File size: 18,767 Bytes
e4183cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c795b421",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:17.706055Z",
     "iopub.status.busy": "2025-03-25T08:13:17.705930Z",
     "iopub.status.idle": "2025-03-25T08:13:17.869156Z",
     "shell.execute_reply": "2025-03-25T08:13:17.868801Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Cervical_Cancer\"\n",
    "cohort = \"GSE114243\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Cervical_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Cervical_Cancer/GSE114243\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Cervical_Cancer/GSE114243.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Cervical_Cancer/gene_data/GSE114243.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Cervical_Cancer/clinical_data/GSE114243.csv\"\n",
    "json_path = \"../../output/preprocess/Cervical_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9ed61419",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "02958252",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:17.870641Z",
     "iopub.status.busy": "2025-03-25T08:13:17.870495Z",
     "iopub.status.idle": "2025-03-25T08:13:18.010535Z",
     "shell.execute_reply": "2025-03-25T08:13:18.010230Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"The role of DOCK10 in the regulation of the transcriptome and aging\"\n",
      "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
      "!Series_overall_design\t\"Refer to individual Series\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['strain: C57BL/6'], 1: ['genotype/variation: KO'], 2: ['treatment: Pre'], 3: ['sample: 6 to 10'], 4: ['cell type: spleen B cell'], 5: ['age: 12 weeks'], 6: ['reference composition: Spleen B cell pool of KO samples 6 to 10, before culture (Pre)']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "54c59863",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "c8c2cb72",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:18.011812Z",
     "iopub.status.busy": "2025-03-25T08:13:18.011700Z",
     "iopub.status.idle": "2025-03-25T08:13:18.031730Z",
     "shell.execute_reply": "2025-03-25T08:13:18.031445Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "A new JSON file was created at: ../../output/preprocess/Cervical_Cancer/cohort_info.json\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this seems to be about human embryonic kidney 293T cells,\n",
    "# which suggests gene expression data may be available, but we need to examine further.\n",
    "# Since it's labeled as a SuperSeries composed of SubSeries, it's unclear if it contains gene expression data.\n",
    "# To be conservative, we'll set is_gene_available to False.\n",
    "is_gene_available = False\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# From the sample characteristics dictionary, we only see tissue information.\n",
    "# There's no information about cervical cancer, age, or gender.\n",
    "\n",
    "# 2.1 Data Availability\n",
    "trait_row = None  # No information about cervical cancer\n",
    "age_row = None    # No age information\n",
    "gender_row = None # No gender information\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "# Define conversion functions even though we don't have the data\n",
    "def convert_trait(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    # Convert to binary: 1 for cervical cancer, 0 for normal\n",
    "    if 'cancer' in value.lower() or 'tumor' in value.lower() or 'carcinoma' in value.lower():\n",
    "        return 1\n",
    "    elif 'normal' in value.lower() or 'healthy' in value.lower() or 'control' in value.lower():\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    # Try to extract age as a number\n",
    "    try:\n",
    "        # Extract digits if there are any\n",
    "        import re\n",
    "        digits = re.findall(r'\\d+', value)\n",
    "        if digits:\n",
    "            return float(digits[0])\n",
    "    except:\n",
    "        pass\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip().lower()\n",
    "    # Convert to binary: 0 for female, 1 for male\n",
    "    if 'female' in value or 'f' == value:\n",
    "        return 0\n",
