File size: 19,939 Bytes
92d2f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e6332184",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:58.899890Z",
"iopub.status.busy": "2025-03-25T06:23:58.899783Z",
"iopub.status.idle": "2025-03-25T06:23:59.065214Z",
"shell.execute_reply": "2025-03-25T06:23:59.064871Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Allergies\"\n",
"cohort = \"GSE205151\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Allergies\"\n",
"in_cohort_dir = \"../../input/GEO/Allergies/GSE205151\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Allergies/GSE205151.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Allergies/gene_data/GSE205151.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Allergies/clinical_data/GSE205151.csv\"\n",
"json_path = \"../../output/preprocess/Allergies/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "80178eff",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "698ac1fb",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:59.066656Z",
"iopub.status.busy": "2025-03-25T06:23:59.066514Z",
"iopub.status.idle": "2025-03-25T06:23:59.094086Z",
"shell.execute_reply": "2025-03-25T06:23:59.093793Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Functional Immunophenotyping of Children with Critical Status Asthmaticus Identifies Differential Gene Expression Responses in Neutrophils Exposed to a Poly(I:C) Stimulus\"\n",
"!Series_summary\t\"We determined whether we could identify clusters of children with critical asthma by functional immunophenotyping using an intracellular viral analog stimulus.\"\n",
"!Series_summary\t\"We performed a single-center, prospective, observational cohort study of 43 children ages 6 – 17 years admitted to a pediatric intensive care unit for an asthma attack between July 2019 to February 2021.\"\n",
"!Series_overall_design\t\"Neutrophils were isolated from children, stimulated overnight with LyoVec poly(I:C), and mRNA was analyzed using a targeted Nanostring immunology array. Network analysis of the differentially expressed transcripts for the paired LyoVec poly(I:C) samples was performed.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['polyic_stimulation: Unstimulated', 'polyic_stimulation: Stimulated', 'polyic_stimulation: No'], 1: ['cluster: 1', 'cluster: 2', nan]}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "c453aba9",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "59a13bc6",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:59.095086Z",
"iopub.status.busy": "2025-03-25T06:23:59.094980Z",
"iopub.status.idle": "2025-03-25T06:23:59.099737Z",
"shell.execute_reply": "2025-03-25T06:23:59.099466Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical data file not found. Unable to extract clinical features.\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this dataset contains gene expression data (mRNA analyzed using Nanostring immunology array)\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# Looking at the Sample Characteristics Dictionary, we have:\n",
"# - Key 0: 'polyic_stimulation' (Unstimulated, Stimulated, No)\n",
"# - Key 1: 'cluster' (1, 2, nan)\n",
"\n",
"# For the allergy trait (asthma in this case), we can use the 'cluster' field\n",
"# The study mentions clusters of children with critical asthma\n",
"trait_row = 1\n",
"\n",
"# Age and gender are not available in the sample characteristics dictionary\n",
"age_row = None\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait (cluster) to binary value (0 or 1)\"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" # Extract the value after the colon and strip whitespace\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert cluster values to binary (0 for cluster 1, 1 for cluster 2)\n",
" try:\n",
" cluster = int(value)\n",
" if cluster == 1:\n",
" return 0\n",
" elif cluster == 2:\n",
" return 1\n",
" else:\n",
" return None\n",
" except (ValueError, TypeError):\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age to continuous value (not used in this dataset)\"\"\"\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender to binary value (not used in this dataset)\"\"\"\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Validate and save cohort info\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Since trait_row is not None, we need to extract clinical features\n",
