mTOR/insulin, and synaptic actin pathways. These transcriptional networks show parallels to ASD and SCHZ, highlighting shared mechanisms across social behavior disorders.\"\n",
      "!Series_overall_design\t\"Human lymphoblastoid cells immortailzed from WIlliams syndrome patients and non-affected parental controls were grown in RMPI 1640 with 10% FBS, 5% pen/strep, 5% L-glutamine and 0.5% gentamycin. Total RNA was extracted from each culture using the Qiagen RNeasy kit with DNase digestion. Prior to labeling, ribosomal RNA was removed from total RNA (1 μg per sample) using the RiboMinus Human/Mouse Transcriptome Isolation Kit (Invitrogen). Expression analysis was conducted using Affymetrix Human Exon 1.0 ST arrays following the Affymetrix hybridization protocols. Exon expression data were analyzed through Affymetrix Expression Console using exon- and gene-level PLIER (Affymetrix Power Tool with PM-GCBG background correction) summarization and sketch-quantile normalization methods.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['disease state: unaffected parental control', 'disease state: Williams syndrome patient']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e197439e",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "cee155c9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:46.724772Z",
     "iopub.status.busy": "2025-03-25T07:07:46.724670Z",
     "iopub.status.idle": "2025-03-25T07:07:46.731146Z",
     "shell.execute_reply": "2025-03-25T07:07:46.730855Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical Data Preview:\n",
      "{0: [0.0]}\n",
      "Clinical data saved to ../../output/preprocess/Cardiovascular_Disease/clinical_data/GSE285666.csv\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on background info, this dataset contains gene expression data from Affymetrix Human Exon 1.0 ST arrays\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# The sample characteristics dictionary shows only one entry at key 0:\n",
    "# It contains 'disease state' with two values: 'unaffected parental control' and 'Williams syndrome patient'\n",
    "# This can be used for our trait (Cardiovascular_Disease)\n",
    "trait_row = 0  # 'disease state' is at key 0\n",
    "age_row = None  # No age information available\n",
    "gender_row = None  # No gender information available\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "def convert_trait(value: str) -> int:\n",
    "    \"\"\"Convert disease state to binary trait value for Cardiovascular_Disease.\n",
    "    Williams syndrome is associated with cardiovascular abnormalities.\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary: Williams syndrome patients are the cases (1), controls are (0)\n",
    "    if 'williams syndrome patient' in value.lower():\n",
    "        return 1\n",
    "    elif 'unaffected' in value.lower() or 'control' in value.lower():\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value: str) -> Optional[float]:\n",
    "    \"\"\"Convert age information to numeric value.\"\"\"\n",
    "    # Not used as age data is not available\n",
    "    return None\n",
    "\n",
    "def convert_gender(value: str) -> Optional[int]:\n",
    "    \"\"\"Convert gender information to binary (0: female, 1: male).\"\"\"\n",
    "    # Not used as gender data is not available\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait availability based on trait_row\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save initial cohort info\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Create a DataFrame from the sample characteristics dictionary\n",
    "    clinical_data = pd.DataFrame({0: ['disease state: unaffected parental control', \n",
    "                                     'disease state: Williams syndrome patient']})\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the selected clinical data\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Clinical Data Preview:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the selected clinical features to a CSV file\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4b5b9ce1",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "febccfed",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:46.732143Z",
     "iopub.status.busy": "2025-03-25T07:07:46.732043Z",
     "iopub.status.idle": "2025-03-25T07:07:46.864460Z",
     "shell.execute_reply": "2025-03-25T07:07:46.864096Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Cardiovascular_Disease/GSE285666/GSE285666_series_matrix.txt.gz\n",
      "Gene data shape: (22011, 52)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['2315554', '2315633', '2315674', '2315739', '2315894', '2315918',\n",
      "       '2315951', '2316218', '2316245', '2316379', '2316558', '2316605',\n",
      "       '2316746', '2316905', '2316953', '2317246', '2317317', '2317434',\n",
      "       '2317472', '2317512'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "60d8ecf3",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "e014d312",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:46.865737Z",
