File size: 24,262 Bytes
6bc7e45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "afc6ca4e",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Allergies\"\n",
"cohort = \"GSE203409\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Allergies\"\n",
"in_cohort_dir = \"../../input/GEO/Allergies/GSE203409\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Allergies/GSE203409.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Allergies/gene_data/GSE203409.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Allergies/clinical_data/GSE203409.csv\"\n",
"json_path = \"../../output/preprocess/Allergies/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "d8b558c7",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fa35a43c",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "11adeaa3",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1a565bdb",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import os\n",
"import json\n",
"from typing import Dict, Any, Callable, Optional\n",
"\n",
"# 1. Determine gene expression data availability\n",
"# From the background information, this appears to be a gene expression study\n",
"is_gene_available = True\n",
"\n",
"# 2. Determine variable availability and create conversion functions\n",
"# Looking at the sample characteristics dictionary:\n",
"# - This is an in vitro cell line study (HaCaT cells)\n",
"# - There are different knockdowns (shC and shFLG) and treatments\n",
"# - No human age or gender data is present as this is a cell line study\n",
"\n",
"# For trait, we can use the knockdown status (shC vs shFLG)\n",
"# shFLG represents filaggrin-insufficient cells which is relevant to allergies\n",
"trait_row = 1 # knockdown data is in row 1\n",
"\n",
"def convert_trait(value: str) -> int:\n",
" \"\"\"Convert knockdown status to binary trait.\"\"\"\n",
" if value is None:\n",
" return None\n",
" # Extract value after colon and strip whitespace\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Convert to binary: shFLG (filaggrin-insufficient) = 1, shC (control) = 0\n",
" if \"shFLG\" in value:\n",
" return 1 # Filaggrin-insufficient (associated with allergies)\n",
" elif \"shC\" in value:\n",
" return 0 # Control\n",
" return None\n",
"\n",
"# Age and gender are not applicable as this is a cell line study\n",
"age_row = None\n",
"gender_row = None\n",
"convert_age = None\n",
"convert_gender = None\n",
"\n",
"# 3. Save metadata about dataset usability\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Extract clinical features if trait is available\n",
"if trait_row is not None:\n",
" # Create sample characteristics dictionary from the provided output\n",
" sample_characteristics_dict = {\n",
" 0: ['cell line: HaCaT'], \n",
" 1: ['knockdown: shC', 'knockdown: shFLG'], \n",
" 2: ['treatment: Untreated', 'treatment: Histamine', 'treatment: Amphiregulin', 'treatment: IFNy', 'treatment: IL-4/IL-13', 'treatment: Cysteine', 'treatment: Derp1/cysteine', 'treatment: Derp2'], \n",
" 3: ['treatment compound concentration: N/A', 'treatment compound concentration: 1 ug/ml', 'treatment compound concentration: 50 ng/ml', 'treatment compound concentration: 50 ng/ml / 50 ng/ml', 'treatment compound concentration: 10 uM', 'treatment compound concentration: 100 nM / 10 uM', 'treatment compound concentration: 100 nM']\n",
" }\n",
" \n",
" # Create clinical_data from this dictionary - using proper transposition\n",
" clinical_data = pd.DataFrame(sample_characteristics_dict).T\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the processed clinical data\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of processed clinical data:\")\n",
" print(preview)\n",
" \n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Save the processed clinical data\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "85dc8694",
"metadata": {},
"source": [
"### Step 3: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a764ac3e",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import json\n",
"import pandas as pd\n",
"from typing import Callable, Optional, Dict, Any\n",
"\n",
"# Assuming clinical_data is already available from previous steps\n",
"# Let's examine what we have in the clinical_data DataFrame\n",
"try:\n",
" print(\"Clinical data preview:\")\n",
" print(clinical_data.head())\n",
" print(\"\\nClinical data shape:\", clinical_data.shape)\n",
" print(\"\\nClinical data columns:\", clinical_data.columns.tolist())\n",
" \n",
" # Print unique values for each row to analyze the content\n",
" print(\"\\nUnique values in clinical data:\")\n",
" for i in range(len(clinical_data)):\n",
" unique_vals = clinical_data.iloc[i].unique()\n",
" if len(unique_vals) < 10: # Only print if there aren't too many unique values\n",
" print(f\"Row {i}: {unique_vals}\")\n",
" else:\n",
" print(f\"Row {i}: {len(unique_vals)} unique values\")\n",
"except NameError:\n",
" print(\"Clinical data not available from previous steps\")\n",
" clinical_data = pd.DataFrame() # Create empty DataFrame if not available\n",
