File size: 31,496 Bytes
3923fb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "88c09c10",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:09:28.102100Z",
"iopub.status.busy": "2025-03-25T05:09:28.101915Z",
"iopub.status.idle": "2025-03-25T05:09:28.285425Z",
"shell.execute_reply": "2025-03-25T05:09:28.285090Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Epilepsy\"\n",
"cohort = \"GSE63808\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Epilepsy\"\n",
"in_cohort_dir = \"../../input/GEO/Epilepsy/GSE63808\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Epilepsy/GSE63808.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Epilepsy/gene_data/GSE63808.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Epilepsy/clinical_data/GSE63808.csv\"\n",
"json_path = \"../../output/preprocess/Epilepsy/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "bb9c5e30",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a5d3c922",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:09:28.286801Z",
"iopub.status.busy": "2025-03-25T05:09:28.286659Z",
"iopub.status.idle": "2025-03-25T05:09:28.570636Z",
"shell.execute_reply": "2025-03-25T05:09:28.570319Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"chronic temporal lobe epilepsy: biopsy hippocampus\"\n",
"!Series_summary\t\"Analysis of biopsy hippocampal tissue of patients with pharmacoresistant temporal lobe epilepsy (TLE) undergoing neurosurgical removal of the epileptogenic focus for seizure control. Chronic TLE goes along with focal hyperexcitability. Results provide insight into molecular mechanisms that may play a role in seizure propensity\"\n",
"!Series_overall_design\t\"129 human hippocampus samples\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['tissue: hippocampal formation'], 1: ['phenotype: epilepsy']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "220f4b67",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "23eb002a",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:09:28.571823Z",
"iopub.status.busy": "2025-03-25T05:09:28.571710Z",
"iopub.status.idle": "2025-03-25T05:09:28.577668Z",
"shell.execute_reply": "2025-03-25T05:09:28.577394Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import os\n",
"import json\n",
"from typing import Callable, Optional, Dict, Any\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, the dataset is about human hippocampus gene expression\n",
"# in epilepsy patients, which suggests gene expression data is available.\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# From the sample characteristics dictionary:\n",
"# Key 1 corresponds to 'phenotype: epilepsy' which is our trait\n",
"trait_row = 1\n",
"# Age is not available in the sample characteristics\n",
"age_row = None\n",
"# Gender is not available in the sample characteristics\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait value to binary (1 for epilepsy, 0 for control)\"\"\"\n",
" if value is None:\n",
" return None\n",
" # Extract the value after colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip().lower()\n",
" else:\n",
" value = value.strip().lower()\n",
" \n",
" # Based on the sample characteristics, all samples have epilepsy\n",
" # This is a constant feature which isn't useful for association studies\n",
" if 'epilepsy' in value:\n",
" return 1\n",
" # For completeness, though not present in this dataset\n",
" elif 'control' in value or 'normal' in value or 'healthy' in value:\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age value to continuous\"\"\"\n",
" # Not applicable as age data is not available\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
" # Not applicable as gender data is not available\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Since all samples have the same trait value (all are epilepsy cases),\n",
"# this is a constant feature and not useful for association studies\n",
"is_trait_available = False\n",
"\n",
"# Validate and save cohort info\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Skipping this step since trait data is not variable (constant feature)\n",
"# and the required clinical_data.csv file doesn't exist in the specified path\n"
]
},
{
"cell_type": "markdown",
