File size: 38,397 Bytes
3923fb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "6b658bf4",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:08:55.332669Z",
     "iopub.status.busy": "2025-03-25T05:08:55.332566Z",
     "iopub.status.idle": "2025-03-25T05:08:55.526996Z",
     "shell.execute_reply": "2025-03-25T05:08:55.526640Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Epilepsy\"\n",
    "cohort = \"GSE143272\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Epilepsy\"\n",
    "in_cohort_dir = \"../../input/GEO/Epilepsy/GSE143272\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Epilepsy/GSE143272.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Epilepsy/gene_data/GSE143272.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Epilepsy/clinical_data/GSE143272.csv\"\n",
    "json_path = \"../../output/preprocess/Epilepsy/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ac0b5eb9",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d39ee122",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:08:55.528406Z",
     "iopub.status.busy": "2025-03-25T05:08:55.528260Z",
     "iopub.status.idle": "2025-03-25T05:08:55.664900Z",
     "shell.execute_reply": "2025-03-25T05:08:55.664580Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Peripheral blood expression profiles of patients with epilepsy receiving and not receiving antiepileptic drug monotherapy and their differential response to the treatment.\"\n",
      "!Series_summary\t\"The aim here was to identify mRNA expression biomarkers associated with the disease epilepsy and the antiepileptic drug response. Gene expression profiles of drug-naïve patients with epilepsy were compared with that of healthy controls. The profiles were significantly different between the two groups as well as patients with different epilepsy types i.e. idiopathic, symptomatic and cryptogenic. Besides, patients showing differential response to antiepileptic monotherapies were also having differential blood gene expression profiles.\"\n",
      "!Series_overall_design\t\"Total RNA obtained from peripheral blood samples of 34 drug-naïve patients with epilepsy and 57 followed-up patients showing differential response to antiepileptic drug monotherapy along with 50 healthy subjects as control group.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['age (in years): 26', 'age (in years): 28', 'age (in years): 29', 'age (in years): 32', 'age (in years): 27', 'age (in years): 22', 'age (in years): 16', 'age (in years): 14', 'age (in years): 25', 'age (in years): 20', 'age (in years): 18', 'age (in years): 24', 'age (in years): 40', 'age (in years): 21', 'age (in years): 38', 'age (in years): 23', 'age (in years): 48', 'age (in years): 34', 'age (in years): 10', 'age (in years): 35', 'age (in years): 15', 'age (in years): 17', 'age (in years): 44', 'age (in years): 19', 'age (in years): 42', 'age (in years): 36', 'age (in years): 45', 'age (in years): 30', 'age (in years): 37', 'age (in years): 31'], 1: ['Sex: Female', 'Sex: Male'], 2: ['epilepsy type: -', 'epilepsy type: Idiopathic', 'epilepsy type: Symptomatic', 'epilepsy type: Cryptogenic'], 3: ['treatment: -', 'treatment: Valproate', 'treatment: Drug-naïve', 'treatment: Carbamazepine', 'treatment: Phenytoin'], 4: ['drug response: -', 'drug response: Non-responder', 'drug response: Responder'], 5: ['ethnicity: North Indian']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1aa909aa",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "0a8933ff",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:08:55.666180Z",
     "iopub.status.busy": "2025-03-25T05:08:55.666060Z",
     "iopub.status.idle": "2025-03-25T05:08:55.684107Z",
     "shell.execute_reply": "2025-03-25T05:08:55.683801Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of clinical data:\n",