"if trait_row is not None:\n",
" try:\n",
" # Look for the sample characteristics data which should be available from previous steps\n",
" # Each cohort typically has a characteristics.csv file from GEO processing\n",
" clinical_data_file = os.path.join(in_cohort_dir, \"characteristics.csv\")\n",
" clinical_data = pd.read_csv(clinical_data_file, index_col=0)\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical features\n",
" clinical_preview = preview_df(selected_clinical_df)\n",
" print(\"Clinical Data Preview:\")\n",
" print(clinical_preview)\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" except FileNotFoundError:\n",
" print(f\"Clinical data file not found. Unable to extract clinical features.\")\n"
]
},
{
"cell_type": "markdown",
"id": "98adb4d2",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "dd22eac2",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:59.100733Z",
"iopub.status.busy": "2025-03-25T06:23:59.100634Z",
"iopub.status.idle": "2025-03-25T06:23:59.118507Z",
"shell.execute_reply": "2025-03-25T06:23:59.118228Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First 20 gene/probe identifiers:\n",
"Index(['ABCB1', 'ABCF1', 'ABL1', 'ADA', 'AHR', 'AICDA', 'AIRE', 'ALAS1', 'APP',\n",
" 'ARG1', 'ARG2', 'ARHGDIB', 'ATG10', 'ATG12', 'ATG16L1', 'ATG5', 'ATG7',\n",
" 'ATM', 'B2M', 'B3GAT1'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. First get the file paths again to access the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
"print(\"First 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "39d9de18",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "3becceb1",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:59.119487Z",
"iopub.status.busy": "2025-03-25T06:23:59.119387Z",
"iopub.status.idle": "2025-03-25T06:23:59.121049Z",
"shell.execute_reply": "2025-03-25T06:23:59.120785Z"
}
},
"outputs": [],
"source": [
"# These identifiers appear to be standard human gene symbols (like ABCB1, ATG5, B2M)\n",
"# They follow the standard HGNC gene nomenclature and are recognizable as common human genes\n",
"# No mapping is needed as they are already in the preferred format\n",
"\n",
"requires_gene_mapping = False\n"
]
},
{
"cell_type": "markdown",
"id": "a1fe33fb",
"metadata": {},
"source": [
"### Step 5: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "274cb43b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:23:59.122023Z",
"iopub.status.busy": "2025-03-25T06:23:59.121919Z",
"iopub.status.idle": "2025-03-25T06:23:59.375666Z",
"shell.execute_reply": "2025-03-25T06:23:59.375301Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n",
"Gene data shape after normalization: (576, 144)\n",
"Normalized gene data saved to ../../output/preprocess/Allergies/gene_data/GSE205151.csv\n",
"Loading the original clinical data...\n",
"Extracting clinical features...\n",
"Clinical data preview:\n",
"{'GSM6205808': [0.0], 'GSM6205809': [0.0], 'GSM6205810': [1.0], 'GSM6205811': [1.0], 'GSM6205812': [0.0], 'GSM6205813': [0.0], 'GSM6205814': [1.0], 'GSM6205815': [1.0], 'GSM6205816': [1.0], 'GSM6205817': [1.0], 'GSM6205818': [1.0], 'GSM6205819': [1.0], 'GSM6205820': [0.0], 'GSM6205821': [0.0], 'GSM6205822': [1.0], 'GSM6205823': [1.0], 'GSM6205824': [1.0], 'GSM6205825': [1.0], 'GSM6205826': [1.0], 'GSM6205827': [1.0], 'GSM6205828': [0.0], 'GSM6205829': [0.0], 'GSM6205830': [1.0], 'GSM6205831': [1.0], 'GSM6205832': [1.0], 'GSM6205833': [1.0], 'GSM6205834': [0.0], 'GSM6205835': [0.0], 'GSM6205836': [0.0], 'GSM6205837': [0.0], 'GSM6205838': [0.0], 'GSM6205839': [0.0], 'GSM6205840': [1.0], 'GSM6205841': [1.0], 'GSM6205842': [0.0], 'GSM6205843': [0.0], 'GSM6205844': [1.0], 'GSM6205845': [1.0], 'GSM6205846': [1.0], 'GSM6205847': [1.0], 'GSM6205848': [0.0], 'GSM6205849': [0.0], 'GSM6205850': [0.0], 'GSM6205851': [0.0], 'GSM6205852': [0.0], 'GSM6205853': [0.0], 'GSM6205854': [0.0], 'GSM6205855': [0.0], 'GSM6205856': [0.0], 'GSM6205857': [0.0], 'GSM6205858': [1.0], 'GSM6205859': [1.0], 'GSM6205860': [0.0], 'GSM6205861': [0.0], 'GSM6205862': [0.0], 'GSM6205863': [0.0], 