"id": "ed365d91",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c73fddcf",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:09:28.578779Z",
"iopub.status.busy": "2025-03-25T05:09:28.578675Z",
"iopub.status.idle": "2025-03-25T05:09:29.223992Z",
"shell.execute_reply": "2025-03-25T05:09:29.223625Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"SOFT file: ../../input/GEO/Epilepsy/GSE63808/GSE63808_family.soft.gz\n",
"Matrix file: ../../input/GEO/Epilepsy/GSE63808/GSE63808_series_matrix.txt.gz\n",
"Found the matrix table marker in the file.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape: (48803, 129)\n",
"First 20 gene/probe identifiers:\n",
"['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209', 'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229', 'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236', 'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253', 'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262']\n"
]
}
],
"source": [
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"SOFT file: {soft_file}\")\n",
"print(f\"Matrix file: {matrix_file}\")\n",
"\n",
"# Set gene availability flag\n",
"is_gene_available = True # Initially assume gene data is available\n",
"\n",
"# First check if the matrix file contains the expected marker\n",
"found_marker = False\n",
"try:\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" for line in file:\n",
" if \"!series_matrix_table_begin\" in line:\n",
" found_marker = True\n",
" break\n",
" \n",
" if found_marker:\n",
" print(\"Found the matrix table marker in the file.\")\n",
" else:\n",
" print(\"Warning: Could not find '!series_matrix_table_begin' marker in the file.\")\n",
" \n",
" # Try to extract gene data from the matrix file\n",
" gene_data = get_genetic_data(matrix_file)\n",
" \n",
" if gene_data.shape[0] == 0:\n",
" print(\"Warning: Extracted gene data has 0 rows.\")\n",
" is_gene_available = False\n",
" else:\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" # Print the first 20 gene/probe identifiers\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20].tolist())\n",
" \n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n",
" is_gene_available = False\n",
" \n",
" # Try to diagnose the file format\n",
" print(\"Examining file content to diagnose the issue:\")\n",
" try:\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" for i, line in enumerate(file):\n",
" if i < 10: # Print first 10 lines to diagnose\n",
" print(f\"Line {i}: {line.strip()[:100]}...\") # Print first 100 chars of each line\n",
" else:\n",
" break\n",
" except Exception as e2:\n",
" print(f\"Error examining file: {e2}\")\n",
"\n",
"if not is_gene_available:\n",
" print(\"Gene expression data could not be successfully extracted from this dataset.\")\n"
]
},
{
"cell_type": "markdown",
"id": "fed50090",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9317d6cd",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:09:29.225253Z",
"iopub.status.busy": "2025-03-25T05:09:29.225148Z",
"iopub.status.idle": "2025-03-25T05:09:29.226965Z",
"shell.execute_reply": "2025-03-25T05:09:29.226700Z"
}
},
"outputs": [],
"source": [
"# Analyze the gene identifiers from the output\n",
"# The identifiers starting with \"ILMN_\" are Illumina microarray probe IDs\n",
"# These are not human gene symbols and need to be mapped to gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "3c1d2f4a",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2af1eef2",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:09:29.227982Z",
"iopub.status.busy": "2025-03-25T05:09:29.227882Z",
"iopub.status.idle": "2025-03-25T05:09:40.800523Z",
"shell.execute_reply": "2025-03-25T05:09:40.800204Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene annotation preview:\n",
"Columns in gene annotation: ['ID', 'nuID', 'Species', 'Source', 'Search_Key', 'Transcript', 'ILMN_Gene', 'Source_Reference_ID', 'RefSeq_ID', 'Unigene_ID', 'Entrez_Gene_ID', 'GI', 'Accession', 'Symbol', 'Protein_Product', 'Array_Address_Id', 'Probe_Type', 'Probe_Start', 'SEQUENCE', 'Chromosome', 'Probe_Chr_Orientation', 'Probe_Coordinates', 'Cytoband', 'Definition', 'Ontology_Component', 'Ontology_Process', 'Ontology_Function', 'Synonyms', 'Obsolete_Probe_Id', 'GB_ACC']\n",