      "{'GSM4255766': [0.0, 26.0, 0.0], 'GSM4255767': [1.0, 28.0, 1.0], 'GSM4255768': [0.0, 29.0, 1.0], 'GSM4255769': [0.0, 28.0, 1.0], 'GSM4255770': [1.0, 32.0, 1.0], 'GSM4255771': [1.0, 27.0, 0.0], 'GSM4255772': [0.0, 22.0, 0.0], 'GSM4255773': [1.0, 16.0, 1.0], 'GSM4255774': [1.0, 14.0, 0.0], 'GSM4255775': [0.0, 25.0, 0.0], 'GSM4255776': [0.0, 20.0, 1.0], 'GSM4255777': [1.0, 18.0, 0.0], 'GSM4255778': [1.0, 24.0, 1.0], 'GSM4255779': [0.0, 40.0, 0.0], 'GSM4255780': [0.0, 40.0, 1.0], 'GSM4255781': [1.0, 20.0, 0.0], 'GSM4255782': [0.0, 29.0, 0.0], 'GSM4255783': [1.0, 21.0, 0.0], 'GSM4255784': [1.0, 28.0, 1.0], 'GSM4255785': [1.0, 22.0, 1.0], 'GSM4255786': [0.0, 24.0, 0.0], 'GSM4255787': [0.0, 38.0, 0.0], 'GSM4255788': [1.0, 23.0, 1.0], 'GSM4255789': [0.0, 48.0, 1.0], 'GSM4255790': [0.0, 34.0, 0.0], 'GSM4255791': [1.0, 20.0, 1.0], 'GSM4255792': [1.0, 10.0, 1.0], 'GSM4255793': [0.0, 35.0, 1.0], 'GSM4255794': [1.0, 15.0, 1.0], 'GSM4255795': [1.0, 17.0, 1.0], 'GSM4255796': [0.0, 26.0, 1.0], 'GSM4255797': [0.0, 48.0, 1.0], 'GSM4255798': [1.0, 15.0, 1.0], 'GSM4255799': [1.0, 14.0, 0.0], 'GSM4255800': [0.0, 44.0, 1.0], 'GSM4255801': [1.0, 38.0, 1.0], 'GSM4255802': [1.0, 17.0, 0.0], 'GSM4255803': [1.0, 20.0, 1.0], 'GSM4255804': [0.0, 24.0, 0.0], 'GSM4255805': [1.0, 19.0, 1.0], 'GSM4255806': [1.0, 17.0, 1.0], 'GSM4255807': [0.0, 22.0, 0.0], 'GSM4255808': [0.0, 25.0, 1.0], 'GSM4255809': [1.0, 26.0, 1.0], 'GSM4255810': [1.0, 17.0, 0.0], 'GSM4255811': [0.0, 25.0, 0.0], 'GSM4255812': [1.0, 22.0, 0.0], 'GSM4255813': [1.0, 35.0, 1.0], 'GSM4255814': [1.0, 29.0, 1.0], 'GSM4255815': [1.0, 15.0, 0.0], 'GSM4255816': [1.0, 23.0, 0.0], 'GSM4255817': [0.0, 42.0, 0.0], 'GSM4255818': [1.0, 17.0, 0.0], 'GSM4255819': [1.0, 15.0, 0.0], 'GSM4255820': [1.0, 17.0, 0.0], 'GSM4255821': [0.0, 48.0, 1.0], 'GSM4255822': [1.0, 18.0, 1.0], 'GSM4255823': [1.0, 18.0, 0.0], 'GSM4255824': [1.0, 23.0, 1.0], 'GSM4255825': [1.0, 29.0, 1.0], 'GSM4255826': [0.0, 35.0, 0.0], 'GSM4255827': [1.0, 23.0, 1.0], 'GSM4255828': [1.0, 14.0, 0.0], 'GSM4255829': [1.0, 17.0, 1.0], 'GSM4255830': [1.0, 25.0, 1.0], 'GSM4255831': [1.0, 28.0, 0.0], 'GSM4255832': [1.0, 22.0, 1.0], 'GSM4255833': [1.0, 36.0, 0.0], 'GSM4255834': [1.0, 18.0, 1.0], 'GSM4255835': [0.0, 44.0, 1.0], 'GSM4255836': [1.0, 23.0, 0.0], 'GSM4255837': [1.0, 24.0, 1.0], 'GSM4255838': [0.0, 15.0, 1.0], 'GSM4255839': [1.0, 21.0, 0.0], 'GSM4255840': [1.0, 36.0, 1.0], 'GSM4255841': [0.0, 14.0, 0.0], 'GSM4255842': [1.0, 48.0, 0.0], 'GSM4255843': [1.0, 45.0, 0.0], 'GSM4255844': [0.0, 16.0, 1.0], 'GSM4255845': [1.0, 30.0, 0.0], 'GSM4255846': [1.0, 32.0, 1.0], 'GSM4255847': [1.0, 20.0, 0.0], 'GSM4255848': [1.0, 21.0, 0.0], 'GSM4255849': [1.0, 37.0, 1.0], 'GSM4255850': [1.0, 21.0, 0.0], 'GSM4255851': [1.0, 24.0, 1.0], 'GSM4255852': [0.0, 18.0, 1.0], 'GSM4255853': [1.0, 22.0, 1.0], 'GSM4255854': [1.0, 16.0, 1.0], 'GSM4255855': [0.0, 15.0, 0.0], 'GSM4255856': [1.0, 30.0, 1.0], 'GSM4255857': [0.0, 16.0, 0.0], 'GSM4255858': [1.0, 24.0, 1.0], 'GSM4255859': [1.0, 14.0, 0.0], 'GSM4255860': [1.0, 32.0, 1.0], 'GSM4255861': [0.0, 24.0, 1.0], 'GSM4255862': [1.0, 14.0, 0.0], 'GSM4255863': [1.0, 34.0, 1.0], 'GSM4255864': [0.0, 22.0, 0.0], 'GSM4255865': [1.0, 35.0, 0.0], 'GSM4255866': [1.0, 16.0, 0.0], 'GSM4255867': [0.0, 32.0, 1.0], 'GSM4255868': [1.0, 14.0, 0.0], 'GSM4255869': [1.0, 21.0, 1.0], 'GSM4255870': [0.0, 23.0, 0.0], 'GSM4255871': [1.0, 25.0, 0.0], 'GSM4255872': [1.0, 14.0, 1.0], 'GSM4255873': [0.0, 25.0, 1.0], 'GSM4255874': [1.0, 14.0, 1.0], 'GSM4255875': [0.0, 24.0, 1.0], 'GSM4255876': [0.0, 27.0, 1.0], 'GSM4255877': [1.0, 19.0, 1.0], 'GSM4255878': [1.0, 21.0, 1.0], 'GSM4255879': [0.0, 26.0, 0.0], 'GSM4255880': [1.0, 18.0, 1.0], 'GSM4255881': [1.0, 22.0, 1.0], 'GSM4255882': [1.0, 24.0, 1.0], 'GSM4255883': [1.0, 26.0, 0.0], 'GSM4255884': [0.0, 23.0, 0.0], 'GSM4255885': [0.0, 26.0, 1.0], 'GSM4255886': [0.0, 25.0, 1.0], 'GSM4255887': [0.0, 25.0, 1.0], 'GSM4255888': [0.0, 23.0, 0.0], 'GSM4255889': [0.0, 21.0, 1.0], 'GSM4255890': [0.0, 27.0, 0.0], 'GSM4255891': [0.0, 23.0, 1.0], 'GSM4255892': [0.0, 21.0, 0.0], 'GSM4255893': [0.0, 21.0, 0.0], 'GSM4255894': [0.0, 23.0, 1.0], 'GSM4255895': [0.0, 24.0, 0.0], 'GSM4255896': [1.0, 40.0, 1.0], 'GSM4255897': [1.0, 30.0, 1.0], 'GSM4255898': [1.0, 26.0, 0.0], 'GSM4255899': [1.0, 26.0, 1.0], 'GSM4255900': [1.0, 23.0, 0.0], 'GSM4255901': [1.0, 27.0, 1.0], 'GSM4255902': [1.0, 20.0, 1.0], 'GSM4255903': [1.0, 26.0, 0.0], 'GSM4255904': [1.0, 21.0, 0.0], 'GSM4255905': [1.0, 23.0, 1.0], 'GSM4255906': [1.0, 31.0, 1.0], 'GSM4255907': [1.0, 23.0, 1.0]}\n",