     "iopub.status.busy": "2025-03-25T07:07:46.865623Z",
     "iopub.status.idle": "2025-03-25T07:07:46.867502Z",
     "shell.execute_reply": "2025-03-25T07:07:46.867224Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examining the gene identifiers\n",
    "# These appear to be probe IDs or numerical identifiers, not standard human gene symbols\n",
    "# Human gene symbols typically follow a pattern like GAPDH, TP53, etc.\n",
    "# These numerical identifiers will need to be mapped to human gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f961f2e2",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "4bf874e6",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:46.868631Z",
     "iopub.status.busy": "2025-03-25T07:07:46.868530Z",
     "iopub.status.idle": "2025-03-25T07:07:50.557096Z",
     "shell.execute_reply": "2025-03-25T07:07:50.556446Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'GB_LIST', 'SPOT_ID', 'seqname', 'RANGE_GB', 'RANGE_STRAND', 'RANGE_START', 'RANGE_STOP', 'total_probes', 'gene_assignment', 'mrna_assignment', 'category']\n",
      "{'ID': ['2315100', '2315106', '2315109', '2315111', '2315113'], 'GB_LIST': ['NR_024005,NR_034090,NR_024004,AK093685', 'DQ786314', nan, nan, 'DQ786265'], 'SPOT_ID': ['chr1:11884-14409', 'chr1:14760-15198', 'chr1:19408-19712', 'chr1:25142-25532', 'chr1:27563-27813'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'RANGE_GB': ['NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10'], 'RANGE_STRAND': ['+', '+', '+', '+', '+'], 'RANGE_START': ['11884', '14760', '19408', '25142', '27563'], 'RANGE_STOP': ['14409', '15198', '19712', '25532', '27813'], 'total_probes': ['20', '8', '4', '4', '4'], 'gene_assignment': ['NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 // 15q26.3 // 100288486 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// AK093685 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771', '---', '---', '---', '---'], 'mrna_assignment': ['NR_024005 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 2, non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_034090 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 (DDX11L9), non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_024004 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 1, non-coding RNA. // chr1 // 100 // 75 // 15 // 15 // 0 /// AK093685 // GenBank // Homo sapiens cDNA FLJ36366 fis, clone THYMU2007824. // chr1 // 94 // 80 // 15 // 16 // 0 /// ENST00000513886 // ENSEMBL // cdna:known chromosome:GRCh37:16:61555:64090:1 gene:ENSG00000233614 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000518655 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000253101 // chr1 // 100 // 80 // 16 // 16 // 0', 'DQ786314 // GenBank // Homo sapiens clone HLS_IMAGE_811138 mRNA sequence. // chr1 // 100 // 38 // 3 // 3 // 0', '---', '---', 'DQ786265 // GenBank // Homo sapiens clone HLS_IMAGE_298685 mRNA sequence. // chr1 // 100 // 100 // 4 // 4 // 0'], 'category': ['main', 'main', '---', '---', 'main']}\n",
      "\n",
      "Searching for platform information in SOFT file:\n",
      "!Series_platform_id = GPL5175\n",
      "\n",
      "Searching for gene symbol information in SOFT file:\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "No explicit gene symbol references found in first 1000 lines\n",
      "\n",
      "Checking for additional annotation files in the directory:\n",
      "[]\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Let's look for platform information in the SOFT file to understand the annotation better\n",
    "print(\"\\nSearching for platform information in SOFT file:\")\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for i, line in enumerate(f):\n",
    "        if '!Series_platform_id' in line:\n",
    "            print(line.strip())\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Platform ID not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# Check if the SOFT file includes any reference to gene symbols\n",
    "print(\"\\nSearching for gene symbol information in SOFT file:\")\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    gene_symbol_lines = []\n",
    "    for i, line in enumerate(f):\n",
    "        if 'GENE_SYMBOL' in line or 'gene_symbol' in line.lower() or 'symbol' in line.lower():\n",
    "            gene_symbol_lines.append(line.strip())\n",
    "        if i > 1000 and len(gene_symbol_lines) > 0:  # Limit search but ensure we found something\n",
    "            break\n",
    "    \n",
    "    if gene_symbol_lines:\n",
    "        print(\"Found references to gene symbols:\")\n",
    "        for line in gene_symbol_lines[:5]:  # Show just first 5 matches\n",
    "            print(line)\n",
    "    else:\n",
    "        print(\"No explicit gene symbol references found in first 1000 lines\")\n",
    "\n",
    "# Look for alternative annotation files or references in the directory\n",
    "print(\"\\nChecking for additional annotation files in the directory:\")\n",
    "all_files = os.listdir(in_cohort_dir)\n",