"{'ID': ['ILMN_1725881', 'ILMN_1910180', 'ILMN_1804174', 'ILMN_1796063', 'ILMN_1811966'], 'nuID': ['rp13_p1x6D80lNLk3c', 'NEX0oqCV8.er4HVfU4', 'KyqQynMZxJcruyylEU', 'xXl7eXuF7sbPEp.KFI', '9ckqJrioiaej9_ajeQ'], 'Species': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Source': ['RefSeq', 'Unigene', 'RefSeq', 'RefSeq', 'RefSeq'], 'Search_Key': ['ILMN_44919', 'ILMN_127219', 'ILMN_139282', 'ILMN_5006', 'ILMN_38756'], 'Transcript': ['ILMN_44919', 'ILMN_127219', 'ILMN_139282', 'ILMN_5006', 'ILMN_38756'], 'ILMN_Gene': ['LOC23117', 'HS.575038', 'FCGR2B', 'TRIM44', 'LOC653895'], 'Source_Reference_ID': ['XM_933824.1', 'Hs.575038', 'XM_938851.1', 'NM_017583.3', 'XM_936379.1'], 'RefSeq_ID': ['XM_933824.1', nan, 'XM_938851.1', 'NM_017583.3', 'XM_936379.1'], 'Unigene_ID': [nan, 'Hs.575038', nan, nan, nan], 'Entrez_Gene_ID': [23117.0, nan, 2213.0, 54765.0, 653895.0], 'GI': [89040007.0, 10437021.0, 88952550.0, 29029528.0, 89033487.0], 'Accession': ['XM_933824.1', 'AK024680', 'XM_938851.1', 'NM_017583.3', 'XM_936379.1'], 'Symbol': ['LOC23117', nan, 'FCGR2B', 'TRIM44', 'LOC653895'], 'Protein_Product': ['XP_938917.1', nan, 'XP_943944.1', 'NP_060053.2', 'XP_941472.1'], 'Array_Address_Id': [1710221.0, 5900364.0, 2480717.0, 1300239.0, 4480719.0], 'Probe_Type': ['I', 'S', 'I', 'S', 'S'], 'Probe_Start': [122.0, 1409.0, 1643.0, 2901.0, 25.0], 'SEQUENCE': ['GGCTCCTCTTTGGGCTCCTACTGGAATTTATCAGCCATCAGTGCATCTCT', 'ACACCTTCAGGAGGGAAGCCCTTATTTCTGGGTTGAACTCCCCTTCCATG', 'TAGGGGCAATAGGCTATACGCTACAGCCTAGGTGTGTAGTAGGCCACACC', 'CCTGCCTGTCTGCCTGTGACCTGTGTACGTATTACAGGCTTTAGGACCAG', 'CTAGCAGGGAGCGGTGAGGGAGAGCGGCTGGATTTCTTGCGGGATCTGCA'], 'Chromosome': ['16', nan, nan, '11', nan], 'Probe_Chr_Orientation': ['-', nan, nan, '+', nan], 'Probe_Coordinates': ['21766363-21766363:21769901-21769949', nan, nan, '35786070-35786119', nan], 'Cytoband': ['16p12.2a', nan, '1q23.3b', '11p13a', '10q11.23b'], 'Definition': ['PREDICTED: Homo sapiens KIAA0220-like protein, transcript variant 11 (LOC23117), mRNA.', 'Homo sapiens cDNA: FLJ21027 fis, clone CAE07110', 'PREDICTED: Homo sapiens Fc fragment of IgG, low affinity IIb, receptor (CD32) (FCGR2B), mRNA.', 'Homo sapiens tripartite motif-containing 44 (TRIM44), mRNA.', 'PREDICTED: Homo sapiens similar to protein geranylgeranyltransferase type I, beta subunit (LOC653895), mRNA.'], 'Ontology_Component': [nan, nan, nan, 'intracellular [goid 5622] [evidence IEA]', nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, 'zinc ion binding [goid 8270] [evidence IEA]; metal ion binding [goid 46872] [evidence IEA]', nan], 'Synonyms': [nan, nan, nan, 'MGC3490; MC7; HSA249128; DIPB', nan], 'Obsolete_Probe_Id': [nan, nan, nan, 'MGC3490; MC7; HSA249128; DIPB', nan], 'GB_ACC': ['XM_933824.1', 'AK024680', 'XM_938851.1', 'NM_017583.3', 'XM_936379.1']}\n",
"\n",
"Sample of Description column (first 5 rows):\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
"print(\"\\nGene annotation preview:\")\n",
"print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
"print(preview_df(gene_annotation, n=5))\n",
"\n",
"# Based on the preview, 'ID' appears to be the probe ID and 'Description' contains gene names\n",
"# Display more samples from the Description column to better understand the format\n",
"print(\"\\nSample of Description column (first 5 rows):\")\n",
"if 'Description' in gene_annotation.columns:\n",
" for i in range(min(5, len(gene_annotation))):\n",
" print(f\"Row {i}: {gene_annotation['Description'].iloc[i]}\")\n"
]
},
{
"cell_type": "markdown",
"id": "912e4e61",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "3fe64fea",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:09:40.801984Z",
"iopub.status.busy": "2025-03-25T05:09:40.801864Z",
"iopub.status.idle": "2025-03-25T05:09:43.081043Z",
"shell.execute_reply": "2025-03-25T05:09:43.080544Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene mapping dataframe shape: (36157, 2)\n",
"Preview of gene_mapping dataframe:\n",
"{'ID': ['ILMN_1725881', 'ILMN_1804174', 'ILMN_1796063', 'ILMN_1811966', 'ILMN_1668162'], 'Gene': ['LOC23117', 'FCGR2B', 'TRIM44', 'LOC653895', 'DGAT2L3']}\n",
"\n",
"Applying gene mapping to convert probes to gene symbols...\n",
"After mapping: gene_data shape: (19120, 129)\n",
"First few genes in the expression data:\n",
"['A1BG', 'A1CF', 'A26A1', 'A26B1', 'A26C1B', 'A26C3', 'A2BP1', 'A2M', 'A2ML1', 'A3GALT2']\n",