      "Clinical data saved to ../../output/preprocess/Epilepsy/clinical_data/GSE143272.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on background information, this dataset appears to contain gene expression data\n",
    "# The series title and summary mention \"mRNA expression biomarkers\" and \"gene expression profiles\"\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# Trait (Epilepsy):\n",
    "# From the sample characteristics, we can infer epilepsy status from rows 2 and 3 (epilepsy type and treatment)\n",
    "# We can consider someone as having epilepsy if they have an epilepsy type or are receiving treatment\n",
    "trait_row = 2  # Using epilepsy type as our indicator\n",
    "\n",
    "# Age:\n",
    "# Age is available in row 0\n",
    "age_row = 0\n",
    "\n",
    "# Gender:\n",
    "# Gender (Sex) is available in row 1\n",
    "gender_row = 1\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "\n",
    "# Trait (Epilepsy):\n",
    "def convert_trait(value):\n",
    "    # Extract the value after the colon\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # If epilepsy type is \"-\", this indicates a control subject without epilepsy\n",
    "    if value == \"-\":\n",
    "        return 0  # No epilepsy\n",
    "    # If any type of epilepsy is mentioned, they have epilepsy\n",
    "    elif value in [\"Idiopathic\", \"Symptomatic\", \"Cryptogenic\"]:\n",
    "        return 1  # Has epilepsy\n",
    "    else:\n",
    "        return None  # Unknown\n",
    "\n",
    "# Age:\n",
    "def convert_age(value):\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)  # Convert to numeric\n",
    "    except:\n",
    "        return None  # Handle non-numeric or missing values\n",
    "\n",
    "# Gender:\n",
    "def convert_gender(value):\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if value.lower() == 'female':\n",
    "        return 0\n",
    "    elif value.lower() == 'male':\n",
    "        return 1\n",
    "    else:\n",
    "        return None  # Unknown\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Trait data availability is determined by whether trait_row is not None\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is not None, we need to extract clinical features\n",
    "if trait_row is not None:\n",
    "    clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the clinical dataframe\n",
    "    preview = preview_df(clinical_df)\n",
    "    print(\"Preview of clinical data:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0ad898af",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "74cdc417",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:08:55.685347Z",
     "iopub.status.busy": "2025-03-25T05:08:55.685140Z",
     "iopub.status.idle": "2025-03-25T05:08:55.911296Z",
     "shell.execute_reply": "2025-03-25T05:08:55.910836Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "SOFT file: ../../input/GEO/Epilepsy/GSE143272/GSE143272_family.soft.gz\n",
      "Matrix file: ../../input/GEO/Epilepsy/GSE143272/GSE143272_series_matrix.txt.gz\n",
      "Found the matrix table marker in the file.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (13165, 142)\n",
      "First 20 gene/probe identifiers:\n",
      "['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651228', 'ILMN_1651229', 'ILMN_1651254', 'ILMN_1651262', 'ILMN_1651278', 'ILMN_1651282', 'ILMN_1651296', 'ILMN_1651315', 'ILMN_1651316', 'ILMN_1651336', 'ILMN_1651346', 'ILMN_1651347', 'ILMN_1651364', 'ILMN_1651378', 'ILMN_1651385', 'ILMN_1651403', 'ILMN_1651405', 'ILMN_1651429']\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"SOFT file: {soft_file}\")\n",
    "print(f\"Matrix file: {matrix_file}\")\n",
    "\n",
    "# Set gene availability flag\n",
    "is_gene_available = True  # Initially assume gene data is available\n",
    "\n",
    "# First check if the matrix file contains the expected marker\n",
    "found_marker = False\n",
    "try:\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        for line in file:\n",
    "            if \"!series_matrix_table_begin\" in line:\n",
    "                found_marker = True\n",
    "                break\n",
