File size: 23,432 Bytes
6bc7e45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "4993ef44",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:10.163356Z",
"iopub.status.busy": "2025-03-25T06:23:10.163136Z",
"iopub.status.idle": "2025-03-25T06:23:10.328226Z",
"shell.execute_reply": "2025-03-25T06:23:10.327910Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Allergies\"\n",
"cohort = \"GSE169149\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Allergies\"\n",
"in_cohort_dir = \"../../input/GEO/Allergies/GSE169149\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Allergies/GSE169149.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Allergies/gene_data/GSE169149.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Allergies/clinical_data/GSE169149.csv\"\n",
"json_path = \"../../output/preprocess/Allergies/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "38b130e4",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "39a0275d",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:10.329627Z",
"iopub.status.busy": "2025-03-25T06:23:10.329488Z",
"iopub.status.idle": "2025-03-25T06:23:10.360515Z",
"shell.execute_reply": "2025-03-25T06:23:10.360227Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Evaluation of tofacitinib in cutaneous sarcoidosis\"\n",
"!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
"!Series_overall_design\t\"Refer to individual Series\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['subject status: Sarcoidosis patient', 'subject status: healthy control'], 1: ['treatment: none', 'treatment: tofacitinib'], 2: ['tissue: Blood']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "1ea8958d",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "24ee6f26",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:10.361524Z",
"iopub.status.busy": "2025-03-25T06:23:10.361422Z",
"iopub.status.idle": "2025-03-25T06:23:10.368296Z",
"shell.execute_reply": "2025-03-25T06:23:10.368012Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample Characteristics Dictionary:\n",
"{0: ['subject status: Sarcoidosis patient', 'subject status: healthy control'], 1: ['treatment: none', 'treatment: tofacitinib'], 2: ['tissue: Blood']}\n",
"Preview of extracted clinical data:\n",
"{'GSM5176932': [1.0], 'GSM5176933': [1.0], 'GSM5176934': [1.0], 'GSM5176935': [1.0], 'GSM5176936': [1.0], 'GSM5176937': [1.0], 'GSM5176938': [1.0], 'GSM5176939': [1.0], 'GSM5176940': [1.0], 'GSM5176941': [1.0], 'GSM5176942': [1.0], 'GSM5176943': [1.0], 'GSM5176944': [1.0], 'GSM5176945': [1.0], 'GSM5176946': [1.0], 'GSM5176947': [1.0], 'GSM5176948': [1.0], 'GSM5176949': [1.0], 'GSM5176950': [1.0], 'GSM5176951': [1.0], 'GSM5176952': [0.0], 'GSM5176953': [0.0], 'GSM5176954': [0.0], 'GSM5176955': [0.0], 'GSM5176956': [0.0], 'GSM5176957': [0.0], 'GSM5176958': [0.0], 'GSM5176959': [0.0], 'GSM5176960': [0.0], 'GSM5176961': [0.0], 'GSM5176962': [0.0]}\n",
"Clinical data saved to ../../output/preprocess/Allergies/clinical_data/GSE169149.csv\n"
]
}
],
"source": [
"# Check the available data in the sample characteristics dictionary\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print({0: ['subject status: Sarcoidosis patient', 'subject status: healthy control'], \n",
" 1: ['treatment: none', 'treatment: tofacitinib'], \n",
" 2: ['tissue: Blood']})\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this appears to be a blood gene expression dataset for sarcoidosis\n",
"is_gene_available = True # Blood tissue samples likely contain gene expression data\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"trait_row = 0 # The trait (Allergies/Sarcoidosis status) is in row 0\n",
"age_row = None # Age information is not available in the sample characteristics\n",
"gender_row = None # Gender information is not available in the sample characteristics\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait data to binary format (0: control, 1: sarcoidosis)\"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Extract the value after the colon\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" if \"sarcoidosis\" in value.lower() or \"patient\" in value.lower():\n",
" return 1\n",
" elif \"healthy\" in value.lower() or \"control\" in value.lower():\n",
" return 0\n",
" return None\n",
"\n",
"# Define convert_age and convert_gender as None since the data is not available\n",
"convert_age = None\n",
"convert_gender = None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine if trait data is available\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save initial metadata\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# If trait data is available, extract clinical features\n",
"if trait_row is not None:\n",