"Number of unique genes: 19120\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to: ../../output/preprocess/Epilepsy/gene_data/GSE63808.csv\n"
]
}
],
"source": [
"# 1. Identify the columns needed for mapping\n",
"# 'ID' column in gene_annotation contains the probe identifiers (ILMN_*)\n",
"# 'Symbol' column contains the gene symbols we need to map to\n",
"prob_col = 'ID'\n",
"gene_col = 'Symbol'\n",
"\n",
"# 2. Get the gene mapping dataframe\n",
"gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
"print(f\"Gene mapping dataframe shape: {gene_mapping.shape}\")\n",
"print(\"Preview of gene_mapping dataframe:\")\n",
"print(preview_df(gene_mapping, n=5))\n",
"\n",
"# 3. Convert probe-level measurements to gene expression data\n",
"print(\"\\nApplying gene mapping to convert probes to gene symbols...\")\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"print(f\"After mapping: gene_data shape: {gene_data.shape}\")\n",
"print(\"First few genes in the expression data:\")\n",
"print(gene_data.index[:10].tolist())\n",
"\n",
"# Check the number of unique genes after mapping\n",
"print(f\"Number of unique genes: {len(gene_data)}\")\n",
"\n",
"# Save the processed gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to: {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "258d7812",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "df826f3d",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:09:43.082478Z",
"iopub.status.busy": "2025-03-25T05:09:43.082347Z",
"iopub.status.idle": "2025-03-25T05:09:50.739091Z",
"shell.execute_reply": "2025-03-25T05:09:50.738692Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape before normalization: (19120, 129)\n",
"Gene data shape after normalization: (18326, 129)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Epilepsy/gene_data/GSE63808.csv\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracted clinical data shape: (1, 129)\n",
"Preview of clinical data (first 5 samples):\n",
" GSM1565578 GSM1565579 GSM1565580 GSM1565581 GSM1565582\n",
"Epilepsy 1.0 1.0 1.0 1.0 1.0\n",
"Clinical data saved to ../../output/preprocess/Epilepsy/clinical_data/GSE63808.csv\n",
"Gene data columns (first 5): ['GSM1565578', 'GSM1565579', 'GSM1565580', 'GSM1565581', 'GSM1565582']\n",
"Clinical data columns (first 5): ['GSM1565578', 'GSM1565579', 'GSM1565580', 'GSM1565581', 'GSM1565582']\n",
"Found 129 common samples between gene and clinical data\n",
"Initial linked data shape: (129, 18327)\n",
"Preview of linked data (first 5 rows, first 5 columns):\n",
" Epilepsy A1BG A1CF A2M A2ML1\n",
"GSM1565578 1.0 171.960000 264.260000 431.243333 90.660000\n",
"GSM1565579 1.0 170.456667 261.040000 326.450000 101.096667\n",
"GSM1565580 1.0 175.460000 260.106667 331.516667 106.350000\n",
"GSM1565581 1.0 176.813333 254.776667 665.113333 89.360000\n",
"GSM1565582 1.0 178.753333 254.280000 326.263333 95.166667\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (129, 18327)\n",
"Quartiles for 'Epilepsy':\n",
" 25%: 1.0\n",
" 50% (Median): 1.0\n",
" 75%: 1.0\n",
"Min: 1.0\n",
"Max: 1.0\n",
"The distribution of the feature 'Epilepsy' in this dataset is severely biased.\n",
"\n",
"Data not usable for the trait study - not saving final linked data.\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"try:\n",
" # Make sure the directory exists\n",
" os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
" \n",
" # Use the gene_data variable from the previous step (don't try to load it from file)\n",
" print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
" \n",
" # Apply normalization to gene symbols\n",
" normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
" print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
" \n",
" # Save the normalized gene data\n",
" normalized_gene_data.to_csv(out_gene_data_file)\n",
" print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
" \n",
" # Use the normalized data for further processing\n",
" gene_data = normalized_gene_data\n",
" is_gene_available = True\n",
"except Exception as e:\n",
" print(f\"Error normalizing gene data: {e}\")\n",
" is_gene_available = False\n",
"\n",
"# 2. Load clinical data - respecting the analysis from Step 2\n",
"# From Step 2, we determined:\n",
"# trait_row = None # No Epilepsy data available\n",
