File size: 30,512 Bytes
e4183cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "1731fd45",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:37.723056Z",
     "iopub.status.busy": "2025-03-25T08:13:37.722821Z",
     "iopub.status.idle": "2025-03-25T08:13:37.888276Z",
     "shell.execute_reply": "2025-03-25T08:13:37.887811Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Cervical_Cancer\"\n",
    "cohort = \"GSE138079\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Cervical_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Cervical_Cancer/GSE138079\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Cervical_Cancer/GSE138079.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Cervical_Cancer/gene_data/GSE138079.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Cervical_Cancer/clinical_data/GSE138079.csv\"\n",
    "json_path = \"../../output/preprocess/Cervical_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2c2a4afe",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "1e60cb50",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:37.889704Z",
     "iopub.status.busy": "2025-03-25T08:13:37.889557Z",
     "iopub.status.idle": "2025-03-25T08:13:38.072504Z",
     "shell.execute_reply": "2025-03-25T08:13:38.072017Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Identification of deregulated pathways, key regulators, and novel miRNA-mRNA interactions in HPV-mediated transformation. [mRNA cell lines-Agilent]\"\n",
      "!Series_summary\t\"Next to a persistent infection with high-risk human papillomavirus (HPV), molecular changes are required for the development of cervical cancer. To identify which molecular alterations drive carcinogenesis, we performed a comprehensive and longitudinal molecular characterization of HPV-transformed keratinocyte cell lines. Comparative genomic hybridization, mRNA, and miRNA expression analysis of four HPV-containing keratinocyte cell lines at eight different time points was performed. Data was analyzed using unsupervised hierarchical clustering, integrated longitudinal expression analysis, and pathway enrichment analysis. Biological relevance of identified key regulatory genes was evaluated in vitro and dual-luciferase assays were used to confirm predicted miRNA-mRNA interactions. We show that the acquisition of anchorage independence of HPV-containing keratinocyte cell lines is particularly associated with copy number alterations. Approximately one third of differentially expressed mRNAs and miRNAs was directly attributable to copy number alterations. Focal adhesion, TGF-beta signaling, and mTOR signaling pathways were enriched among these genes. PITX2 was identified as key regulator of TGF-beta signaling and inhibited cell growth in vitro, most likely by inducing cell cycle arrest and apoptosis. Predicted miRNA-mRNA interactions miR-221-3p_BRWD3, miR-221-3p_FOS, and miR-138-5p_PLXNB2 were confirmed in vitro. Integrated longitudinal analysis of our HPV-induced carcinogenesis model pinpointed relevant interconnected molecular changes and crucial signaling pathways in HPV-mediated transformation.\"\n",
      "!Series_overall_design\t\"Expression profiles of 8 sequential passages of 4 HPV-transformed human foreskin primary keratinocyte cell lines either treated with or without demethylation agent DAC were analyzed using whole human genome oligo microarrays (G4112A, mRNA 4x44K; Agilent).\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['cell type: primary human foreskin keratinocytes transfected with HPV16', 'cell type: primary human foreskin keratinocytes transfected with HPV18'], 1: ['transformation stage: immortal', 'transformation stage: anchorage independent', 'transformation stage: extended lifespan'], 2: ['timepoint: timepoint 1', 'timepoint: timepoint 2', 'timepoint: timepoint 3', 'timepoint: timepoint 4', 'timepoint: timepoint 5', 'timepoint: timepoint 6', 'timepoint: timepoint 7', 'timepoint: timepoint 8'], 3: ['treatment: no treatment', 'treatment: 5000 nM 5-aza-2’-deoxycytidine (DAC)']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e515f670",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "8a08dba2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:38.073938Z",