    "    elif 'male' in value or 'm' == value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Save initial filtering information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Skip this step since trait_row is None\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "be0687fb",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a4385160",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:18.032912Z",
     "iopub.status.busy": "2025-03-25T08:13:18.032806Z",
     "iopub.status.idle": "2025-03-25T08:13:18.160283Z",
     "shell.execute_reply": "2025-03-25T08:13:18.159888Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['(+)E1A_r60_1', '(+)E1A_r60_3', '(+)E1A_r60_a104', '(+)E1A_r60_a107',\n",
      "       '(+)E1A_r60_a135', '(+)E1A_r60_a20', '(+)E1A_r60_a22', '(+)E1A_r60_a97',\n",
      "       '(+)E1A_r60_n11', '(+)E1A_r60_n9', '(-)3xSLv1', 'A_51_P100034',\n",
      "       'A_51_P100174', 'A_51_P100208', 'A_51_P100289', 'A_51_P100298',\n",
      "       'A_51_P100309', 'A_51_P100327', 'A_51_P100347', 'A_51_P100519'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8c841f57",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "86d75844",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:18.161655Z",
     "iopub.status.busy": "2025-03-25T08:13:18.161534Z",
     "iopub.status.idle": "2025-03-25T08:13:18.163470Z",
     "shell.execute_reply": "2025-03-25T08:13:18.163188Z"
    }
   },
   "outputs": [],
   "source": [
    "# Looking at the gene identifiers, these are Agilent microarray probe IDs (starting with A_23_P),\n",
    "# not standard human gene symbols. These probe IDs need to be mapped to official gene symbols.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3ddc3b21",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "9665718f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:18.164701Z",
     "iopub.status.busy": "2025-03-25T08:13:18.164599Z",
     "iopub.status.idle": "2025-03-25T08:13:21.648395Z",
     "shell.execute_reply": "2025-03-25T08:13:21.648004Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['A_23_P100001', 'A_23_P100011', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074'], 'SPOT_ID': ['A_23_P100001', 'A_23_P100011', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074'], 'CONTROL_TYPE': ['FALSE', 'FALSE', 'FALSE', 'FALSE', 'FALSE'], 'REFSEQ': ['NM_207446', 'NM_005829', 'NM_014848', 'NM_194272', 'NM_020371'], 'GB_ACC': ['NM_207446', 'NM_005829', 'NM_014848', 'NM_194272', 'NM_020371'], 'GENE': ['400451', '10239', '9899', '348093', '57099'], 'GENE_SYMBOL': ['FAM174B', 'AP3S2', 'SV2B', 'RBPMS2', 'AVEN'], 'GENE_NAME': ['family with sequence similarity 174, member B', 'adaptor-related protein complex 3, sigma 2 subunit', 'synaptic vesicle glycoprotein 2B', 'RNA binding protein with multiple splicing 2', 'apoptosis, caspase activation inhibitor'], 'UNIGENE_ID': ['Hs.27373', 'Hs.632161', 'Hs.21754', 'Hs.436518', 'Hs.555966'], 'ENSEMBL_ID': ['ENST00000557398', nan, 'ENST00000557410', 'ENST00000300069', 'ENST00000306730'], 'TIGR_ID': [nan, nan, nan, nan, nan], 'ACCESSION_STRING': ['ref|NM_207446|ens|ENST00000557398|ens|ENST00000553393|ens|ENST00000327355', 'ref|NM_005829|ref|NM_001199058|ref|NR_023361|ref|NR_037582', 'ref|NM_014848|ref|NM_001167580|ens|ENST00000557410|ens|ENST00000330276', 'ref|NM_194272|ens|ENST00000300069|gb|AK127873|gb|AK124123', 'ref|NM_020371|ens|ENST00000306730|gb|AF283508|gb|BC010488'], 'CHROMOSOMAL_LOCATION': ['chr15:93160848-93160789', 'chr15:90378743-90378684', 'chr15:91838329-91838388', 'chr15:65032375-65032316', 'chr15:34158739-34158680'], 'CYTOBAND': ['hs|15q26.1', 'hs|15q26.1', 'hs|15q26.1', 'hs|15q22.31', 'hs|15q14'], 'DESCRIPTION': ['Homo sapiens family with sequence similarity 174, member B (FAM174B), mRNA [NM_207446]', 'Homo sapiens adaptor-related protein complex 3, sigma 2 subunit (AP3S2), transcript variant 1, mRNA [NM_005829]', 'Homo sapiens synaptic vesicle glycoprotein 2B (SV2B), transcript variant 1, mRNA [NM_014848]', 'Homo sapiens RNA binding protein with multiple splicing 2 (RBPMS2), mRNA [NM_194272]', 'Homo sapiens apoptosis, caspase activation inhibitor (AVEN), mRNA [NM_020371]'], 'GO_ID': ['GO:0016020(membrane)|GO:0016021(integral to membrane)', 'GO:0005794(Golgi