"\n",
"# 1. Determine if gene expression data is available\n",
"# Look for indicators in the data structure and content\n",
"is_gene_available = True\n",
"# We'll assume gene expression data is available unless we find evidence to the contrary\n",
"# In a real scenario, we'd analyze clinical_data or other data to determine this\n",
"\n",
"# 2. Variable availability and data type conversion\n",
"# Initialize as None, will be updated if found\n",
"trait_row = None\n",
"age_row = None\n",
"gender_row = None\n",
"\n",
"# Examine clinical data to find rows containing trait, age, and gender information\n",
"if not clinical_data.empty:\n",
" for i in range(len(clinical_data)):\n",
" row_values = ' '.join(clinical_data.iloc[i].astype(str).tolist()).lower()\n",
" \n",
" # Look for allergy-related information\n",
" if any(term in row_values for term in ['allergy', 'allergic', 'atopic', 'asthma', 'rhinitis']):\n",
" trait_row = i\n",
" \n",
" # Look for age information\n",
" if any(term in row_values for term in ['age', 'years old']):\n",
" age_row = i\n",
" \n",
" # Look for gender/sex information\n",
" if any(term in row_values for term in ['gender', 'sex', 'male', 'female']):\n",
" gender_row = i\n",
"\n",
" # Check if the identified rows have varying values (not constant)\n",
" if trait_row is not None:\n",
" unique_values = clinical_data.iloc[trait_row].astype(str).unique()\n",
" if len(unique_values) <= 1:\n",
" trait_row = None # Consider as not available if only one unique value\n",
"\n",
" if age_row is not None:\n",
" unique_values = clinical_data.iloc[age_row].astype(str).unique()\n",
" if len(unique_values) <= 1:\n",
" age_row = None # Consider as not available if only one unique value\n",
"\n",
" if gender_row is not None:\n",
" unique_values = clinical_data.iloc[gender_row].astype(str).unique()\n",
" if len(unique_values) <= 1:\n",
" gender_row = None # Consider as not available if only one unique value\n",
"\n",
"# Define conversion functions\n",
"def convert_trait(value: str) -> Optional[int]:\n",
" \"\"\"Convert trait (allergy) value to binary format: 1 for present, 0 for absent.\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value = str(value).lower()\n",
" # Extract value after colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Positive indicators\n",
" if any(term in value for term in ['yes', 'positive', 'present', 'allergy', 'allergic', 'diagnosed', 'asthma', 'rhinitis', 'atopic']):\n",
" return 1\n",
" # Negative indicators\n",
" elif any(term in value for term in ['no', 'negative', 'absent', 'control', 'healthy', 'normal']):\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value: str) -> Optional[float]:\n",
" \"\"\"Convert age value to continuous format.\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value = str(value).lower()\n",
" # Extract value after colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Try to extract age as a number\n",
" try:\n",
" # Extract digits from the string\n",
" import re\n",
" numbers = re.findall(r'\\d+\\.?\\d*', value)\n",
" if numbers:\n",
" return float(numbers[0])\n",
" else:\n",
" return None\n",
" except:\n",
" return None\n",
"\n",
"def convert_gender(value: str) -> Optional[int]:\n",
" \"\"\"Convert gender to binary format: 0 for female, 1 for male.\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value = str(value).lower()\n",
" # Extract value after colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if any(term in value for term in ['female', 'f', 'woman', 'girl']):\n",
" return 0\n",
" elif any(term in value for term in ['male', 'm', 'man', 'boy']):\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save metadata\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None and not clinical_data.empty:\n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted features\n",
" print(\"\\nSelected clinical features preview:\")\n",
" preview = preview_df(selected_clinical_df)\n",
" print(preview)\n",
" \n",
" # Save to CSV\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"else:\n",
" print(\"Clinical data not available or trait information not found. Skipping clinical feature extraction.\")\n"
]
},
{
"cell_type": "markdown",
"id": "a3c2e319",
"metadata": {},
"source": [
"### Step 4: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "82f52659",
"metadata": {},
"outputs": [],
"source": [
"# 1. First get the file paths again to access the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
"print(\"First 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "350acbdc",
"metadata": {},
"source": [
"### Step 5: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "03af5791",
"metadata": {},
"outputs": [],
"source": [
"# Based on the gene identifiers shown, these are Illumina microarray probe IDs (ILMN_xxxxxxx format)\n",
"# They are not human gene symbols and will need to be mapped to gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "a3346495",
"metadata": {},
"source": [
"### Step 6: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bc95de8c",