    "print([f for f in all_files if 'annotation' in f.lower() or 'platform' in f.lower() or 'gpl' in f.lower()])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "abc75a89",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "a9dd4f22",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:50.558923Z",
     "iopub.status.busy": "2025-03-25T07:07:50.558796Z",
     "iopub.status.idle": "2025-03-25T07:07:52.740087Z",
     "shell.execute_reply": "2025-03-25T07:07:52.739428Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Creating gene mapping...\n",
      "Initial mapping shape: (316481, 2)\n",
      "\n",
      "Mapping data preview:\n",
      "{'ID': ['2315100', '2315106', '2315109', '2315111', '2315113'], 'Gene': ['NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 // 15q26.3 // 100288486 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// AK093685 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771', '---', '---', '---', '---']}\n",
      "\n",
      "Converting probe-level measurements to gene expression data...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data shape after mapping: (48895, 52)\n",
      "\n",
      "First few rows of gene expression data after mapping:\n",
      "       GSM8706502   GSM8706503   GSM8706504   GSM8706505   GSM8706506\n",
      "Gene                                                                 \n",
      "A-     705.687242   644.757871   530.848969   699.485877   494.625018\n",
      "A-2    167.820123   141.614092    95.105952   161.367554    89.000033\n",
      "A-52  3333.508407  3190.445107  3666.979423  3144.687791  3426.421530\n",
      "A-E     28.445449    39.869927    30.423145    32.999802    35.006814\n",
      "A-I    486.510110   392.250858   423.991434   436.110931   346.470518\n",
      "\n",
      "Sample of gene symbols after mapping:\n",
      "Index(['A-', 'A-2', 'A-52', 'A-E', 'A-I', 'A-II', 'A-IV', 'A-V', 'A0', 'A1',\n",
      "       'A1-', 'A10', 'A11', 'A12', 'A13', 'A14', 'A16', 'A1BG', 'A1BG-AS',\n",
      "       'A1CF'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene expression data saved to ../../output/preprocess/Cardiovascular_Disease/gene_data/GSE285666.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify which columns store the gene identifiers and gene symbols\n",
    "# From the preview, we can see:\n",
    "# - 'ID' column contains gene identifiers that match those in gene_data.index\n",
    "# - 'gene_assignment' column contains gene symbols and annotations\n",
    "\n",
    "# First, extract the mapping between probe IDs and gene symbols\n",
    "print(\"Creating gene mapping...\")\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')\n",
    "print(f\"Initial mapping shape: {mapping_df.shape}\")\n",
    "\n",
    "# Preview the mapping data\n",
    "print(\"\\nMapping data preview:\")\n",
    "print(preview_df(mapping_df, n=5))\n",
    "\n",
    "# 2. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "print(\"\\nConverting probe-level measurements to gene expression data...\")\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
    "\n",
    "# Preview the first few rows of the processed gene expression data\n",
    "print(\"\\nFirst few rows of gene expression data after mapping:\")\n",
    "print(gene_data.head().iloc[:, :5])  # Show only first 5 columns for brevity\n",
    "\n",
    "# Display a sample of gene symbols after mapping\n",
    "print(\"\\nSample of gene symbols after mapping:\")\n",
    "print(gene_data.index[:20])\n",
    "\n",
    "# Save the gene expression data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "da4f159d",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "f3674587",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:07:52.741986Z",
     "iopub.status.busy": "2025-03-25T07:07:52.741857Z",
     "iopub.status.idle": "2025-03-25T07:08:02.447385Z",
     "shell.execute_reply": "2025-03-25T07:08:02.446709Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original gene data shape: (48895, 52)\n",
      "Normalized gene data shape: (18418, 52)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to ../../output/preprocess/Cardiovascular_Disease/gene_data/GSE285666.csv\n",
      "Clinical features shape: (1, 52)\n",
      "Clinical features preview:\n",
      "{'GSM8706502': [0.0], 'GSM8706503': [0.0], 'GSM8706504': [0.0], 'GSM8706505': [0.0], 'GSM8706506': [0.0], 'GSM8706507': [0.0], 'GSM8706508': [0.0], 'GSM8706509': [0.0], 'GSM8706510': [0.0], 'GSM8706511': [0.0], 'GSM8706512': [0.0], 'GSM8706513': [0.0], 'GSM8706514': [0.0], 'GSM8706515': [0.0], 'GSM8706516': [0.0], 'GSM8706517': [0.0], 'GSM8706518': [0.0], 'GSM8706519': [0.0], 'GSM8706520': [1.0], 'GSM8706521': [1.0], 'GSM8706522': [1.0], 'GSM8706523': [1.0], 'GSM8706524': [1.0], 'GSM8706525': [1.0], 'GSM8706526': [1.0], 'GSM8706527': [1.0], 'GSM8706528': [1.0], 'GSM8706529': [1.0], 'GSM8706530': [1.0], 'GSM8706531': [1.0], 'GSM8706532': [1.0], 'GSM8706533': [1.0], 'GSM8706534': [1.0], 'GSM8706535': [1.0], 'GSM8706536': [1.0], 'GSM8706537': [1.0], 'GSM8706538': [1.0], 'GSM8706539': [1.0], 'GSM8706540': [1.0], 'GSM8706541': [1.0], 'GSM8706542': [1.0], 'GSM8706543': [1.0], 'GSM8706544': [1.0], 'GSM8706545': [1.0], 'GSM8706546': [1.0], 'GSM8706547': [1.0], 'GSM8706548': [1.0], 'GSM8706549': [1.0], 'GSM8706550': [1.0], 'GSM8706551': [1.0], 'GSM8706552': [1.0], 'GSM8706553': [1.0]}\n",