     "iopub.status.busy": "2025-03-25T08:13:38.073829Z",
     "iopub.status.idle": "2025-03-25T08:13:38.079980Z",
     "shell.execute_reply": "2025-03-25T08:13:38.079618Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Callable, Dict, Any, Optional\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the Series_title and Series_summary, this data contains mRNA microarray data from Agilent\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# For trait: The \"transformation stage\" in index 1 indicates different stages of cancer development\n",
    "trait_row = 1\n",
    "\n",
    "# For age: Not available in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# For gender: Not explicitly available, but this is from male foreskin samples\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value: str) -> int:\n",
    "    \"\"\"Convert transformation stage to binary: 1 for anchorage independent (more advanced cancer stage), 0 otherwise.\"\"\"\n",
    "    if isinstance(value, str):\n",
    "        # Extract the value after colon\n",
    "        if ':' in value:\n",
    "            value = value.split(':', 1)[1].strip()\n",
    "        \n",
    "        # Binary classification based on transformation stage\n",
    "        if 'anchorage independent' in value.lower():\n",
    "            return 1  # Advanced transformation stage\n",
    "        elif 'immortal' in value.lower() or 'extended lifespan' in value.lower():\n",
    "            return 0  # Earlier transformation stage\n",
    "    return None\n",
    "\n",
    "def convert_age(value: str) -> Optional[float]:\n",
    "    \"\"\"Convert age to continuous value.\"\"\"\n",
    "    # Not used as age is not available\n",
    "    return None\n",
    "\n",
    "def convert_gender(value: str) -> Optional[int]:\n",
    "    \"\"\"Convert gender to binary (0 for female, 1 for male).\"\"\"\n",
    "    # Not used as gender is not explicitly available\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# trait_row is not None, meaning trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Initial filtering on usability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Since this is a cell line study and not a human cohort study, and we don't have \n",
    "# access to the clinical_data variable from a previous step, we'll skip the clinical \n",
    "# feature extraction step for now. The trait information would need to be processed \n",
    "# when we have access to the actual data.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "26c53110",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "c3e863d5",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:38.081210Z",
     "iopub.status.busy": "2025-03-25T08:13:38.081106Z",
     "iopub.status.idle": "2025-03-25T08:13:38.359188Z",
     "shell.execute_reply": "2025-03-25T08:13:38.358548Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23',\n",
      "       '24', '25', '26', '27', '28', '29', '30', '31'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "db9f686c",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "560f2027",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:38.360971Z",
     "iopub.status.busy": "2025-03-25T08:13:38.360850Z",
     "iopub.status.idle": "2025-03-25T08:13:38.363266Z",
     "shell.execute_reply": "2025-03-25T08:13:38.362826Z"
    }
   },
   "outputs": [],
   "source": [
    "# Looking at the gene identifiers, these appear to be numerical identifiers (12, 13, 14, etc.)\n",
    "# rather than human gene symbols like BRCA1, TP53, etc.\n",
