File size: 18,767 Bytes
e4183cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "c795b421",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:13:17.706055Z",
"iopub.status.busy": "2025-03-25T08:13:17.705930Z",
"iopub.status.idle": "2025-03-25T08:13:17.869156Z",
"shell.execute_reply": "2025-03-25T08:13:17.868801Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Cervical_Cancer\"\n",
"cohort = \"GSE114243\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Cervical_Cancer\"\n",
"in_cohort_dir = \"../../input/GEO/Cervical_Cancer/GSE114243\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Cervical_Cancer/GSE114243.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Cervical_Cancer/gene_data/GSE114243.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Cervical_Cancer/clinical_data/GSE114243.csv\"\n",
"json_path = \"../../output/preprocess/Cervical_Cancer/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "9ed61419",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "02958252",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:13:17.870641Z",
"iopub.status.busy": "2025-03-25T08:13:17.870495Z",
"iopub.status.idle": "2025-03-25T08:13:18.010535Z",
"shell.execute_reply": "2025-03-25T08:13:18.010230Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"The role of DOCK10 in the regulation of the transcriptome and aging\"\n",
"!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
"!Series_overall_design\t\"Refer to individual Series\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['strain: C57BL/6'], 1: ['genotype/variation: KO'], 2: ['treatment: Pre'], 3: ['sample: 6 to 10'], 4: ['cell type: spleen B cell'], 5: ['age: 12 weeks'], 6: ['reference composition: Spleen B cell pool of KO samples 6 to 10, before culture (Pre)']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "54c59863",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c8c2cb72",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:13:18.011812Z",
"iopub.status.busy": "2025-03-25T08:13:18.011700Z",
"iopub.status.idle": "2025-03-25T08:13:18.031730Z",
"shell.execute_reply": "2025-03-25T08:13:18.031445Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"A new JSON file was created at: ../../output/preprocess/Cervical_Cancer/cohort_info.json\n"
]
},
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this seems to be about human embryonic kidney 293T cells,\n",
"# which suggests gene expression data may be available, but we need to examine further.\n",
"# Since it's labeled as a SuperSeries composed of SubSeries, it's unclear if it contains gene expression data.\n",
"# To be conservative, we'll set is_gene_available to False.\n",
"is_gene_available = False\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# From the sample characteristics dictionary, we only see tissue information.\n",
"# There's no information about cervical cancer, age, or gender.\n",
"\n",
"# 2.1 Data Availability\n",
"trait_row = None # No information about cervical cancer\n",
"age_row = None # No age information\n",
"gender_row = None # No gender information\n",
"\n",
"# 2.2 Data Type Conversion\n",
"# Define conversion functions even though we don't have the data\n",
"def convert_trait(value):\n",
" if value is None:\n",
" return None\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" # Convert to binary: 1 for cervical cancer, 0 for normal\n",
" if 'cancer' in value.lower() or 'tumor' in value.lower() or 'carcinoma' in value.lower():\n",
" return 1\n",
" elif 'normal' in value.lower() or 'healthy' in value.lower() or 'control' in value.lower():\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" if value is None:\n",
" return None\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" # Try to extract age as a number\n",
" try:\n",
" # Extract digits if there are any\n",
" import re\n",
" digits = re.findall(r'\\d+', value)\n",
" if digits:\n",
" return float(digits[0])\n",
" except:\n",
" pass\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" if value is None:\n",
" return None\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip().lower()\n",
" # Convert to binary: 0 for female, 1 for male\n",
" if 'female' in value or 'f' == value:\n",