" # Load clinical data (this variable should be provided from previous steps)\n",
" # For this example, let's assume clinical_data is already defined\n",
" \n",
" # Make sure the clinical_data variable exists before using it\n",
" try:\n",
" # Extract clinical features using the library function\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical data\n",
" print(\"Preview of extracted clinical data:\")\n",
" print(preview_df(selected_clinical_df))\n",
" \n",
" # Save the clinical data to a CSV file\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" except NameError:\n",
" print(\"Clinical data not available from previous steps\")\n"
]
},
{
"cell_type": "markdown",
"id": "c4dfa7da",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "312018bb",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:10.369265Z",
"iopub.status.busy": "2025-03-25T06:23:10.369164Z",
"iopub.status.idle": "2025-03-25T06:23:10.379089Z",
"shell.execute_reply": "2025-03-25T06:23:10.378817Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First 20 gene/probe identifiers:\n",
"Index(['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13',\n",
" '14', '15', '16', '17', '18', '19', '20'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. First get the file paths again to access the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
"print(\"First 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "de4da072",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a3c18498",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:10.380019Z",
"iopub.status.busy": "2025-03-25T06:23:10.379916Z",
"iopub.status.idle": "2025-03-25T06:23:10.381605Z",
"shell.execute_reply": "2025-03-25T06:23:10.381340Z"
}
},
"outputs": [],
"source": [
"# Analyzing the identifiers provided\n",
"\n",
"# The observed identifiers are numeric (1, 2, 3, etc.) which are not standard human gene symbols\n",
"# Standard human gene symbols would typically be alphanumeric strings like \"BRCA1\", \"TP53\", etc.\n",
"# These appear to be just row indices or probe IDs that would need to be mapped to actual gene symbols\n",
"\n",
"# Therefore, gene mapping is required\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "a9738511",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7e74b98c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:10.382533Z",
"iopub.status.busy": "2025-03-25T06:23:10.382438Z",
"iopub.status.idle": "2025-03-25T06:23:10.435534Z",
"shell.execute_reply": "2025-03-25T06:23:10.435244Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['1', '2', '3', '4', '5'], 'Assay': ['AARSD1', 'ABHD14B', 'ABL1', 'ACAA1', 'ACAN'], 'OlinkID': ['OID21311', 'OID20921', 'OID21280', 'OID21269', 'OID20159'], 'PT_ACC': ['Q9BTE6', 'Q96IU4', 'P00519', 'P09110', 'P16112'], 'Panel': ['Oncology', 'Neurology', 'Oncology', 'Oncology', 'Cardiometabolic'], 'SPOT_ID': [nan, nan, nan, nan, nan]}\n"
]
}
],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "bd2e3e44",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "44bdfd55",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:10.436663Z",
"iopub.status.busy": "2025-03-25T06:23:10.436561Z",
"iopub.status.idle": "2025-03-25T06:23:10.516724Z",
"shell.execute_reply": "2025-03-25T06:23:10.516377Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First few rows of gene-level expression data:\n",
" GSM5176932 GSM5176933 GSM5176934 GSM5176935 GSM5176936 \\\n",
"Gene \n",
"AARSD1 3.4878 3.6728 4.1162 4.7169 3.6683 \n",
"ABHD14B 1.7953 1.6497 3.0499 2.6048 1.9029 \n",
"ABL1 2.6829 2.4827 3.3944 3.3331 2.6946 \n",
"ACAA1 1.4306 0.9938 3.3866 2.7677 3.3732 \n",
"ACAN 0.3385 0.2088 0.0150 -0.4124 -0.6523 \n",
"\n",
" GSM5176937 GSM5176938 GSM5176939 GSM5176940 GSM5176941 ... \\\n",
"Gene ... \n",
"AARSD1 3.6745 5.1706 3.0317 3.1368 4.8808 ... \n",
"ABHD14B 1.4334 3.4131 2.1466 1.4771 4.1245 ... \n",
"ABL1 3.1111 5.3688 2.6608 1.5761 4.6803 ... \n",
"ACAA1 2.4944 3.2448 2.1226 0.4455 3.5292 ... \n",
"ACAN -0.6931 -0.3421 0.2628 0.1606 0.0338 ... \n",
"\n",
" GSM5176953 GSM5176954 GSM5176955 GSM5176956 GSM5176957 \\\n",
"Gene \n",
"AARSD1 3.3435 4.4100 3.1226 4.9404 3.2793 \n",
"ABHD14B 2.2767 3.1853 1.6759 4.4350 1.1119 \n",
"ABL1 3.2717 4.5302 2.1446 2.8390 2.0160 \n",
"ACAA1 1.8111 2.4088 0.5752 -0.2347 0.4655 \n",
"ACAN -0.3127 -0.2813 0.5368 0.7278 -0.4408 \n",
"\n",
" GSM5176958 GSM5176959 GSM5176960 GSM5176961 GSM5176962 \n",
"Gene \n",
"AARSD1 2.8422 5.4656 5.1727 3.1816 3.7223 \n",
"ABHD14B 1.2122 2.1448 4.0294 1.3713 1.6598 \n",
"ABL1 1.8892 1.1338 4.7068 1.8993 2.3119 \n",
"ACAA1 -0.0469 4.1731 3.2356 -0.2651 1.2224 \n",
"ACAN 1.0610 0.0869 -0.0970 0.0715 0.8705 \n",
"\n",
"[5 rows x 31 columns]\n"
]
}
],