'GSM6205864': [0.0], 'GSM6205865': [0.0], 'GSM6205866': [0.0], 'GSM6205867': [0.0], 'GSM6205868': [0.0], 'GSM6205869': [0.0], 'GSM6205870': [0.0], 'GSM6205871': [0.0], 'GSM6205872': [1.0], 'GSM6205873': [1.0], 'GSM6205874': [1.0], 'GSM6205875': [1.0], 'GSM6205876': [1.0], 'GSM6205877': [1.0], 'GSM6205878': [1.0], 'GSM6205879': [1.0], 'GSM6205880': [1.0], 'GSM6205881': [1.0], 'GSM6205882': [0.0], 'GSM6205883': [0.0], 'GSM6205884': [1.0], 'GSM6205885': [1.0], 'GSM6205886': [1.0], 'GSM6205887': [1.0], 'GSM6205888': [1.0], 'GSM6205889': [1.0], 'GSM6205890': [1.0], 'GSM6205891': [1.0], 'GSM6205892': [0.0], 'GSM6205893': [0.0], 'GSM6205894': [1.0], 'GSM6205895': [1.0], 'GSM6205896': [0.0], 'GSM6205897': [0.0], 'GSM6205898': [1.0], 'GSM6205899': [1.0], 'GSM6205900': [0.0], 'GSM6205901': [0.0], 'GSM6205902': [1.0], 'GSM6205903': [1.0], 'GSM6205904': [0.0], 'GSM6205905': [1.0], 'GSM6205906': [0.0], 'GSM6205907': [1.0], 'GSM6205908': [0.0], 'GSM6205909': [1.0], 'GSM6205910': [1.0], 'GSM6205911': [1.0], 'GSM6205912': [1.0], 'GSM6205913': [1.0], 'GSM6205914': [0.0], 'GSM6205915': [1.0], 'GSM6205916': [1.0], 'GSM6205917': [1.0], 'GSM6205918': [0.0], 'GSM6205919': [0.0], 'GSM6205920': [0.0], 'GSM6205921': [1.0], 'GSM6205922': [0.0], 'GSM6205923': [0.0], 'GSM6205924': [0.0], 'GSM6205925': [nan], 'GSM6205926': [0.0], 'GSM6205927': [0.0], 'GSM6205928': [0.0], 'GSM6205929': [0.0], 'GSM6205930': [1.0], 'GSM6205931': [0.0], 'GSM6205932': [0.0], 'GSM6205933': [0.0], 'GSM6205934': [0.0], 'GSM6205935': [1.0], 'GSM6205936': [0.0], 'GSM6205937': [1.0], 'GSM6205938': [1.0], 'GSM6205939': [1.0], 'GSM6205940': [1.0], 'GSM6205941': [1.0], 'GSM6205942': [1.0], 'GSM6205943': [1.0], 'GSM6205944': [1.0], 'GSM6205945': [0.0], 'GSM6205946': [0.0], 'GSM6205947': [1.0], 'GSM6205948': [0.0], 'GSM6205949': [1.0], 'GSM6205950': [0.0], 'GSM6205951': [1.0]}\n",
"Clinical data saved to ../../output/preprocess/Allergies/clinical_data/GSE205151.csv\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (144, 577)\n",
"Handling missing values...\n",
"Linked data shape after handling missing values: (143, 577)\n",
"Checking for bias in trait distribution...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"For the feature 'Allergies', the least common label is '0.0' with 69 occurrences. This represents 48.25% of the dataset.\n",
"The distribution of the feature 'Allergies' in this dataset is fine.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset usability: True\n",
"Linked data saved to ../../output/preprocess/Allergies/GSE205151.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols...\")\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"\n",
"# Save the normalized gene data to a CSV file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Link the clinical and genetic data\n",
"print(\"Loading the original clinical data...\")\n",
"# Get the matrix file again to ensure we have the proper data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
"\n",
"print(\"Extracting clinical features...\")\n",
"# Use the clinical_data obtained directly from the matrix file\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_df))\n",
"\n",
"# Save the clinical data to a CSV file\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# Link clinical and genetic data using the normalized gene data\n",
"print(\"Linking clinical and genetic data...\")\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 3. Handle missing values in the linked data\n",
"print(\"Handling missing values...\")\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 4. Check if trait is biased\n",
"print(\"Checking for bias in trait distribution...\")\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 5. Final validation\n",
"note = \"Dataset contains gene expression data from patients with Essential Thrombocythemia (ET), Polycythemia Vera (PV), and Primary Myelofibrosis (PMF).\"\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"print(f\"Dataset usability: {is_usable}\")\n",
"\n",
"# 6. Save linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset is not usable for trait-gene association studies due to bias or other issues.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|