" return 0\n",
" elif 'male' in value or 'm' == value:\n",
" return 1\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save initial filtering information\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Skip this step since trait_row is None\n"
]
},
{
"cell_type": "markdown",
"id": "be0687fb",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a4385160",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:13:18.032912Z",
"iopub.status.busy": "2025-03-25T08:13:18.032806Z",
"iopub.status.idle": "2025-03-25T08:13:18.160283Z",
"shell.execute_reply": "2025-03-25T08:13:18.159888Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['(+)E1A_r60_1', '(+)E1A_r60_3', '(+)E1A_r60_a104', '(+)E1A_r60_a107',\n",
" '(+)E1A_r60_a135', '(+)E1A_r60_a20', '(+)E1A_r60_a22', '(+)E1A_r60_a97',\n",
" '(+)E1A_r60_n11', '(+)E1A_r60_n9', '(-)3xSLv1', 'A_51_P100034',\n",
" 'A_51_P100174', 'A_51_P100208', 'A_51_P100289', 'A_51_P100298',\n",
" 'A_51_P100309', 'A_51_P100327', 'A_51_P100347', 'A_51_P100519'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "8c841f57",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "86d75844",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:13:18.161655Z",
"iopub.status.busy": "2025-03-25T08:13:18.161534Z",
"iopub.status.idle": "2025-03-25T08:13:18.163470Z",
"shell.execute_reply": "2025-03-25T08:13:18.163188Z"
}
},
"outputs": [],
"source": [
"# Looking at the gene identifiers, these are Agilent microarray probe IDs (starting with A_23_P),\n",
"# not standard human gene symbols. These probe IDs need to be mapped to official gene symbols.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "3ddc3b21",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "9665718f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:13:18.164701Z",
"iopub.status.busy": "2025-03-25T08:13:18.164599Z",
"iopub.status.idle": "2025-03-25T08:13:21.648395Z",
"shell.execute_reply": "2025-03-25T08:13:21.648004Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['A_23_P100001', 'A_23_P100011', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074'], 'SPOT_ID': ['A_23_P100001', 'A_23_P100011', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074'], 'CONTROL_TYPE': ['FALSE', 'FALSE', 'FALSE', 'FALSE', 'FALSE'], 'REFSEQ': ['NM_207446', 'NM_005829', 'NM_014848', 'NM_194272', 'NM_020371'], 'GB_ACC': ['NM_207446', 'NM_005829', 'NM_014848', 'NM_194272', 'NM_020371'], 'GENE': ['400451', '10239', '9899', '348093', '57099'], 'GENE_SYMBOL': ['FAM174B', 'AP3S2', 'SV2B', 'RBPMS2', 'AVEN'], 'GENE_NAME': ['family with sequence similarity 174, member B', 'adaptor-related protein complex 3, sigma 2 subunit', 'synaptic vesicle glycoprotein 2B', 'RNA binding protein with multiple splicing 2', 'apoptosis, caspase activation inhibitor'], 'UNIGENE_ID': ['Hs.27373', 'Hs.632161', 'Hs.21754', 'Hs.436518', 'Hs.555966'], 'ENSEMBL_ID': ['ENST00000557398', nan, 'ENST00000557410', 'ENST00000300069', 'ENST00000306730'], 'TIGR_ID': [nan, nan, nan, nan, nan], 'ACCESSION_STRING': ['ref|NM_207446|ens|ENST00000557398|ens|ENST00000553393|ens|ENST00000327355', 'ref|NM_005829|ref|NM_001199058|ref|NR_023361|ref|NR_037582', 'ref|NM_014848|ref|NM_001167580|ens|ENST00000557410|ens|ENST00000330276', 'ref|NM_194272|ens|ENST00000300069|gb|AK127873|gb|AK124123', 'ref|NM_020371|ens|ENST00000306730|gb|AF283508|gb|BC010488'], 'CHROMOSOMAL_LOCATION': ['chr15:93160848-93160789', 'chr15:90378743-90378684', 'chr15:91838329-91838388', 'chr15:65032375-65032316', 'chr15:34158739-34158680'], 'CYTOBAND': ['hs|15q26.1', 'hs|15q26.1', 'hs|15q26.1', 'hs|15q22.31', 'hs|15q14'], 'DESCRIPTION': ['Homo sapiens family with sequence similarity 174, member B (FAM174B), mRNA [NM_207446]', 'Homo sapiens adaptor-related protein complex 3, sigma 2 subunit (AP3S2), transcript variant 1, mRNA [NM_005829]', 'Homo sapiens synaptic vesicle glycoprotein 2B (SV2B), transcript variant 1, mRNA [NM_014848]', 'Homo sapiens RNA binding protein with multiple splicing 2 (RBPMS2), mRNA [NM_194272]', 'Homo sapiens apoptosis, caspase activation inhibitor (AVEN), mRNA [NM_020371]'], 'GO_ID': ['GO:0016020(membrane)|GO:0016021(integral to membrane)', 'GO:0005794(Golgi