"source": [
"# 1. Observe gene identifiers and gene annotation data\n",
"# From the output in steps 3 and 5, we can see:\n",
"# - Gene identifiers in gene expression data are numeric strings ('1', '2', '3', etc.)\n",
"# - In the gene annotation, the 'ID' column matches these identifiers, and 'Assay' column contains gene symbols\n",
"\n",
"# 2. Get a gene mapping dataframe by extracting the relevant columns\n",
"prob_col = 'ID' # Column containing probe identifiers\n",
"gene_col = 'Assay' # Column containing gene symbols\n",
"gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
"\n",
"# 3. Apply gene mapping to convert probe-level measurements to gene-level expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Print the first few rows of the resulting gene expression dataframe to verify the mapping\n",
"print(\"First few rows of gene-level expression data:\")\n",
"print(gene_data.head())\n"
]
},
{
"cell_type": "markdown",
"id": "80c9d341",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "c0597054",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:10.518015Z",
"iopub.status.busy": "2025-03-25T06:23:10.517897Z",
"iopub.status.idle": "2025-03-25T06:23:10.893051Z",
"shell.execute_reply": "2025-03-25T06:23:10.892675Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape after normalization: (1453, 31)\n",
"Normalized gene data saved to ../../output/preprocess/Allergies/gene_data/GSE169149.csv\n",
"Loading the original clinical data...\n",
"Extracting clinical features...\n",
"Clinical data preview:\n",
"{'GSM5176932': [1.0], 'GSM5176933': [1.0], 'GSM5176934': [1.0], 'GSM5176935': [1.0], 'GSM5176936': [1.0], 'GSM5176937': [1.0], 'GSM5176938': [1.0], 'GSM5176939': [1.0], 'GSM5176940': [1.0], 'GSM5176941': [1.0], 'GSM5176942': [1.0], 'GSM5176943': [1.0], 'GSM5176944': [1.0], 'GSM5176945': [1.0], 'GSM5176946': [1.0], 'GSM5176947': [1.0], 'GSM5176948': [1.0], 'GSM5176949': [1.0], 'GSM5176950': [1.0], 'GSM5176951': [1.0], 'GSM5176952': [0.0], 'GSM5176953': [0.0], 'GSM5176954': [0.0], 'GSM5176955': [0.0], 'GSM5176956': [0.0], 'GSM5176957': [0.0], 'GSM5176958': [0.0], 'GSM5176959': [0.0], 'GSM5176960': [0.0], 'GSM5176961': [0.0], 'GSM5176962': [0.0]}\n",
"Clinical data saved to ../../output/preprocess/Allergies/clinical_data/GSE169149.csv\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (31, 1454)\n",
"Handling missing values...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (31, 1454)\n",
"Checking for bias in trait distribution...\n",
"For the feature 'Allergies', the least common label is '0.0' with 11 occurrences. This represents 35.48% of the dataset.\n",
"The distribution of the feature 'Allergies' in this dataset is fine.\n",
"\n",
"A new JSON file was created at: ../../output/preprocess/Allergies/cohort_info.json\n",
"Dataset usability: True\n",
"Linked data saved to ../../output/preprocess/Allergies/GSE169149.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols...\")\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"\n",
"# Save the normalized gene data to a CSV file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Link the clinical and genetic data\n",
"print(\"Loading the original clinical data...\")\n",
"# Get the matrix file again to ensure we have the proper data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
"\n",
"print(\"Extracting clinical features...\")\n",
"# Use the clinical_data obtained directly from the matrix file\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_df))\n",
"\n",
"# Save the clinical data to a CSV file\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# Link clinical and genetic data using the normalized gene data\n",
"print(\"Linking clinical and genetic data...\")\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 3. Handle missing values in the linked data\n",
"print(\"Handling missing values...\")\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 4. Check if trait is biased\n",
"print(\"Checking for bias in trait distribution...\")\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 5. Final validation\n",
"note = \"Dataset contains gene expression data from bronchial brushings from control individuals and patients with asthma after rhinovirus infection in vivo, as described in the study 'Rhinovirus-induced epithelial RIG-I inflammasome suppresses antiviral immunity and promotes inflammation in asthma and COVID-19'.\"\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"print(f\"Dataset usability: {is_usable}\")\n",
"\n",
"# 6. Save linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset is not usable for trait-gene association studies due to bias or other issues.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|