File size: 13,879 Bytes
6bc7e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ed3d3307",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Allergies\"\n",
    "cohort = \"GSE230164\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Allergies\"\n",
    "in_cohort_dir = \"../../input/GEO/Allergies/GSE230164\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Allergies/GSE230164.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Allergies/gene_data/GSE230164.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Allergies/clinical_data/GSE230164.csv\"\n",
    "json_path = \"../../output/preprocess/Allergies/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "83f25c6e",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5dbe3593",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "f61931c3",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "48e922d6",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "e07dac68",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f6cd71d8",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "id": "d8656551",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c57135c9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# First, let's load the gene expression data to examine the gene identifiers\n",
    "try:\n",
    "    # Load gene expression data from a previous step\n",
    "    gene_file = os.path.join(in_cohort_dir, 'gene_expression.txt')\n",
    "    gene_data = pd.read_csv(gene_file, sep='\\t', index_col=0)\n",
    "    \n",
    "    # Look at the first few gene identifiers\n",
    "    gene_identifiers = gene_data.index.tolist()[:10]  # Sample of gene identifiers\n",
    "    print(\"Sample gene identifiers:\", gene_identifiers)\n",
    "    \n",
    "    # Check if identifiers are likely human gene symbols\n",
    "    # Human gene symbols typically have format like \"BRCA1\", \"TP53\", etc.\n",
    "    # Other formats might be Ensembl IDs (ENSG...), Affymetrix IDs, or probe IDs\n",
    "    \n",
    "    # Simple heuristic: If most identifiers match pattern of human gene symbols\n",
    "    # (typically uppercase letters with some numbers, not starting with numbers)\n",
    "    import re\n",
    "    \n",
    "    gene_symbol_pattern = re.compile(r'^[A-Z][A-Z0-9]*$')\n",
    "    ensembl_pattern = re.compile(r'^ENS[A-Z]*[0-9]+')\n",
    "    probe_pattern = re.compile(r'^[0-9]+_')\n",
    "    \n",
    "    gene_symbol_count = sum(1 for gene_id in gene_identifiers if gene_symbol_pattern.match(gene_id))\n",
    "    ensembl_count = sum(1 for gene_id in gene_identifiers if ensembl_pattern.match(gene_id))\n",
    "    probe_count = sum(1 for gene_id in gene_identifiers if probe_pattern.match(gene_id))\n",
    "    \n",
    "    print(f\"Gene symbol pattern matches: {gene_symbol_count}/{len(gene_identifiers)}\")\n",
    "    print(f\"Ensembl pattern matches: {ensembl_count}/{len(gene_identifiers)}\")\n",
    "    print(f\"Probe pattern matches: {probe_count}/{len(gene_identifiers)}\")\n",
    "    \n",
    "    # Determine if mapping is needed\n",
    "    requires_gene_mapping = not (gene_symbol_count / len(gene_identifiers) > 0.8)\n",
    "    print(f\"requires_gene_mapping = {requires_gene_mapping}\")\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error examining gene identifiers: {e}\")\n",
    "    # If we can't determine, default to requiring mapping\n",
    "    requires_gene_mapping = True\n",
    "    print(f\"requires_gene_mapping = {requires_gene_mapping}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "be820d6a",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4b40bbd7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4eb875c7",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "adb23b68",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Let's identify the relevant columns for mapping\n",
    "# Based on the preview, 'ID' seems to be the probe identifier, and 'Symbol' contains gene symbols\n",
    "# These appear to match what we need for mapping\n",
    "\n",
    "# 2. Get gene expression data\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "print(f\"Gene expression data shape: {gene_data.shape}\")\n",
    "print(\"First few probe IDs from gene expression data:\")\n",
    "print(gene_data.index[:5])\n",
    "\n",
    "# 3. Get gene mapping dataframe\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
    "print(f\"Gene mapping dataframe shape: {gene_mapping.shape}\")\n",
    "print(\"First few rows of gene mapping:\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 4. Apply gene mapping to convert probe-level measurements to gene-level expression\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "print(f\"After mapping: Gene expression data shape: {gene_data.shape}\")\n",