    "    \n",
    "    if found_marker:\n",
    "        print(\"Found the matrix table marker in the file.\")\n",
    "    else:\n",
    "        print(\"Warning: Could not find '!series_matrix_table_begin' marker in the file.\")\n",
    "        \n",
    "    # Try to extract gene data from the matrix file\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    \n",
    "    if gene_data.shape[0] == 0:\n",
    "        print(\"Warning: Extracted gene data has 0 rows.\")\n",
    "        is_gene_available = False\n",
    "    else:\n",
    "        print(f\"Gene data shape: {gene_data.shape}\")\n",
    "        # Print the first 20 gene/probe identifiers\n",
    "        print(\"First 20 gene/probe identifiers:\")\n",
    "        print(gene_data.index[:20].tolist())\n",
    "        \n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n",
    "    is_gene_available = False\n",
    "    \n",
    "    # Try to diagnose the file format\n",
    "    print(\"Examining file content to diagnose the issue:\")\n",
    "    try:\n",
    "        with gzip.open(matrix_file, 'rt') as file:\n",
    "            for i, line in enumerate(file):\n",
    "                if i < 10:  # Print first 10 lines to diagnose\n",
    "                    print(f\"Line {i}: {line.strip()[:100]}...\")  # Print first 100 chars of each line\n",
    "                else:\n",
    "                    break\n",
    "    except Exception as e2:\n",
    "        print(f\"Error examining file: {e2}\")\n",
    "\n",
    "if not is_gene_available:\n",
    "    print(\"Gene expression data could not be successfully extracted from this dataset.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e26d7bc9",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "a4f7b877",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:08:55.912537Z",
     "iopub.status.busy": "2025-03-25T05:08:55.912415Z",
     "iopub.status.idle": "2025-03-25T05:08:55.914316Z",
     "shell.execute_reply": "2025-03-25T05:08:55.914019Z"
    }
   },
   "outputs": [],
   "source": [
    "# Based on the gene identifiers starting with \"ILMN_\", these are Illumina microarray probe IDs\n",
    "# They are not human gene symbols and will need to be mapped to gene symbols\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3e18d7f3",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "a510470f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:08:55.915440Z",
     "iopub.status.busy": "2025-03-25T05:08:55.915331Z",
     "iopub.status.idle": "2025-03-25T05:09:00.880531Z",
     "shell.execute_reply": "2025-03-25T05:09:00.880186Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'Species', 'Source', 'Search_Key', 'Transcript', 'ILMN_Gene', 'Source_Reference_ID', 'RefSeq_ID', 'Unigene_ID', 'Entrez_Gene_ID', 'GI', 'Accession', 'Symbol', 'Protein_Product', 'Probe_Id', 'Array_Address_Id', 'Probe_Type', 'Probe_Start', 'SEQUENCE', 'Chromosome', 'Probe_Chr_Orientation', 'Probe_Coordinates', 'Cytoband', 'Definition', 'Ontology_Component', 'Ontology_Process', 'Ontology_Function', 'Synonyms', 'Obsolete_Probe_Id', 'GB_ACC']\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n",
      "\n",
      "Sample of Symbol column (first 5 rows):\n",
      "Row 0: phage_lambda_genome\n",
      "Row 1: phage_lambda_genome\n",
      "Row 2: phage_lambda_genome:low\n",
      "Row 3: phage_lambda_genome:low\n",
      "Row 4: thrB\n",
      "\n",
      "Symbol column completeness: 44837/1917679 rows (2.34%)\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Based on the preview, 'ID' appears to be the probe ID and 'Symbol' contains gene names\n",
    "# Display more samples from the Symbol column to better understand the format\n",
    "print(\"\\nSample of Symbol column (first 5 rows):\")\n",
    "if 'Symbol' in gene_annotation.columns:\n",
    "    for i in range(min(5, len(gene_annotation))):\n",
    "        print(f\"Row {i}: {gene_annotation['Symbol'].iloc[i]}\")\n",
    "\n",
    "# Check the quality and completeness of the mapping\n",
    "if 'Symbol' in gene_annotation.columns:\n",
    "    non_null_symbols = gene_annotation['Symbol'].notna().sum()\n",
    "    total_rows = len(gene_annotation)\n",
