File size: 37,451 Bytes
32677ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "974f36c8",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Depression\"\n",
"cohort = \"GSE201332\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Depression\"\n",
"in_cohort_dir = \"../../input/GEO/Depression/GSE201332\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Depression/GSE201332.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Depression/gene_data/GSE201332.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Depression/clinical_data/GSE201332.csv\"\n",
"json_path = \"../../output/preprocess/Depression/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "388a3634",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0d3fa7c1",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "f5a442f1",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4353b83a",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"import json\n",
"from typing import Callable, Optional, Dict, Any\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this study involves transcriptional profiling\n",
"# in whole blood samples, which indicates gene expression data is available\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# From the Sample Characteristics Dictionary:\n",
"# Row 1 contains subject status (healthy controls vs MDD patients) -> trait_row\n",
"# Row 3 contains age information -> age_row\n",
"# Row 2 contains gender information -> gender_row\n",
"trait_row = 1\n",
"age_row = 3\n",
"gender_row = 2\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait value to binary (0 for healthy, 1 for depression)\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" value = value.lower().strip()\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" if \"healthy\" in value or \"control\" in value:\n",
" return 0\n",
" elif \"mdd\" in value or \"depress\" in value:\n",
" return 1\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age value to continuous integer\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Extract numeric part and remove 'y' (years)\n",
" if 'y' in value:\n",
" try:\n",
" return int(value.replace('y', '').strip())\n",
" except ValueError:\n",
" return None\n",
" try:\n",
" return int(value)\n",
" except ValueError:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" value = value.lower().strip()\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" if \"female\" in value:\n",
" return 0\n",
" elif \"male\" in value:\n",
" return 1\n",
" return None\n",
"\n",
"# 3. Save Metadata - Initial Filtering\n",
"# trait_row is not None, so trait data is available\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Since trait_row is not None, we need to extract clinical features\n",
"if trait_row is not None:\n",
" # Create a clinical data DataFrame from the sample characteristics dictionary\n",
" sample_characteristics = {\n",
" 0: ['tissue: whole blood'], \n",
" 1: ['subject status: heathy controls', 'subject status: MDD patients'], \n",
" 2: ['gender: male', 'gender: female'], \n",
" 3: ['age: 48y', 'age: 33y', 'age: 43y', 'age: 24y', 'age: 45y', 'age: 36y', 'age: 59y', \n",
" 'age: 51y', 'age: 26y', 'age: 25y', 'age: 32y', 'age: 39y', 'age: 41y', 'age: 52y', \n",
" 'age: 53y', 'age: 44y', 'age: 22y', 'age: 47y', 'age: 54y', 'age: 28y', 'age: 30y']\n",
" }\n",
" \n",
" # Convert the dictionary to a DataFrame format that can be used with geo_select_clinical_features\n",
" clinical_data = pd.DataFrame(sample_characteristics)\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted features\n",
" clinical_preview = preview_df(selected_clinical_df)\n",
" print(\"Clinical Data Preview:\")\n",
" print(clinical_preview)\n",
" \n",
" # Save the processed clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "b8a39ddd",
"metadata": {},
"source": [
"### Step 3: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "99b99a5e",
"metadata": {},
"outputs": [],
"source": [
"I'll implement code specifically to handle GEO compressed files and extract sample characteristics from the series matrix file format.\n",
"\n",
"```python\n",
"import os\n",
"import pandas as pd\n",
"import json\n",
"import numpy as np\n",
"import gzip\n",
"import re\n",
"from typing import Callable, Optional, Dict, Any, List, Tuple\n",
"\n",
"# Function to extract sample characteristics from GEO series matrix file\n",
"def extract_geo_characteristics(matrix_file_path: str) -> Tuple[Dict[str, List[str]], pd.DataFrame]:\n",
" \"\"\"Extract sample characteristics and data from a GEO series matrix file.\"\"\"\n",
" # Initialize variables\n",
" characteristics = {}\n",
" sample_ids = []\n",
" char_indices = {}\n",
" in_characteristics = False\n",
" series_matrix_lines = []\n",
" data_lines = []\n",
" \n",
" # Read the gzipped file\n",
" with gzip.open(matrix_file_path, 'rt') as f:\n",
" for line in f:\n",
" line = line.strip()\n",
" series_matrix_lines.append(line)\n",
" \n",
" # Detect sample characteristics lines\n",
" if line.startswith('!Sample_characteristics_ch'):\n",