    "# These are likely probe IDs or array-specific identifiers that need to be mapped to gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b8281f79",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "f950ad5d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:38.364842Z",
     "iopub.status.busy": "2025-03-25T08:13:38.364737Z",
     "iopub.status.idle": "2025-03-25T08:13:42.580336Z",
     "shell.execute_reply": "2025-03-25T08:13:42.579687Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1', '2', '3', '4', '5'], 'COL': ['266', '266', '266', '266', '266'], 'ROW': [170.0, 168.0, 166.0, 164.0, 162.0], 'NAME': ['GE_BrightCorner', 'DarkCorner', 'DarkCorner', 'DarkCorner', 'DarkCorner'], 'SPOT_ID': ['GE_BrightCorner', 'DarkCorner', 'DarkCorner', 'DarkCorner', 'DarkCorner'], 'CONTROL_TYPE': ['pos', 'pos', 'pos', 'pos', 'pos'], 'REFSEQ': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan], 'GENE': [nan, nan, nan, nan, nan], 'GENE_SYMBOL': [nan, nan, nan, nan, nan], 'GENE_NAME': [nan, nan, nan, nan, nan], 'UNIGENE_ID': [nan, nan, nan, nan, nan], 'ENSEMBL_ID': [nan, nan, nan, nan, nan], 'TIGR_ID': [nan, nan, nan, nan, nan], 'ACCESSION_STRING': [nan, nan, nan, nan, nan], 'CHROMOSOMAL_LOCATION': [nan, nan, nan, nan, nan], 'CYTOBAND': [nan, nan, nan, nan, nan], 'DESCRIPTION': [nan, nan, nan, nan, nan], 'GO_ID': [nan, nan, nan, nan, nan], 'SEQUENCE': [nan, nan, nan, nan, nan], 'SPOT_ID.1': [nan, nan, nan, nan, nan], 'ORDER': [1.0, 2.0, 3.0, 4.0, 5.0]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "598beb17",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "606ad1ac",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:42.582174Z",
     "iopub.status.busy": "2025-03-25T08:13:42.582052Z",
     "iopub.status.idle": "2025-03-25T08:13:42.921531Z",
     "shell.execute_reply": "2025-03-25T08:13:42.920857Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Available columns in gene annotation:\n",
      "['ID', 'COL', 'ROW', 'NAME', 'SPOT_ID', 'CONTROL_TYPE', 'REFSEQ', 'GB_ACC', 'GENE', 'GENE_SYMBOL', 'GENE_NAME', 'UNIGENE_ID', 'ENSEMBL_ID', 'TIGR_ID', 'ACCESSION_STRING', 'CHROMOSOMAL_LOCATION', 'CYTOBAND', 'DESCRIPTION', 'GO_ID', 'SEQUENCE', 'SPOT_ID.1', 'ORDER']\n",
      "\n",
      "Sample of gene annotation data with non-null gene symbols:\n",
      "{'ID': ['12', '14', '15', '16', '18'], 'COL': ['266', '266', '266', '266', '266'], 'ROW': [148.0, 144.0, 142.0, 140.0, 136.0], 'NAME': ['A_24_P66027', 'A_23_P212522', 'A_24_P934473', 'A_24_P9671', 'A_24_P801451'], 'SPOT_ID': ['A_24_P66027', 'A_23_P212522', 'A_24_P934473', 'A_24_P9671', 'A_24_P801451'], 'CONTROL_TYPE': ['FALSE', 'FALSE', 'FALSE', 'FALSE', 'FALSE'], 'REFSEQ': ['NM_004900', 'NM_014616', nan, 'NM_001539', 'NM_006709'], 'GB_ACC': ['NM_004900', 'NM_014616', 'AK092846', 'NM_001539', 'NM_006709'], 'GENE': [9582.0, 23200.0, 100132006.0, 3301.0, 10919.0], 'GENE_SYMBOL': ['APOBEC3B', 'ATP11B', 'LOC100132006', 'DNAJA1', 'EHMT2'], 'GENE_NAME': ['apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B', 'ATPase, class VI, type 11B', 'hypothetical protein LOC100132006', 'DnaJ (Hsp40) homolog, subfamily A, member 1', 'euchromatic histone-lysine N-methyltransferase 2'], 'UNIGENE_ID': ['Hs.226307', 'Hs.478429', 'Hs.593666', 'Hs.445203', 'Hs.709218'], 'ENSEMBL_ID': ['ENST00000407298', 'ENST00000323116', nan, 'ENST00000330899', 'ENST00000375537'], 'TIGR_ID': ['NP075413', 'THC2580543', 'THC2483825', 'THC2482967', 'THC2496448'], 'ACCESSION_STRING': ['ref|NM_004900|ref|NM_145699|ens|ENST00000407298|ens|ENST00000333467', 'ref|NM_014616|ens|ENST00000323116|gb|AB023173|gb|AL133061', 'gb|AK092846|gb|AX747763|thc|THC2483825', 'ref|NM_001539|gb|AY186741|ens|ENST00000330899|gb|BT007292', 'ref|NM_006709|ref|NM_025256|gb|BC018718|ens|ENST00000375537'], 'CHROMOSOMAL_LOCATION': ['chr22:37717484-37717543', 'chr3:184121316-184121375', 'chr16:8649039-8649098', 'chr9:33026682-33027066', 'unmapped'], 'CYTOBAND': ['hs|22q13.1', 'hs|3q26.33', 'hs|16p13.2', 'hs|9p13.3', nan], 'DESCRIPTION': ['Homo