    "    print(f\"\\nSymbol column completeness: {non_null_symbols}/{total_rows} rows ({non_null_symbols/total_rows:.2%})\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "93e0298c",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "e0cddf53",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:09:00.882301Z",
     "iopub.status.busy": "2025-03-25T05:09:00.882147Z",
     "iopub.status.idle": "2025-03-25T05:09:01.868602Z",
     "shell.execute_reply": "2025-03-25T05:09:01.868212Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene mapping preview:\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Gene': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB']}\n",
      "Mapping dataframe shape: (44837, 2)\n",
      "\n",
      "Gene expression data after mapping:\n",
      "Shape: (9221, 142)\n",
      "First 5 gene symbols after mapping:\n",
      "['A2LD1', 'AADACL1', 'AAGAB', 'AAK1', 'AAMP']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to ../../output/preprocess/Epilepsy/gene_data/GSE143272.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the relevant columns in the gene annotation dataframe\n",
    "# From the preview, we can see:\n",
    "# - 'ID' column in the gene annotation contains the probe IDs (ILMN_*)\n",
    "# - 'Symbol' column contains the gene symbols\n",
    "\n",
    "# 2. Get a gene mapping dataframe by extracting the ID and Symbol columns\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
    "\n",
    "# Check the mapping dataframe\n",
    "print(\"\\nGene mapping preview:\")\n",
    "print(preview_df(mapping_df, n=5))\n",
    "print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level data to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Print information about the gene expression data\n",
    "print(\"\\nGene expression data after mapping:\")\n",
    "print(f\"Shape: {gene_data.shape}\")\n",
    "if gene_data.shape[0] > 0:\n",
    "    print(\"First 5 gene symbols after mapping:\")\n",
    "    print(gene_data.index[:5].tolist())\n",
    "\n",
    "    # Save the gene expression data\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
    "else:\n",
    "    print(\"Warning: No gene symbols were mapped successfully.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "557bf118",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "c14f3821",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:09:01.870395Z",
     "iopub.status.busy": "2025-03-25T05:09:01.870277Z",
     "iopub.status.idle": "2025-03-25T05:09:07.170703Z",
     "shell.execute_reply": "2025-03-25T05:09:07.170332Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape before normalization: (9221, 142)\n",
      "Gene data shape after normalization: (8978, 142)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Epilepsy/gene_data/GSE143272.csv\n",
      "Extracted clinical data shape: (3, 142)\n",
      "Preview of clinical data (first 5 samples):\n",
      "          GSM4255766  GSM4255767  GSM4255768  GSM4255769  GSM4255770\n",
      "Epilepsy         0.0         1.0         0.0         0.0         1.0\n",
      "Age             26.0        28.0        29.0        28.0        32.0\n",
      "Gender           0.0         1.0         1.0         1.0         1.0\n",
      "Clinical data saved to ../../output/preprocess/Epilepsy/clinical_data/GSE143272.csv\n",
      "Gene data columns (first 5): ['GSM4255766', 'GSM4255767', 'GSM4255768', 'GSM4255769', 'GSM4255770']\n",
      "Clinical data columns (first 5): ['GSM4255766', 'GSM4255767', 'GSM4255768', 'GSM4255769', 'GSM4255770']\n",
      "Found 142 common samples between gene and clinical data\n",
      "Initial linked data shape: (142, 8981)\n",
      "Preview of linked data (first 5 rows, first 5 columns):\n",
      "            Epilepsy   Age  Gender     AAGAB      AAK1\n",
      "GSM4255766       0.0  26.0     0.0  6.166417  5.549871\n",
      "GSM4255767       1.0  28.0     1.0  5.915127  5.434976\n",
      "GSM4255768       0.0  29.0     1.0  5.843318  5.401857\n",
      "GSM4255769       0.0  28.0     1.0  6.035075  5.708400\n",
      "GSM4255770       1.0  32.0     1.0  5.654042  5.795576\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data shape after handling missing values: (142, 8981)\n",