" in_characteristics = True\n",
" parts = line.split('\\t')\n",
" key = parts[0].replace('!Sample_characteristics_ch', '').strip()\n",
" if key not in char_indices:\n",
" char_indices[key] = len(char_indices)\n",
" characteristics[str(char_indices[key])] = []\n",
" \n",
" # Add sample characteristic values for each sample\n",
" for value in parts[1:]:\n",
" characteristics[str(char_indices[key])].append(value)\n",
" \n",
" # Collect sample IDs\n",
" elif line.startswith('!Sample_geo_accession'):\n",
" sample_ids = line.split('\\t')[1:]\n",
" \n",
" # Detect the beginning of data section\n",
" elif line.startswith('!series_matrix_table_begin'):\n",
" in_characteristics = False\n",
" in_data = True\n",
" \n",
" # Collect data lines\n",
" elif in_data and not line.startswith('!series_matrix_table_end'):\n",
" data_lines.append(line)\n",
" \n",
" # End of data section\n",
" elif line.startswith('!series_matrix_table_end'):\n",
" break\n",
" \n",
" # Extract relevant background information for gene availability check\n",
" background_info = \"\\n\".join([line for line in series_matrix_lines \n",
" if line.startswith('!Series_summary') or \n",
" line.startswith('!Series_title') or\n",
" line.startswith('!Series_type')])\n",
" \n",
" # Create a DataFrame if data section is found\n",
" clinical_data = None\n",
" if data_lines:\n",
" # First line contains column headers\n",
" headers = data_lines[0].split('\\t')\n",
" # Data starts from second line\n",
" data = [line.split('\\t') for line in data_lines[1:]]\n",
" \n",
" # Create a DataFrame with gene expression data\n",
" gene_data = pd.DataFrame(data, columns=headers)\n",
" \n",
" # Create a transposed version as clinical data\n",
" # Here we assume samples are columns in the original data\n",
" clinical_data = pd.DataFrame(index=sample_ids)\n",
" \n",
" return characteristics, clinical_data, background_info\n",
"\n",
"# Find and process GEO series matrix file\n",
"matrix_file = os.path.join(in_cohort_dir, \"GSE201332_series_matrix.txt.gz\")\n",
"\n",
"if os.path.exists(matrix_file):\n",
" print(f\"Found matrix file: {matrix_file}\")\n",
" sample_characteristics, clinical_data, background_info = extract_geo_characteristics(matrix_file)\n",
" \n",
" # Print sample characteristics to understand the data structure\n",
" for key, values in sample_characteristics.items():\n",
" if len(values) > 0:\n",
" unique_values = set(values)\n",
" print(f\"Key {key}, Example value: {values[0]}\")\n",
" print(f\"Key {key}, Unique values: {unique_values if len(unique_values) < 5 else list(unique_values)[:5]}\")\n",
"else:\n",
" print(\"Matrix file not found!\")\n",
" sample_characteristics = {}\n",
" clinical_data = None\n",
" background_info = \"\"\n",
"\n",
"# 1. Check for gene expression data availability\n",
"is_gene_available = True # Default to True unless we find evidence otherwise\n",
"\n",
"if \"miRNA\" in background_info and \"gene expression\" not in background_info.lower():\n",
" is_gene_available = False\n",
"if \"methylation\" in background_info and \"gene expression\" not in background_info.lower():\n",
" is_gene_available = False\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"trait_row = None\n",
"age_row = None\n",
"gender_row = None\n",
"\n",
"# Examine sample characteristics to identify rows for trait, age, and gender\n",
"if sample_characteristics:\n",
" for key, values in sample_characteristics.items():\n",
" if not values: # Skip empty lists\n",
" continue\n",
" \n",
" value_str = \" \".join(values).lower()\n",
" \n",
" # Look for depression-related indicators in values\n",
" depression_keywords = [\"depression\", \"depressive\", \"mdd\", \"major depression\", \"depressed\", \"patient: \"]\n",
" if any(keyword.lower() in value_str for keyword in depression_keywords):\n",
" trait_row = int(key)\n",
" \n",
" # Look for age indicators\n",
" if any((\"age:\" in val.lower() or \"age :\" in val.lower() or \"years\" in val.lower()) for val in values):\n",
" age_row = int(key)\n",
" \n",
" # Look for gender indicators\n",
" if any((\"gender:\" in val.lower() or \"gender :\" in val.lower() or \n",
" \"sex:\" in val.lower() or \"sex :\" in val.lower() or\n",
" \"male\" in val.lower() or \"female\" in val.lower()) for val in values):\n",
" gender_row = int(key)\n",
"\n",
"# Define conversion functions\n",
"def convert_trait(value: str) -> Optional[int]:\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value = str(value).lower()\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if \"depression\" in value or \"depressive\" in value or \"mdd\" in value or \"patient\" in value:\n",
" return 1\n",
" elif \"control\" in value or \"healthy\" in value or \"non-depression\" in value or \"normal\" in value:\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value: str) -> Optional[float]:\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value = str(value)\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Extract numeric value (age in years)\n",
" age_match = re.search(r'(\\d+(?:\\.\\d+)?)', value)\n",