      "Clinical data saved to ../../output/preprocess/Cardiovascular_Disease/clinical_data/GSE285666.csv\n",
      "Linked data shape: (52, 18419)\n",
      "Linked data preview (first 5 rows, 5 columns):\n",
      "            Cardiovascular_Disease       A1BG   A1BG-AS1       A1CF  \\\n",
      "GSM8706502                     0.0  38.534348  38.534348  53.078847   \n",
      "GSM8706503                     0.0  50.069114  50.069114  44.858291   \n",
      "GSM8706504                     0.0  47.107387  47.107387  53.772984   \n",
      "GSM8706505                     0.0  54.198439  54.198439  49.542268   \n",
      "GSM8706506                     0.0  35.837959  35.837959  63.008107   \n",
      "\n",
      "                   A2M  \n",
      "GSM8706502  106.475358  \n",
      "GSM8706503  110.093250  \n",
      "GSM8706504   99.340176  \n",
      "GSM8706505  125.083757  \n",
      "GSM8706506   96.761368  \n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data shape after handling missing values: (52, 18419)\n",
      "For the feature 'Cardiovascular_Disease', the least common label is '0.0' with 18 occurrences. This represents 34.62% of the dataset.\n",
      "The distribution of the feature 'Cardiovascular_Disease' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Cardiovascular_Disease/GSE285666.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols\n",
    "print(f\"Original gene data shape: {gene_data.shape}\")\n",
    "\n",
    "try:\n",
    "    # Attempt to normalize gene symbols\n",
    "    gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n",
    "    print(f\"Normalized gene data shape: {gene_data_normalized.shape}\")\n",
    "except Exception as e:\n",
    "    print(f\"Gene normalization failed: {e}\")\n",
    "    # If normalization fails, use the original gene data\n",
    "    gene_data_normalized = gene_data.copy()\n",
    "    print(f\"Using original gene data with shape: {gene_data_normalized.shape}\")\n",
    "\n",
    "# Save the gene expression data \n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data_normalized.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the clinical data from Step 2\n",
    "# Use the clinical_data from previous steps to create the clinical features\n",
    "# Using the correct trait_row and conversion function from Step 2\n",
    "def convert_trait(value: str) -> int:\n",
    "    \"\"\"Convert disease state to binary trait value for Cardiovascular_Disease.\n",
    "    Williams syndrome is associated with cardiovascular abnormalities.\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary: Williams syndrome patients are the cases (1), controls are (0)\n",
    "    if 'williams syndrome patient' in value.lower():\n",
    "        return 1\n",
    "    elif 'unaffected' in value.lower() or 'control' in value.lower():\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Reload clinical data to ensure we have the correct structure\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "_, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Extract clinical features using only the available trait information at row 0\n",
    "clinical_features = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data, \n",
    "    trait=trait, \n",
    "    trait_row=0,  # Using disease state as identified in Step 2\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=None,  # No age information available\n",
    "    convert_age=None,\n",
    "    gender_row=None,  # No gender information available\n",
    "    convert_gender=None\n",
    ")\n",
    "\n",
    "print(f\"Clinical features shape: {clinical_features.shape}\")\n",
    "print(\"Clinical features preview:\")\n",
    "print(preview_df(clinical_features))\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 3. Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data_normalized)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "print(linked_data.iloc[:5, :5])\n",
    "\n",
    "# 4. Handle missing values\n",
    "linked_data_clean = handle_missing_values(linked_data, trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data_clean.shape}\")\n",
    "\n",
    "# 5. Check for bias in the dataset\n",
    "is_biased, linked_data_clean = judge_and_remove_biased_features(linked_data_clean, trait)\n",
    "\n",
    "# 6. Conduct final quality validation\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data_clean,\n",
    "    note=\"Dataset contains gene expression data from Williams syndrome patients and controls. Williams syndrome is associated with cardiovascular abnormalities.\"\n",
    ")\n",
    "\n",
    "# 7. Save the linked data if it's usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data_clean.to_csv(out_data_file, index=True)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset deemed not usable for associative studies. Linked data not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}