"metadata": {},
"outputs": [],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "e1fb95e6",
"metadata": {},
"source": [
"### Step 7: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c4ba85dc",
"metadata": {},
"outputs": [],
"source": [
"# 1. Identify the columns containing probe IDs and gene symbols in the gene annotation dataframe\n",
"# From the preview, we can see 'ID' contains probe identifiers matching the gene expression data\n",
"# The column 'Symbol' appears to contain gene symbols\n",
"probe_col = 'ID'\n",
"gene_col = 'Symbol'\n",
"\n",
"# 2. Get the gene mapping dataframe by extracting the ID and Symbol columns\n",
"gene_mapping = get_gene_mapping(gene_annotation, probe_col, gene_col)\n",
"\n",
"# Verify the mapping by printing a few rows\n",
"print(\"Gene mapping preview:\")\n",
"print(gene_mapping.head())\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Print the first few rows of the resulting gene expression data to verify the result\n",
"print(\"\\nGene expression data after mapping:\")\n",
"print(gene_data.head())\n",
"print(\"\\nShape of gene expression data:\", gene_data.shape)\n",
"\n",
"# Save the processed gene expression data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "db1a2295",
"metadata": {},
"source": [
"### Step 8: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "473a8dc8",
"metadata": {},
"outputs": [],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols...\")\n",
"# First reload the gene data from the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# Extract gene mapping from annotation\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"probe_col = 'ID'\n",
"gene_col = 'Symbol'\n",
"gene_mapping = get_gene_mapping(gene_annotation, probe_col, gene_col)\n",
"\n",
"# Apply mapping to convert probe-level data to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Now normalize the gene symbols\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"\n",
"# Save the normalized gene data to a CSV file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Evaluate if we can proceed with linking clinical and genetic data\n",
"# From our analysis in previous steps, we know this is a cell line study with knockdown information\n",
"trait_row = 1 # knockdown status (shC vs shFLG)\n",
"\n",
"# Define the trait conversion function since we need it\n",
"def convert_trait(value: str) -> int:\n",
" \"\"\"Convert knockdown status to binary trait.\"\"\"\n",
" if value is None:\n",
" return None\n",
" # Extract value after colon and strip whitespace\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Convert to binary: shFLG (filaggrin-insufficient) = 1, shC (control) = 0\n",
" if \"shFLG\" in value:\n",
" return 1 # Filaggrin-insufficient (associated with allergies)\n",
" elif \"shC\" in value:\n",
" return 0 # Control\n",
" return None\n",
"\n",
"is_trait_available = trait_row is not None\n",
"\n",
"if is_trait_available:\n",
" print(\"Extracting clinical features...\")\n",
" # Use the clinical_data obtained directly from the matrix file\n",
" background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
" \n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=None, # Cell line study has no age\n",
" convert_age=None,\n",
" gender_row=None, # Cell line study has no gender\n",
" convert_gender=None\n",
" )\n",
" \n",
" print(\"Clinical data preview:\")\n",
" print(preview_df(selected_clinical_df))\n",
" \n",
" # Save the clinical data to a CSV file\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" \n",
" # Link clinical and genetic data using the normalized gene data\n",
" print(\"Linking clinical and genetic data...\")\n",
" linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
" \n",
" # 3. Handle missing values in the linked data\n",
" print(\"Handling missing values...\")\n",
" linked_data = handle_missing_values(linked_data, trait)\n",
" print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
" \n",
" # 4. Check if trait is biased\n",
" print(\"Checking for bias in trait distribution...\")\n",
" is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
" \n",
"else:\n",
" print(\"No trait information available - this dataset cannot be used for trait-gene association analysis.\")\n",
" is_biased = True # Set to True since we can't use this dataset without trait information\n",
" linked_data = pd.DataFrame() # Empty dataframe as placeholder\n",
"\n",
"# 5. Final validation\n",
"note = \"Dataset contains gene expression from HaCaT keratinocyte cell line with filaggrin knockdown (shFLG) vs control (shC). This represents an in vitro model relevant to allergies rather than direct human subject data.\"\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"print(f\"Dataset usability: {is_usable}\")\n",
"\n",
"# 6. Save linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset is not usable for trait-gene association studies due to lack of trait information or other issues.\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|