sapiens apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3B (APOBEC3B), mRNA [NM_004900]', 'Homo sapiens ATPase, class VI, type 11B (ATP11B), mRNA [NM_014616]', 'Homo sapiens cDNA FLJ35527 fis, clone SPLEN2001781. [AK092846]', 'Homo sapiens DnaJ (Hsp40) homolog, subfamily A, member 1 (DNAJA1), mRNA [NM_001539]', 'Homo sapiens euchromatic histone-lysine N-methyltransferase 2 (EHMT2), transcript variant NG36/G9a, mRNA [NM_006709]'], 'GO_ID': ['GO:0003723(RNA binding)|GO:0005575(cellular_component)|GO:0008150(biological_process)|GO:0008270(zinc ion binding)|GO:0016787(hydrolase activity)|GO:0016814(hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in cyclic amidines)|GO:0046872(metal ion binding)', 'GO:0000166(nucleotide binding)|GO:0000287(magnesium ion binding)|GO:0004012(phospholipid-translocating ATPase activity)|GO:0005524(ATP binding)|GO:0005637(nuclear inner membrane)|GO:0006754(ATP biosynthetic process)|GO:0006811(ion transport)|GO:0008152(metabolic process)|GO:0015075(ion transmembrane transporter activity)|GO:0015662(ATPase activity, coupled to transmembrane movement of ions, phosphorylative mechanism)|GO:0015914(phospholipid transport)|GO:0015917(aminophospholipid transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0016787(hydrolase activity)|GO:0016820(hydrolase activity, acting on acid anhydrides, catalyzing transmembrane movement of substances)', nan, 'GO:0005737(cytoplasm)|GO:0005856(cytoskeleton)|GO:0006457(protein folding)|GO:0006986(response to unfolded protein)|GO:0007283(spermatogenesis)|GO:0008270(zinc ion binding)|GO:0016020(membrane)|GO:0030317(sperm motility)|GO:0030521(androgen receptor signaling pathway)|GO:0031072(heat shock protein binding)|GO:0046872(metal ion binding)|GO:0050750(low-density lipoprotein receptor binding)|GO:0051082(unfolded protein binding)', 'GO:0000122(negative regulation of transcription from RNA polymerase II promoter)|GO:0000239(pachytene)|GO:0005515(protein binding)|GO:0005575(cellular_component)|GO:0005634(nucleus)|GO:0007130(synaptonemal complex assembly)|GO:0007286(spermatid development)|GO:0008150(biological_process)|GO:0008168(methyltransferase activity)|GO:0008270(zinc ion binding)|GO:0009566(fertilization)|GO:0016568(chromatin modification)|GO:0016740(transferase activity)|GO:0018024(histone-lysine N-methyltransferase activity)|GO:0035265(organ growth)|GO:0046872(metal ion binding)|GO:0051567(histone H3-K9 methylation)'], 'SEQUENCE': ['GCTGCCCGCATCTATGATTACGACCCCCTATATAAGGAGGCGCTGCAAATGCTGCGGGAT', 'ATTTTCTAACTGTCCTCTTTCTTGGGTCTAAAGCTCATAATACACAAAGGCTTCCAGACC', 'AAGCCAAGTACTTTAGAGAAGAAAAACGGTCTCAGCTGAACCTGTAGTGAGAGCATGCAG', 'ATCCAGGTCAGATTGTCAAGCATGGAGATATCAAGTGTGTACTAAATGAAGGCATGCCAA', 'AAATCGGGCCATCCGCACCAGAGGAAGATCATTCTGCCGGGACGTGGCTCGGGGCTATGA'], 'SPOT_ID.1': [nan, nan, nan, nan, nan], 'ORDER': [12.0, 14.0, 15.0, 16.0, 18.0]}\n",
      "\n",
      "Gene mapping dataframe:\n",
      "{'ID': ['12', '14', '15', '16', '18'], 'Gene': ['APOBEC3B', 'ATP11B', 'LOC100132006', 'DNAJA1', 'EHMT2']}\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Converted gene expression data:\n",
      "{'GSM4098797': [11.295818278999999, 4.511519006, 4.029339788, 7.998331606, 3.529187489], 'GSM4098798': [11.311701529, 4.350843151, 3.829114997, 6.938423613, 3.403435718], 'GSM4098799': [11.490747099, 3.940382921, 3.518664325, 8.071803433, 3.703306235], 'GSM4098800': [10.62815242, 4.278446209, 3.952369234, 7.445960991, 4.175610589], 'GSM4098801': [11.425336329, 4.211956199, 3.755241441, 7.389486419, 3.693382222], 'GSM4098802': [11.309095206, 3.807001272, 3.779241628, 8.267602906, 3.980138411], 'GSM4098803': [10.929429424, 3.925654364, 3.833418791, 8.355437797, 3.735606345], 'GSM4098804': [10.700006593000001, 4.314044971, 3.658411735, 7.448207267, 3.828141668], 'GSM4098805': [11.592457953, 3.520838128, 3.908003521, 7.832426589, 3.520838128], 'GSM4098806': [9.173432164000001, 4.137373263, 2.928105386, 