File size: 25,448 Bytes
32677ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a5515400",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Colon_and_Rectal_Cancer\"\n",
    "cohort = \"GSE46862\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Colon_and_Rectal_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Colon_and_Rectal_Cancer/GSE46862\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Colon_and_Rectal_Cancer/GSE46862.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Colon_and_Rectal_Cancer/gene_data/GSE46862.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Colon_and_Rectal_Cancer/clinical_data/GSE46862.csv\"\n",
    "json_path = \"../../output/preprocess/Colon_and_Rectal_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "371239d6",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d92dcc2d",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "89877816",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "119eae27",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Analyzing data availability and creating conversion functions\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this study used Affymetrix GenChip arrays\n",
    "# for gene expression profiling, so gene expression data should be available\n",
    "is_gene_available = True\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# From the sample characteristics dictionary:\n",
    "# - trait (chemoradiation therapy response) is in row 0\n",
    "# - age is in row 1\n",
    "# - gender (Sex) is in row 2\n",
    "trait_row = 0\n",
    "age_row = 1\n",
    "gender_row = 2\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert chemoradiation therapy response to binary (1 for good response, 0 for poor response)\"\"\"\n",
    "    if not value or ':' not in value:\n",
    "        return None\n",
    "    \n",
    "    response = value.split(':', 1)[1].strip()\n",
    "    # Based on the description, NT and TO are better responses, MI and MO are worse responses\n",
    "    if response == 'NT' or response == 'TO':\n",
    "        return 1  # good response\n",
    "    elif response == 'MI' or response == 'MO':\n",
    "        return 0  # poor response\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age to continuous numeric value\"\"\"\n",
    "    if not value or ':' not in value:\n",
    "        return None\n",
    "    \n",
    "    try:\n",
    "        age = int(value.split(':', 1)[1].strip())\n",
    "        return age\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary (0 for female, 1 for male)\"\"\"\n",
    "    if not value or ':' not in value:\n",
    "        return None\n",
    "    \n",
    "    gender = value.split(':', 1)[1].strip().lower()\n",
    "    if gender == 'male':\n",
    "        return 1\n",
    "    elif gender == 'female':\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "# Initial filtering\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Sample characteristics dictionary from previous step\n",
    "    sample_chars = {\n",
    "        0: ['chemoradiation therapy response: MO', 'chemoradiation therapy response: TO', 'chemoradiation therapy response: MI', 'chemoradiation therapy response: NT'],\n",
    "        1: ['age: 68', 'age: 58', 'age: 66', 'age: 56', 'age: 55', 'age: 50', 'age: 37', 'age: 59', 'age: 46', 'age: 49', 'age: 62', 'age: 65', 'age: 63', 'age: 41', 'age: 33', 'age: 73', 'age: 70', 'age: 69', 'age: 39', 'age: 43', 'age: 48', 'age: 72', 'age: 76', 'age: 40', 'age: 54', 'age: 45', 'age: 71', 'age: 52', 'age: 53', 'age: 67'],\n",
    "        2: ['Sex: male', 'Sex: female'],\n",
    "        3: ['tumor stage (uicc-7th): IIIB', 'tumor stage (uicc-7th): 0', 'tumor stage (uicc-7th): I', 'tumor stage (uicc-7th): IIA', 'tumor stage (uicc-7th): IIIA', 'tumor stage (uicc-7th): IIIC', 'tumor stage (uicc-7th): IVA', 'tumor stage (uicc-7th): IV', 'tumor stage (uicc-7th): lll', 'tumor stage (uicc-7th): IIB'],\n",
    "        4: ['description (operation): LAR', 'description (operation): ULAR', 'description (operation): LAR, TAH', 'description (operation): LAR, ileostomy', \"description (operation): Hartmann's procedure\", 'description (operation): APR', 'description (operation): APR,TAH,LSO,S6 segmentectomy', 'description (operation): TEM', 'description (operation): L-LAR, Rt PLND, ileostomy', 'description (operation): ISR, colonic pouch, ileostomy', 'description (operation): ISR, coloanal, ileostomy', 'description (operation): R-LAR, ileostomy', 'description (operation): ISR, colonic pouch, Ileostomy', 'description (operation): ISR, colonic pouch, ileostomy, Rt PLND', 'description (operation): ISR, Coloanal, ileostomy', 'description (operation): ELAR', 'description (operation): ISR']\n",
    "    }\n",
    "    \n",
    "    # Create a clinical data DataFrame with the structure expected by geo_select_clinical_features\n",
    "    # Where rows are characteristics and each column would represent a sample\n",
    "    clinical_data = pd.DataFrame()\n",
    "    for key, values in sample_chars.items():\n",
    "        clinical_data.loc[key] = values\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_features = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted features\n",
    "    preview = preview_df(selected_features)\n",