"# age_row = None\n",
"# gender_row = None\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Skip clinical feature extraction when trait_row is None\n",
"if is_trait_available:\n",
" try:\n",
" # Load the clinical data from file\n",
" soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
" background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
" \n",
" # Extract clinical features\n",
" clinical_features = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender,\n",
" age_row=age_row,\n",
" convert_age=convert_age\n",
" )\n",
" \n",
" print(f\"Extracted clinical data shape: {clinical_features.shape}\")\n",
" print(\"Preview of clinical data (first 5 samples):\")\n",
" print(clinical_features.iloc[:, :5])\n",
" \n",
" # Save the properly extracted clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" clinical_features.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" except Exception as e:\n",
" print(f\"Error extracting clinical data: {e}\")\n",
" is_trait_available = False\n",
"else:\n",
" print(\"No trait data (Epilepsy) available in this dataset based on previous analysis.\")\n",
"\n",
"# 3. Link clinical and genetic data if both are available\n",
"if is_trait_available and is_gene_available:\n",
" try:\n",
" # Debug the column names to ensure they match\n",
" print(f\"Gene data columns (first 5): {gene_data.columns[:5].tolist()}\")\n",
" print(f\"Clinical data columns (first 5): {clinical_features.columns[:5].tolist()}\")\n",
" \n",
" # Check for common sample IDs\n",
" common_samples = set(gene_data.columns).intersection(clinical_features.columns)\n",
" print(f\"Found {len(common_samples)} common samples between gene and clinical data\")\n",
" \n",
" if len(common_samples) > 0:\n",
" # Link the clinical and genetic data\n",
" linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)\n",
" print(f\"Initial linked data shape: {linked_data.shape}\")\n",
" \n",
" # Debug the trait values before handling missing values\n",
" print(\"Preview of linked data (first 5 rows, first 5 columns):\")\n",
" print(linked_data.iloc[:5, :5])\n",
" \n",
" # Handle missing values\n",
" linked_data = handle_missing_values(linked_data, trait)\n",
" print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
" \n",
" if linked_data.shape[0] > 0:\n",
" # Check for bias in trait and demographic features\n",
" is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
" \n",
" # Validate the data quality and save cohort info\n",
" note = \"Dataset contains gene expression data from GBM cell cultures, but no epilepsy phenotype information.\"\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
" )\n",
" \n",
" # Save the linked data if it's usable\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" else:\n",
" print(\"Data not usable for the trait study - not saving final linked data.\")\n",
" else:\n",
" print(\"After handling missing values, no samples remain.\")\n",
" validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"No valid samples after handling missing values.\"\n",
" )\n",
" else:\n",
" print(\"No common samples found between gene expression and clinical data.\")\n",
" validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"No common samples between gene expression and clinical data.\"\n",
" )\n",
" except Exception as e:\n",
" print(f\"Error linking or processing data: {e}\")\n",
" validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=True, # Assume biased if there's an error\n",
" df=pd.DataFrame(), # Empty dataframe for metadata\n",
" note=f\"Error in data processing: {str(e)}\"\n",
" )\n",
"else:\n",
" # Create an empty DataFrame for metadata purposes\n",
" empty_df = pd.DataFrame()\n",
" \n",
" # We can't proceed with linking if either trait or gene data is missing\n",
" print(\"Cannot proceed with data linking due to missing trait or gene data.\")\n",
" validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=True, # Data is unusable if we're missing components\n",
" df=empty_df, # Empty dataframe for metadata\n",
" note=\"Missing essential data components for linking: dataset contains gene expression data from GBM cell cultures, but no epilepsy phenotype information.\"\n",
" )"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|