apparatus)|GO:0006886(intracellular protein transport)|GO:0008565(protein transporter activity)|GO:0016020(membrane)|GO:0016192(vesicle-mediated transport)|GO:0030117(membrane coat)|GO:0030659(cytoplasmic vesicle membrane)|GO:0031410(cytoplasmic vesicle)', 'GO:0001669(acrosomal vesicle)|GO:0006836(neurotransmitter transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0022857(transmembrane transporter activity)|GO:0030054(cell junction)|GO:0030672(synaptic vesicle membrane)|GO:0031410(cytoplasmic vesicle)|GO:0045202(synapse)', 'GO:0000166(nucleotide binding)|GO:0003676(nucleic acid binding)', 'GO:0005515(protein binding)|GO:0005622(intracellular)|GO:0005624(membrane fraction)|GO:0006915(apoptosis)|GO:0006916(anti-apoptosis)|GO:0012505(endomembrane system)|GO:0016020(membrane)'], 'SEQUENCE': ['ATCTCATGGAAAAGCTGGATTCCTCTGCCTTACGCAGAAACACCCGGGCTCCATCTGCCA', 'TCAAGTATTGGCCTGACATAGAGTCCTTAAGACAAGCAAAGACAAGCAAGGCAAGCACGT', 'ATGTCGGCTGTGGAGGGTTAAAGGGATGAGGCTTTCCTTTGTTTAGCAAATCTGTTCACA', 'CCCTGTCAGATAAGTTTAATGTTTAGTTTGAGGCATGAAGAAGAAAAGGGTTTCCATTCT', 'GACCAGCCAGTTTACAAGCATGTCTCAAGCTAGTGTGTTCCATTATGCTCACAGCAGTAA']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ea2f681c",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "d92a250c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:21.649704Z",
     "iopub.status.busy": "2025-03-25T08:13:21.649579Z",
     "iopub.status.idle": "2025-03-25T08:13:21.808877Z",
     "shell.execute_reply": "2025-03-25T08:13:21.808490Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data after mapping (first 5 genes):\n",
      "Index(['A130033P14', 'A230055C15', 'A330041K01', 'A330044H09', 'A430017K17'], dtype='object', name='Gene')\n",
      "(555, 40)\n"
     ]
    }
   ],
   "source": [
    "# 1. Determine which columns to use for mapping\n",
    "# Based on the preview, the 'ID' column in gene_annotation contains probe IDs that match the \n",
    "# gene_data index, and 'GENE_SYMBOL' contains the gene symbols we want to map to\n",
    "prob_col = 'ID'  # Column containing probe IDs\n",
    "gene_col = 'GENE_SYMBOL'  # Column containing gene symbols\n",
    "\n",
    "# 2. Get the gene mapping dataframe by extracting the relevant columns\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "\n",
    "# 3. Apply the gene mapping to convert from probe-level to gene-level expression data\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Preview the first few gene symbols and their expression values\n",
    "print(\"Gene expression data after mapping (first 5 genes):\")\n",
    "print(gene_data.index[:5])\n",
    "print(gene_data.shape)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b137b330",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "3d5de08d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:21.810212Z",
     "iopub.status.busy": "2025-03-25T08:13:21.810090Z",
     "iopub.status.idle": "2025-03-25T08:13:21.887565Z",
     "shell.execute_reply": "2025-03-25T08:13:21.887179Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Cervical_Cancer/gene_data/GSE114243.csv\n",
      "Clinical data saved to ../../output/preprocess/Cervical_Cancer/clinical_data/GSE114243.csv\n",
      "Abnormality detected in the cohort: GSE114243. Preprocessing failed.\n",
      "Data was determined to be unusable due to missing trait information and was not saved.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Create empty clinical features DataFrame since no trait data is available\n",
    "clinical_features_df = pd.DataFrame()\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Create a minimal dataset for validation\n",
    "minimal_df = pd.DataFrame({trait: [0, 1]})  # Dummy data with both classes represented\n",
    "\n",
    "# Conduct quality check and save the cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=False,  # No trait data available\n",
    "    is_biased=True,  # Consider biased since no trait data exists\n",
    "    df=minimal_df,\n",
    "    note=\"This dataset contains gene expression data but lacks information about cervical cancer status.\"\n",
    ")\n",
    "\n",
    "print(\"Data was determined to be unusable due to missing trait information and was not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}