" if age_match:\n",
" try:\n",
" return float(age_match.group(1))\n",
" except ValueError:\n",
" return None\n",
" return None\n",
"\n",
"def convert_gender(value: str) -> Optional[int]:\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value = str(value).lower()\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if \"female\" in value or \"f\" == value.strip() or \"woman\" in value:\n",
" return 0\n",
" elif \"male\" in value or \"m\" == value.strip() or \"man\" in value:\n",
" return 1\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"print(f\"Gene data available: {is_gene_available}\")\n",
"print(f\"Trait data available: {is_trait_available}\")\n",
"print(f\"Trait row: {trait_row}\")\n",
"print(f\"Age row: {age_row}\")\n",
"print(f\"Gender row: {gender_row}\")\n",
"\n",
"# Conduct initial filtering and save metadata\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# If trait data is available and clinical data exists, extract clinical features\n",
"if trait_row is not\n"
]
},
{
"cell_type": "markdown",
"id": "f20ce7a6",
"metadata": {},
"source": [
"### Step 4: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e981ccd9",
"metadata": {},
"outputs": [],
"source": [
"# Task: Dataset Analysis and Clinical Feature Extraction\n",
"\n",
"import os\n",
"import pandas as pd\n",
"import json\n",
"import gzip\n",
"from typing import Optional, Callable, Dict, Any\n",
"\n",
"# 1. First, let's examine the available data files in the cohort directory\n",
"available_files = os.listdir(in_cohort_dir)\n",
"print(f\"Available files in the cohort directory: {available_files}\")\n",
"\n",
"# Let's load the series matrix file which contains both gene expression and clinical data\n",
"matrix_file = os.path.join(in_cohort_dir, 'GSE201332_series_matrix.txt.gz')\n",
"\n",
"# Function to extract sample characteristics from series matrix file\n",
"def extract_characteristics(file_path):\n",
" characteristics_data = []\n",
" sample_titles = None\n",
" \n",
" with gzip.open(file_path, 'rt') as f:\n",
" for line in f:\n",
" line = line.strip()\n",
" if line.startswith('!Sample_geo_accession'):\n",
" sample_titles = line.split('\\t')[1:]\n",
" elif line.startswith('!Sample_characteristics_ch'):\n",
" parts = line.split('\\t')\n",
" row_name = parts[0]\n",
" values = parts[1:]\n",
" characteristics_data.append((row_name, values))\n",
" elif line.startswith('!series_matrix_table_begin'):\n",
" break\n",
" \n",
" # Create DataFrame from characteristics\n",
" if sample_titles and characteristics_data:\n",
" df = pd.DataFrame({i: values for i, (_, values) in enumerate(characteristics_data)})\n",
" df.index = sample_titles\n",
" return df.transpose()\n",
" \n",
" return pd.DataFrame()\n",
"\n",
"# Extract clinical data\n",
"clinical_data = extract_characteristics(matrix_file)\n",
"print(\"\\nClinical data preview:\")\n",
"print(clinical_data.head())\n",
"print(f\"Clinical data shape: {clinical_data.shape}\")\n",
"\n",
"# Check if gene expression data exists\n",
"is_gene_available = True # Default assumption based on the file being a series matrix\n",
"\n",
"# Now examine each row to find trait, age, and gender information\n",
"row_descriptions = []\n",
"for i, row in clinical_data.iterrows():\n",
" unique_values = set(row)\n",
" row_descriptions.append((i, unique_values))\n",
" print(f\"Row {i}: {list(unique_values)[:3]}{'...' if len(unique_values) > 3 else ''}\")\n",
"\n",
"# Based on the row contents, identify trait_row, age_row, and gender_row\n",
"trait_row = None\n",
"age_row = None\n",
"gender_row = None\n",
"\n",
"# Define conversion functions\n",
"def convert_trait(value):\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" value = str(value).lower() if value is not None else \"\"\n",
" \n",
" # Extract the actual value if there's a colon\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert to binary: 1 for depression, 0 for control\n",
" if any(term in value for term in ['depression', 'mdd', 'major depressive disorder']):\n",
" return 1\n",
" elif any(term in value for term in ['control', 'healthy', 'normal']):\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" value = str(value)\n",
" \n",
" # Extract the actual value if there's a colon\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Try to extract numeric age\n",
" import re\n",
" age_match = re.search(r'(\\d+(?:\\.\\d+)?)', value)\n",
" if age_match:\n",
" return float(age_match.group(1))\n",
" \n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" value = str(value).lower()\n",
" \n",
" # Extract the actual value if there's a colon\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Female: 0, Male: 1\n",
" if any(term in value for term in ['f', 'female', 'women', 'woman']):\n",
" return 0\n",
" elif any(term in value for term in ['m', 'male', 'men', 'man']):\n",
" return 1\n",
" \n",
" return None\n",
"\n",
"# Search for trait, age, and gender rows by examining values\n",
"for i, values in row_descriptions:\n",
" values_str = ' '.join([str(v).lower() for v in values])\n",