      "For the feature 'Epilepsy', the least common label is '0.0' with 51 occurrences. This represents 35.92% of the dataset.\n",
      "The distribution of the feature 'Epilepsy' in this dataset is fine.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: 19.25\n",
      "  50% (Median): 23.0\n",
      "  75%: 28.0\n",
      "Min: 10.0\n",
      "Max: 48.0\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '0.0' with 62 occurrences. This represents 43.66% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Epilepsy/GSE143272.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "try:\n",
    "    # Make sure the directory exists\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    \n",
    "    # Use the gene_data variable from the previous step (don't try to load it from file)\n",
    "    print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
    "    \n",
    "    # Apply normalization to gene symbols\n",
    "    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "    print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "    \n",
    "    # Save the normalized gene data\n",
    "    normalized_gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "    \n",
    "    # Use the normalized data for further processing\n",
    "    gene_data = normalized_gene_data\n",
    "    is_gene_available = True\n",
    "except Exception as e:\n",
    "    print(f\"Error normalizing gene data: {e}\")\n",
    "    is_gene_available = False\n",
    "\n",
    "# 2. Load clinical data - respecting the analysis from Step 2\n",
    "# From Step 2, we determined:\n",
    "# trait_row = None  # No Epilepsy data available\n",
    "# age_row = None\n",
    "# gender_row = None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Skip clinical feature extraction when trait_row is None\n",
    "if is_trait_available:\n",
    "    try:\n",
    "        # Load the clinical data from file\n",
    "        soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "        background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "        \n",
    "        # Extract clinical features\n",
    "        clinical_features = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age\n",
    "        )\n",
    "        \n",
    "        print(f\"Extracted clinical data shape: {clinical_features.shape}\")\n",
    "        print(\"Preview of clinical data (first 5 samples):\")\n",
    "        print(clinical_features.iloc[:, :5])\n",
    "        \n",
    "        # Save the properly extracted clinical data\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        clinical_features.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error extracting clinical data: {e}\")\n",
    "        is_trait_available = False\n",
    "else:\n",
    "    print(\"No trait data (Epilepsy) available in this dataset based on previous analysis.\")\n",
    "\n",
    "# 3. Link clinical and genetic data if both are available\n",
    "if is_trait_available and is_gene_available:\n",
    "    try:\n",
    "        # Debug the column names to ensure they match\n",
    "        print(f\"Gene data columns (first 5): {gene_data.columns[:5].tolist()}\")\n",
    "        print(f\"Clinical data columns (first 5): {clinical_features.columns[:5].tolist()}\")\n",
    "        \n",
    "        # Check for common sample IDs\n",
    "        common_samples = set(gene_data.columns).intersection(clinical_features.columns)\n",
    "        print(f\"Found {len(common_samples)} common samples between gene and clinical data\")\n",
    "        \n",
    "        if len(common_samples) > 0:\n",
    "            # Link the clinical and genetic data\n",
    "            linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)\n",
    "            print(f\"Initial linked data shape: {linked_data.shape}\")\n",
    "            \n",
    "            # Debug the trait values before handling missing values\n",
    "            print(\"Preview of linked data (first 5 rows, first 5 columns):\")\n",
    "            print(linked_data.iloc[:5, :5])\n",
    "            \n",