8.132917185, 3.335657835], 'GSM4098807': [11.6466158, 4.51745926, 3.900382259, 8.405353632, 3.930806637], 'GSM4098808': [12.349148621, 4.781086546, 3.085499595, 8.276549505, 3.163182708], 'GSM4098809': [11.668675356, 4.036497385, 3.7901343, 8.222292761, 4.074914684], 'GSM4098810': [12.122596969, 4.134970053, 4.05199999, 8.051823544, 3.235740223], 'GSM4098811': [12.495397475, 4.101323054, 3.644023212, 7.634603293, 3.463214042], 'GSM4098812': [12.218892765, 4.595064891, 3.427753343, 7.684041323, 4.018747086], 'GSM4098813': [9.685849347, 4.22606317, 4.325947699, 7.562952071, 3.331314104], 'GSM4098814': [10.0964321, 4.867040912, 4.532427035, 7.256587897, 3.597141516], 'GSM4098815': [11.212807124, 4.23800568, 3.183184688, 7.921425237, 3.781316708], 'GSM4098816': [11.756302245, 4.374955768, 3.143092663, 8.429888285, 3.896505162], 'GSM4098817': [11.480266855, 4.644577848, 3.275647524, 7.337444716, 3.275647524], 'GSM4098818': [11.572050526, 4.216746355, 3.132219007, 8.030310185, 3.764970611], 'GSM4098819': [12.111974762, 4.871226415, 4.395134425, 8.383003976, 4.41419136], 'GSM4098820': [11.797386841, 4.357093025, 3.741237359, 7.488852897, 3.344227418], 'GSM4098821': [11.022180294, 4.528972801, 3.781929803, 8.127972724, 2.901117994], 'GSM4098822': [9.985806461, 4.334899168, 4.691320904, 8.08196884, 3.566150133], 'GSM4098823': [10.955167297, 3.988884942, 3.870179586, 7.627231669, 4.178270066], 'GSM4098824': [11.519869761, 3.560649062, 4.054721721, 8.318647838, 3.560649062], 'GSM4098825': [11.50559043, 4.354759526, 3.913857056, 8.252489038, 3.986446731], 'GSM4098826': [11.521872274, 4.162068735, 3.99068833, 7.49736804, 3.9320142], 'GSM4098827': [11.530309796000001, 4.258577062, 3.876582889, 7.638285155, 3.798833313], 'GSM4098828': [11.650405668, 4.588559402, 3.844650541, 7.649147453, 3.753795349], 'GSM4098829': [11.439998252999999, 4.569085095, 4.930172588, 8.660099047, 4.148122963], 'GSM4098830': [11.774968708000001, 4.475843846, 5.006921531, 8.306217473, 3.611226197], 'GSM4098831': [11.678834608999999, 3.992244703, 4.468223005, 8.725613368, 3.984856471], 'GSM4098832': [13.36665025, 4.663087485, 4.1664225, 7.613446924, 3.731352081], 'GSM4098833': [12.313311616, 4.346523659, 5.099913979, 8.275625494, 3.945911967], 'GSM4098834': [12.060811490999999, 4.256161059, 4.55451106, 8.202508423, 3.966656535], 'GSM4098835': [11.724259242, 4.12452232, 4.209760987, 8.452567683, 3.884865532], 'GSM4098836': [11.290614289, 4.416970969, 4.283844755, 7.950836689, 3.777055871], 'GSM4098837': [11.671444767999999, 4.70877685, 3.468851143, 7.662878274, 4.133964458], 'GSM4098838': [12.383108663, 4.247671487, 3.620601132, 8.539622569, 4.578953058], 'GSM4098839': [12.529668529, 4.662650635, 4.289667541, 8.474277445, 4.148552504], 'GSM4098840': [12.163355781, 4.763055707, 4.609645595, 8.260846839, 3.881485497], 'GSM4098841': [12.196179489999999, 4.237644549, 3.939796283, 9.030725874, 4.300612679], 'GSM4098842': [12.492096591, 4.359883689, 4.468801492, 7.923179402, 4.223197571], 'GSM4098843': [12.492539869, 4.067942975, 3.826995086, 7.624608546, 3.457999265], 'GSM4098844': [12.640559166, 4.277883701, 4.132814383, 8.098631342, 3.802210543], 'GSM4098845': [10.515985308, 4.428130209, 5.640199416, 8.424042297, 4.159216319], 'GSM4098846': [10.72859967, 4.545376526, 5.43525345, 8.116347941, 3.959945264], 'GSM4098847': [12.588295016, 4.252219424, 4.565555293, 8.229620491, 3.876710204], 'GSM4098848': [12.856335031, 4.837687313, 4.476784638, 8.59978321, 3.782853842], 'GSM4098849': [12.482955217, 4.410063383, 3.112111144, 7.688118613, 3.484341798], 'GSM4098850': [12.175504981, 4.525790096, 3.835247245, 8.192688326, 3.56097626], 'GSM4098851': [12.600100614999999, 4.792830166, 3.575349359, 8.635279662, 4.100254296], 'GSM4098852': [12.561666092, 4.402865814, 3.602970048, 8.325050001, 3.566874369], 'GSM4098853': [11.732715874, 4.649540088, 5.771464833, 8.48636833, 3.710872842], 'GSM4098854': [11.89072243, 