" \n",
" # Look for depression/MDD indicators\n",
" if trait_row is None and ('depression' in values_str or 'mdd' in values_str or 'control' in values_str):\n",
" trait_row = i\n",
" print(f\"Found trait row at index {i}\")\n",
" \n",
" # Look for age indicators\n",
" if age_row is None and ('age' in values_str or 'years' in values_str):\n",
" age_row = i\n",
" print(f\"Found age row at index {i}\")\n",
" \n",
" # Look for gender indicators\n",
" if gender_row is None and ('gender' in values_str or 'sex' in values_str or 'male' in values_str or 'female' in values_str):\n",
" gender_row = i\n",
" print(f\"Found gender row at index {i}\")\n",
"\n",
"# Check trait availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Initial validation to check if this dataset is worth processing further\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# If clinical data is available and trait_row is identified, extract and save features\n",
"if is_trait_available and clinical_data is not None:\n",
" # Extract clinical features\n",
" clinical_features = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age if age_row is not None else None,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender if gender_row is not None else None\n",
" )\n",
" \n",
" # Preview the extracted clinical features\n",
" preview = preview_df(clinical_features)\n",
" print(\"\\nClinical features preview:\")\n",
" print(preview)\n",
" \n",
" # Save clinical features to CSV\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" clinical_features.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical features saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "c17bb83c",
"metadata": {},
"source": [
"### Step 5: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "58437d7e",
"metadata": {},
"outputs": [],
"source": [
"# 1. Get the SOFT and matrix file paths again \n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"Matrix file found: {matrix_file}\")\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" \n",
" # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "9ee549f5",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b6faf74",
"metadata": {},
"outputs": [],
"source": [
"# Evaluating gene identifiers\n",
"# The identifiers shown (1, 2, 3, etc.) are numeric indices, not human gene symbols\n",
"# These are likely probe IDs or feature IDs from a microarray or sequencing platform\n",
"# They need to be mapped to proper gene symbols for biological interpretation\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "eb01dc47",
"metadata": {},
"source": [
"### Step 7: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8008789d",
"metadata": {},
"outputs": [],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# Check if there are any platforms defined in the SOFT file that might contain annotation data\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" soft_content = f.read()\n",
"\n",
"# Look for platform sections in the SOFT file\n",
"platform_sections = re.findall(r'^!Platform_title\\s*=\\s*(.+)$', soft_content, re.MULTILINE)\n",
"if platform_sections:\n",
" print(f\"Platform title found: {platform_sections[0]}\")\n",
"\n",
"# Try to extract more annotation data by reading directly from the SOFT file\n",
"# Look for lines that might contain gene symbol mappings\n",
"symbol_pattern = re.compile(r'ID_REF\\s+Symbol|ID\\s+Gene Symbol', re.IGNORECASE)\n",
"annotation_lines = []\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" for line in f:\n",
" if symbol_pattern.search(line):\n",
" annotation_lines.append(line)\n",
" # Collect the next few lines to see the annotation structure\n",
" for _ in range(10):\n",
" annotation_lines.append(next(f, ''))\n",
"\n",
"if annotation_lines:\n",
" print(\"Found potential gene symbol mappings:\")\n",
" for line in annotation_lines:\n",
" print(line.strip())\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"\\nGene annotation preview:\")\n",
"print(preview_df(gene_annotation, n=10))\n",
"\n",
"# If we need an alternative source of mapping, check if there are any other annotation files in the cohort directory\n",
"cohort_files = os.listdir(in_cohort_dir)\n",
"annotation_files = [f for f in cohort_files if 'annotation' in f.lower() or 'platform' in f.lower()]\n",
"if annotation_files:\n",
" print(\"\\nAdditional annotation files found in the cohort directory:\")\n",
" for file in annotation_files:\n",
" print(file)\n"
]
},
{
"cell_type": "markdown",
"id": "38803b07",
"metadata": {},
"source": [
"### Step 8: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5888cd8e",
"metadata": {},
"outputs": [],
"source": [
"# Examine gene_annotation to find the column containing gene symbols\n",
"print(\"Gene annotation columns:\", gene_annotation.columns.tolist())\n",
"\n",
"# After examining the annotation data and the first few rows, I need to determine which\n",
"# columns contain the gene identifiers and gene symbols\n",
"\n",
"# Check if 'GENE_SYMBOL' column exists in the annotation\n",