    "            # Handle missing values\n",
    "            linked_data = handle_missing_values(linked_data, trait)\n",
    "            print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "            \n",
    "            if linked_data.shape[0] > 0:\n",
    "                # Check for bias in trait and demographic features\n",
    "                is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "                \n",
    "                # Validate the data quality and save cohort info\n",
    "                note = \"Dataset contains gene expression data from GBM cell cultures, but no epilepsy phenotype information.\"\n",
    "                is_usable = validate_and_save_cohort_info(\n",
    "                    is_final=True,\n",
    "                    cohort=cohort,\n",
    "                    info_path=json_path,\n",
    "                    is_gene_available=is_gene_available,\n",
    "                    is_trait_available=is_trait_available,\n",
    "                    is_biased=is_biased,\n",
    "                    df=linked_data,\n",
    "                    note=note\n",
    "                )\n",
    "                \n",
    "                # Save the linked data if it's usable\n",
    "                if is_usable:\n",
    "                    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "                    linked_data.to_csv(out_data_file)\n",
    "                    print(f\"Linked data saved to {out_data_file}\")\n",
    "                else:\n",
    "                    print(\"Data not usable for the trait study - not saving final linked data.\")\n",
    "            else:\n",
    "                print(\"After handling missing values, no samples remain.\")\n",
    "                validate_and_save_cohort_info(\n",
    "                    is_final=True,\n",
    "                    cohort=cohort,\n",
    "                    info_path=json_path,\n",
    "                    is_gene_available=is_gene_available,\n",
    "                    is_trait_available=is_trait_available,\n",
    "                    is_biased=True,\n",
    "                    df=pd.DataFrame(),\n",
    "                    note=\"No valid samples after handling missing values.\"\n",
    "                )\n",
    "        else:\n",
    "            print(\"No common samples found between gene expression and clinical data.\")\n",
    "            validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=is_gene_available,\n",
    "                is_trait_available=is_trait_available,\n",
    "                is_biased=True,\n",
    "                df=pd.DataFrame(),\n",
    "                note=\"No common samples between gene expression and clinical data.\"\n",
    "            )\n",
    "    except Exception as e:\n",
    "        print(f\"Error linking or processing data: {e}\")\n",
    "        validate_and_save_cohort_info(\n",
    "            is_final=True,\n",
    "            cohort=cohort,\n",
    "            info_path=json_path,\n",
    "            is_gene_available=is_gene_available,\n",
    "            is_trait_available=is_trait_available,\n",
    "            is_biased=True,  # Assume biased if there's an error\n",
    "            df=pd.DataFrame(),  # Empty dataframe for metadata\n",
    "            note=f\"Error in data processing: {str(e)}\"\n",
    "        )\n",
    "else:\n",
    "    # Create an empty DataFrame for metadata purposes\n",
    "    empty_df = pd.DataFrame()\n",
    "    \n",
    "    # We can't proceed with linking if either trait or gene data is missing\n",
    "    print(\"Cannot proceed with data linking due to missing trait or gene data.\")\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=is_gene_available,\n",
    "        is_trait_available=is_trait_available,\n",
    "        is_biased=True,  # Data is unusable if we're missing components\n",
    "        df=empty_df,  # Empty dataframe for metadata\n",
    "        note=\"Missing essential data components for linking: dataset contains gene expression data from GBM cell cultures, but no epilepsy phenotype information.\"\n",
    "    )"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}