    "    print(\"Preview of selected clinical features:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_features.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ab64f083",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f6eacdd2",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "import gzip\n",
    "from typing import Optional, Callable, Dict, Any, List\n",
    "import numpy as np\n",
    "import re\n",
    "\n",
    "# Load the clinical data \n",
    "clinical_data_file = os.path.join(in_cohort_dir, \"GSE46862_series_matrix.txt.gz\")\n",
    "\n",
    "try:\n",
    "    # Read the clinical data\n",
    "    with gzip.open(clinical_data_file, 'rt') as file:\n",
    "        lines = file.readlines()\n",
    "    \n",
    "    # Extract sample characteristics\n",
    "    sample_char_lines = [line for line in lines if line.startswith('!Sample_characteristics_ch1')]\n",
    "    \n",
    "    # Extract sample IDs\n",
    "    sample_id_line = next((line for line in lines if line.startswith('!Sample_geo_accession')), None)\n",
    "    if sample_id_line:\n",
    "        sample_ids = sample_id_line.strip().split('\\t')[1:]\n",
    "    else:\n",
    "        sample_ids = []\n",
    "    \n",
    "    # Create a dictionary to organize sample characteristics\n",
    "    sample_char_dict = {}\n",
    "    \n",
    "    for line in sample_char_lines:\n",
    "        values = line.strip().split('\\t')[1:]\n",
    "        sample_char_dict[len(sample_char_dict)] = values\n",
    "    \n",
    "    # Create a DataFrame from the dictionary\n",
    "    clinical_data = pd.DataFrame(sample_char_dict, index=sample_ids).T\n",
    "    \n",
    "    # Print some sample data to analyze\n",
    "    print(\"Sample characteristics dictionary:\")\n",
    "    for key, values in sample_char_dict.items():\n",
    "        unique_values = set(values)\n",
    "        print(f\"Key {key}: {list(unique_values)[:5]}{' ...' if len(unique_values) > 5 else ''} (Unique values: {len(unique_values)})\")\n",
    "    \n",
    "    # Extract title and description for background information\n",
    "    title_line = next((line for line in lines if line.startswith('!Series_title')), None)\n",
    "    title = title_line.strip().split('!Series_title\\t')[1] if title_line else \"No title found\"\n",
    "    \n",
    "    description_lines = [line for line in lines if line.startswith('!Series_summary')]\n",
    "    description = ' '.join([line.strip().split('!Series_summary\\t')[1] for line in description_lines]) if description_lines else \"No description found\"\n",
    "    \n",
    "    print(\"\\nDataset Title:\")\n",
    "    print(title)\n",
    "    print(\"\\nDataset Description:\")\n",
    "    print(description)\n",
    "    \n",
    "    # Check if this is a gene expression dataset\n",
    "    platform_line = next((line for line in lines if line.startswith('!Series_platform_id')), None)\n",
    "    platform_id = platform_line.strip().split('!Series_platform_id\\t')[1] if platform_line else \"Unknown\"\n",
    "    \n",
    "    print(\"\\nPlatform ID:\")\n",
    "    print(platform_id)\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error reading clinical data: {e}\")\n",
    "    clinical_data = pd.DataFrame()\n",
    "    sample_char_dict = {}\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on platform info (GPL6244) and description, determine if gene expression data is likely available\n",
    "is_gene_available = True  # The platform GPL6244 is for gene expression\n",
    "\n",
    "# 2. Clinical Feature Availability and Data Type Conversion\n",
    "# Analyze sample characteristics to identify trait, age, and gender information\n",
    "\n",
    "# 2.1 Trait Availability (Chemoradiation therapy response)\n",
    "trait_row = 0  # Chemoradiation therapy response is in row 0\n",
    "\n",
    "# Function to convert trait values\n",
    "def convert_trait(value):\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Remove quotes and extract value after colon\n",
    "    value = str(value).strip('\"')\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert therapy responses to binary\n",
    "    value_lower = str(value).lower()\n",
    "    if 'nt' in value_lower or 'mo' in value_lower:  # Non-responders\n",
    "        return 0\n",
    "    elif 'mi' in value_lower or 'to' in value_lower:  # Responders\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 2.2 Age Availability\n",
    "age_row = 1  # Age information is in row 1\n",
    "\n",
    "# Function to convert age values\n",
    "def convert_age(value):\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Remove quotes and extract value after colon\n",
    "    value = str(value).strip('\"')\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Try to extract numeric age\n",
    "    try:\n",
    "        age_match = re.search(r'(\\d+)', str(value))\n",
    "        if age_match:\n",
    "            return float(age_match.group(1))\n",
    "    except:\n",
    "        pass\n",
    "    \n",
    "    return None\n",
    "\n",
    "# 2.3 Gender Availability\n",
    "gender_row = 2  # Sex information is in row 2\n",
    "\n",
    "# Function to convert gender values\n",
    "def convert_gender(value):\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Remove quotes and extract value after colon\n",
    "    value = str(value).strip('\"')\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary: Female = 0, Male = 1\n",