"if 'GENE_SYMBOL' in gene_annotation.columns:\n",
" gene_col = 'GENE_SYMBOL'\n",
"elif 'GENE' in gene_annotation.columns:\n",
" gene_col = 'GENE'\n",
"elif 'SYMBOL' in gene_annotation.columns:\n",
" gene_col = 'SYMBOL'\n",
"else:\n",
" # If no obvious gene symbol column is found, check if gene symbol information\n",
" # might be embedded in another column like NAME or SPOT_ID\n",
" # For Agilent platforms, sometimes gene info is in the SEQUENCE column\n",
" sample_rows = gene_annotation.iloc[100:120] # Check rows after control probes\n",
" print(\"Sample rows to look for gene symbols:\")\n",
" print(sample_rows[['ID', 'NAME', 'SPOT_ID']].head())\n",
" \n",
" # Default to NAME column which often contains gene information\n",
" gene_col = 'NAME'\n",
"\n",
"# The ID column should be the probe identifier that matches the gene expression data\n",
"id_col = 'ID'\n",
"\n",
"print(f\"Using {id_col} for probe identifiers and {gene_col} for gene symbols\")\n",
"\n",
"# Get mapping between probe IDs and gene symbols\n",
"mapping_df = get_gene_mapping(gene_annotation, id_col, gene_col)\n",
"print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n",
"print(\"Mapping preview:\")\n",
"print(mapping_df.head(10))\n",
"\n",
"# Apply the mapping to convert probe-level data to gene-level data\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
"print(\"First 10 gene symbols:\")\n",
"print(gene_data.index[:10].tolist())\n",
"\n",
"# Save the gene expression data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to: {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "f722ce84",
"metadata": {},
"source": [
"### Step 9: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "16ba7ece",
"metadata": {},
"outputs": [],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"try:\n",
" normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
" print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
" \n",
" # Save the normalized gene data\n",
" os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
" normalized_gene_data.to_csv(out_gene_data_file)\n",
" print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"except Exception as e:\n",
" print(f\"Error normalizing gene data: {e}\")\n",
" normalized_gene_data = gene_data # Use original data if normalization fails\n",
" \n",
"# 2. Recreate clinical data using correct row indices from step 2\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
"\n",
"# Extract clinical features using correct row indices and conversion functions\n",
"def convert_trait(value):\n",
" \"\"\"Convert depression history data to binary format (0 = no, 1 = yes)\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract value after colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip().lower()\n",
" else:\n",
" value = value.strip().lower()\n",
" \n",
" if value == 'yes':\n",
" return 1\n",
" elif value == 'no':\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age data to continuous format\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract value after colon if present\n",
" if ':' in value:\n",
" age_str = value.split(':', 1)[1].strip()\n",
" else:\n",
" age_str = value.strip()\n",
" \n",
" try:\n",
" return float(age_str)\n",
" except ValueError:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender data to binary format (0 = female, 1 = male)\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract value after colon if present\n",
" if ':' in value:\n",
" gender = value.split(':', 1)[1].strip().lower()\n",
" else:\n",
" gender = value.strip().lower()\n",
" \n",
" if gender == 'female':\n",
" return 0\n",
" elif gender == 'male':\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# Use correct row indices identified in step 2\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait, # Using the trait variable from context (Depression)\n",
" trait_row=9, # Using row 9 for depression history as identified in step 2\n",
" convert_trait=convert_trait,\n",
" age_row=1, # Age data is in row 1\n",
" convert_age=convert_age,\n",
" gender_row=2, # Gender data is in row 2\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_df))\n",
"\n",
"# Save clinical data for future reference\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# 2. Link clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
"print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Linked data is empty\")\n",
"\n",
"# 3. Handle missing values\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 4. Check for bias in features\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 5. Validate and save cohort information\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=\"Dataset contains gene expression data from peripheral blood mononuclear cells of older adults with and without depression history, from a study on insomnia disorder.\"\n",
")\n",
"\n",
"# 6. Save the linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset is not usable for analysis. No linked data file saved.\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|