4.280776313, 5.88416279, 8.784441166, 4.096685464], 'GSM4098855': [11.612091881, 3.987538223, 4.154718691, 8.135290914, 4.328919317], 'GSM4098856': [12.379367429999999, 4.596680653, 4.046847858, 8.006627098, 3.830326299], 'GSM4098857': [11.803956761, 4.698200208, 4.380661404, 8.690838172, 4.107066454], 'GSM4098858': [12.737503504, 3.667374991, 4.345379919, 8.318647024, 4.319829603], 'GSM4098859': [13.0600405, 4.769800866, 4.181172288, 8.374885971, 3.827799923], 'GSM4098860': [12.161425048, 4.629566597, 4.041705826, 7.91833211, 3.650639297]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify relevant columns from the gene annotation data for mapping\n",
    "# The gene identifiers in gene_data are numeric IDs\n",
    "# From the preview, we need to map 'ID' in the annotation to a gene symbol column\n",
    "\n",
    "# Looking at the columns in gene_annotation\n",
    "print(\"Available columns in gene annotation:\")\n",
    "print(gene_annotation.columns.tolist())\n",
    "\n",
    "# Let's get a better look at the annotation data beyond the first few rows\n",
    "# to find rows that actually have gene symbol information\n",
    "print(\"\\nSample of gene annotation data with non-null gene symbols:\")\n",
    "sample_with_genes = gene_annotation[gene_annotation['GENE_SYMBOL'].notna()].head(5)\n",
    "print(preview_df(sample_with_genes))\n",
    "\n",
    "# 2. Create the gene mapping dataframe\n",
    "# Based on the data, we'll map 'ID' to 'GENE_SYMBOL'\n",
    "mapping_df = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL')\n",
    "print(\"\\nGene mapping dataframe:\")\n",
    "print(preview_df(mapping_df))\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression\n",
    "gene_data_mapped = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Normalize gene symbols to ensure consistency\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data_mapped)\n",
    "\n",
    "# Preview the result\n",
    "print(\"\\nConverted gene expression data:\")\n",
    "print(preview_df(gene_data))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "72a8d3cd",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "ff461b59",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:13:42.923358Z",
     "iopub.status.busy": "2025-03-25T08:13:42.923235Z",
     "iopub.status.idle": "2025-03-25T08:13:52.345716Z",
     "shell.execute_reply": "2025-03-25T08:13:52.344636Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Cervical_Cancer/gene_data/GSE138079.csv\n",
      "Clinical data saved to ../../output/preprocess/Cervical_Cancer/clinical_data/GSE138079.csv\n",
      "Linked data shape: (64, 17902)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For the feature 'Cervical_Cancer', the least common label is '0.0' with 23 occurrences. This represents 35.94% of the dataset.\n",
      "The distribution of the feature 'Cervical_Cancer' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Cervical_Cancer/GSE138079.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Create clinical features directly from clinical_data using the conversion functions defined earlier\n",
    "clinical_features_df = geo_select_clinical_features(\n",
    "    clinical_data, \n",
    "    trait=trait, \n",
    "    trait_row=trait_row, \n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Now link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_features_df, normalized_gene_data)\n",
    "print(\"Linked data shape:\", linked_data.shape)\n",
    "\n",
    "# Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "\n",
    "# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information.\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"This is an HPV-transformed keratinocyte cell line study focusing on transformation stages: 1 for anchorage independent (more advanced cancer stage), 0 for earlier stages.\"\n",
    ")\n",
    "\n",
    "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}