apparatus)|GO:0006886(intracellular protein transport)|GO:0008565(protein transporter activity)|GO:0016020(membrane)|GO:0016192(vesicle-mediated transport)|GO:0030117(membrane coat)|GO:0030659(cytoplasmic vesicle membrane)|GO:0031410(cytoplasmic vesicle)', 'GO:0001669(acrosomal vesicle)|GO:0006836(neurotransmitter transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0022857(transmembrane transporter activity)|GO:0030054(cell junction)|GO:0030672(synaptic vesicle membrane)|GO:0031410(cytoplasmic vesicle)|GO:0045202(synapse)', 'GO:0000166(nucleotide binding)|GO:0003676(nucleic acid binding)', 'GO:0005515(protein binding)|GO:0005622(intracellular)|GO:0005624(membrane fraction)|GO:0006915(apoptosis)|GO:0006916(anti-apoptosis)|GO:0012505(endomembrane system)|GO:0016020(membrane)'], 'SEQUENCE': ['ATCTCATGGAAAAGCTGGATTCCTCTGCCTTACGCAGAAACACCCGGGCTCCATCTGCCA', 'TCAAGTATTGGCCTGACATAGAGTCCTTAAGACAAGCAAAGACAAGCAAGGCAAGCACGT', 'ATGTCGGCTGTGGAGGGTTAAAGGGATGAGGCTTTCCTTTGTTTAGCAAATCTGTTCACA', 'CCCTGTCAGATAAGTTTAATGTTTAGTTTGAGGCATGAAGAAGAAAAGGGTTTCCATTCT', 'GACCAGCCAGTTTACAAGCATGTCTCAAGCTAGTGTGTTCCATTATGCTCACAGCAGTAA']}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "ea2f681c",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "d92a250c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:13:21.649704Z",
"iopub.status.busy": "2025-03-25T08:13:21.649579Z",
"iopub.status.idle": "2025-03-25T08:13:21.808877Z",
"shell.execute_reply": "2025-03-25T08:13:21.808490Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data after mapping (first 5 genes):\n",
"Index(['A130033P14', 'A230055C15', 'A330041K01', 'A330044H09', 'A430017K17'], dtype='object', name='Gene')\n",
"(555, 40)\n"
]
}
],
"source": [
"# 1. Determine which columns to use for mapping\n",
"# Based on the preview, the 'ID' column in gene_annotation contains probe IDs that match the \n",
"# gene_data index, and 'GENE_SYMBOL' contains the gene symbols we want to map to\n",
"prob_col = 'ID' # Column containing probe IDs\n",
"gene_col = 'GENE_SYMBOL' # Column containing gene symbols\n",
"\n",
"# 2. Get the gene mapping dataframe by extracting the relevant columns\n",
"gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
"\n",
"# 3. Apply the gene mapping to convert from probe-level to gene-level expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Preview the first few gene symbols and their expression values\n",
"print(\"Gene expression data after mapping (first 5 genes):\")\n",
"print(gene_data.index[:5])\n",
"print(gene_data.shape)\n"
]
},
{
"cell_type": "markdown",
"id": "b137b330",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3d5de08d",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:13:21.810212Z",
"iopub.status.busy": "2025-03-25T08:13:21.810090Z",
"iopub.status.idle": "2025-03-25T08:13:21.887565Z",
"shell.execute_reply": "2025-03-25T08:13:21.887179Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Cervical_Cancer/gene_data/GSE114243.csv\n",
"Clinical data saved to ../../output/preprocess/Cervical_Cancer/clinical_data/GSE114243.csv\n",
"Abnormality detected in the cohort: GSE114243. Preprocessing failed.\n",
"Data was determined to be unusable due to missing trait information and was not saved.\n"
]
}
],
"source": [
"# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# Create empty clinical features DataFrame since no trait data is available\n",
"clinical_features_df = pd.DataFrame()\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"clinical_features_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# Create a minimal dataset for validation\n",
"minimal_df = pd.DataFrame({trait: [0, 1]}) # Dummy data with both classes represented\n",
"\n",
"# Conduct quality check and save the cohort information\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=False, # No trait data available\n",
" is_biased=True, # Consider biased since no trait data exists\n",
" df=minimal_df,\n",
" note=\"This dataset contains gene expression data but lacks information about cervical cancer status.\"\n",
")\n",
"\n",
"print(\"Data was determined to be unusable due to missing trait information and was not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|