    "    value_lower = str(value).lower()\n",
    "    if 'female' in value_lower or 'f' == value_lower:\n",
    "        return 0\n",
    "    elif 'male' in value_lower or 'm' == value_lower:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata - Initial Filtering\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction (if trait_row is not None)\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features\n",
    "    clinical_features_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted features\n",
    "    print(\"\\nExtracted Clinical Features Preview:\")\n",
    "    print(preview_df(clinical_features_df))\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save to CSV\n",
    "    clinical_features_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical features saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4a804951",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c18dad67",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a1898c17",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "abd87d55",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Looking at the identifiers in the gene expression data\n",
    "# The identifiers appear to be numeric codes (like 7892501, 7892502, etc.)\n",
    "# These are not standard human gene symbols (which would be like BRCA1, TP53, etc.)\n",
    "# These are likely probe IDs from a microarray platform that need to be mapped to gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "22ca76e6",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7b9c95ba",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "21fc70fd",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "08403493",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Analyze the format of gene identifiers in both datasets\n",
    "print(\"\\nIdentifying mapping columns:\")\n",
    "print(f\"Gene expression data has identifiers like: {gene_data.index[:5]}\")\n",
    "print(f\"Gene annotation data columns: {gene_annotation.columns}\")\n",
    "\n",
    "# The 'ID' column in gene_annotation matches the index in gene_data\n",
    "# The 'gene_assignment' column contains gene symbols\n",
    "\n",
    "# Identifying gene symbols in the gene_assignment column\n",
    "print(\"\\nChecking gene_assignment format:\")\n",
    "sample_gene = gene_annotation['gene_assignment'].iloc[2]\n",
    "print(f\"Sample gene assignment: {sample_gene[:200]}...\")\n",
    "\n",
    "# Extract the mapping between probe IDs and gene symbols\n",
    "gene_mapping = get_gene_mapping(\n",
    "    annotation=gene_annotation, \n",
    "    prob_col='ID', \n",
    "    gene_col='gene_assignment'\n",
    ")\n",
    "\n",
    "print(\"\\nMapped genes preview:\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# Apply the gene mapping to convert probe-based expression to gene expression\n",
    "gene_data = apply_gene_mapping(\n",
    "    expression_df=gene_data,\n",
    "    mapping_df=gene_mapping\n",
    ")\n",
    "\n",
    "# Preview the gene expression data\n",
    "print(\"\\nGene expression data after mapping:\")\n",
    "print(f\"Shape: {gene_data.shape}\")\n",
    "print(f\"First 5 genes: {gene_data.index[:5]}\")\n",
    "print(f\"Sample columns: {gene_data.columns[:5]}\")\n",
    "\n",
    "# Save the gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c3daa7cf",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d00aab4f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Retrieve the original clinical data directly from step 2\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "background_info, clinical_df = get_background_and_clinical_data(matrix_file)\n",
    "\n",
    "# Extract clinical features using the geo_select_clinical_features function as in step 3\n",
    "clinical_features_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_df,\n",
    "    trait=trait,\n",
    "    trait_row=0,  # chemoradiation therapy response\n",
    "    convert_trait=lambda x: 1 if any(resp in str(x).upper() for resp in [\"NT\", \"TO\"]) else 0,  # better response = 1\n",
    "    age_row=1,    # age information\n",
    "    convert_age=lambda x: int(str(x).split(\":\", 1)[1].strip()) if \":\" in str(x) else None,\n",
    "    gender_row=2,  # gender information\n",
    "    convert_gender=lambda x: 0 if \"female\" in str(x).lower() else 1 if \"male\" in str(x).lower() else None\n",
    ")\n",
    "\n",
    "# Fix column names in gene data to match clinical data format\n",
    "normalized_gene_data.columns = [col.strip('\"') for col in normalized_gene_data.columns]\n",
    "\n",
    "# 3. Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_features_df, normalized_gene_data)\n",
    "print(f\"Initial linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Data after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 5. Determine whether the trait and demographic features are severely biased\n",
    "is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 6. Conduct final quality validation and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains gene expression data from rectal cancer patients with variable responses to chemoradiation therapy.\"\n",
    ")\n",
    "\n",
    "# 7. If the linked data is usable, save it as a CSV file\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}