    "print(\"First few gene symbols:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# 5. Normalize gene symbols using synonym information\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"After normalization: Gene expression data shape: {gene_data.shape}\")\n",
    "print(\"First few normalized gene symbols:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# 6. Save gene data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a810ba3d",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c9d33a62",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. The gene data is already normalized in the previous step\n",
    "\n",
    "# 2. Link the clinical and genetic data\n",
    "print(\"Extracting clinical data directly from the source...\")\n",
    "# Get the matrix file again to ensure we have the proper data\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "\n",
    "# Get unique values dictionary to identify feature rows\n",
    "unique_values_dict = get_unique_values_by_row(clinical_data)\n",
    "print(\"Sample characteristics (first few entries):\")\n",
    "for i, (key, values) in enumerate(unique_values_dict.items()):\n",
    "    print(f\"{key}: {values}\")\n",
    "    if i > 5:  # Limit output to first few entries\n",
    "        print(\"...\")\n",
    "        break\n",
    "\n",
    "# Define conversion functions based on the data inspection\n",
    "# These would normally be defined in Step 2\n",
    "def convert_trait(cell):\n",
    "    \"\"\"Convert allergies information to binary (1: has allergies, 0: healthy control)\"\"\"\n",
    "    if isinstance(cell, str):\n",
    "        if 'allergy' in cell.lower() or 'allergic' in cell.lower():\n",
    "            return 1\n",
    "        elif 'healthy' in cell.lower() or 'control' in cell.lower():\n",
    "            return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(cell):\n",
    "    \"\"\"Extract age value from cell\"\"\"\n",
    "    if isinstance(cell, str) and 'age:' in cell.lower():\n",
    "        # Extract numbers after \"age:\"\n",
    "        import re\n",
    "        match = re.search(r'age:\\s*(\\d+)', cell.lower())\n",
    "        if match:\n",
    "            return float(match.group(1))\n",
    "    return None\n",
    "\n",
    "def convert_gender(cell):\n",
    "    \"\"\"Convert gender to binary (0: female, 1: male)\"\"\"\n",
    "    if isinstance(cell, str):\n",
    "        cell = cell.lower()\n",
    "        if 'female' in cell or 'f' in cell:\n",
    "            return 0\n",
    "        elif 'male' in cell or 'm' in cell:\n",
    "            return 1\n",
    "    return None\n",
    "\n",
    "# Find appropriate rows for trait, age, and gender\n",
    "trait_row = None\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# Scan through the unique values to identify feature rows\n",
    "for idx, values in unique_values_dict.items():\n",
    "    values_str = str(values).lower()\n",
    "    if 'allergy' in values_str or 'allergic' in values_str or 'healthy' in values_str:\n",
    "        trait_row = idx\n",
    "    elif 'age' in values_str:\n",
    "        age_row = idx\n",
    "    elif 'gender' in values_str or 'sex' in values_str or ('male' in values_str and 'female' in values_str):\n",
    "        gender_row = idx\n",
    "\n",
    "print(f\"Identified trait_row: {trait_row}, age_row: {age_row}, gender_row: {gender_row}\")\n",
    "\n",
    "# Extract clinical features\n",
    "if trait_row is not None:\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    print(\"Clinical data preview:\")\n",
    "    print(preview_df(selected_clinical_df))\n",
    "    \n",
    "    # Save the clinical data to a CSV file\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    \n",
    "    # Link clinical and genetic data\n",
    "    print(\"Linking clinical and genetic data...\")\n",
    "    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "    \n",
    "    # 3. Handle missing values in the linked data\n",
    "    print(\"Handling missing values...\")\n",
    "    linked_data = handle_missing_values(linked_data, trait)\n",
    "    print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "    \n",
    "    # 4. Check if trait is biased\n",
    "    print(\"Checking for bias in trait distribution...\")\n",
    "    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "    \n",
    "    # 5. Final validation\n",
    "    note = \"Dataset contains gene expression data from peripheral blood related to food allergies.\"\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,  # We have gene data\n",
    "        is_trait_available=True,  # We've identified the trait row\n",
    "        is_biased=is_biased,\n",
    "        df=linked_data,\n",
    "        note=note\n",
    "    )\n",
    "    \n",
    "    print(f\"Dataset usability: {is_usable}\")\n",
    "    \n",
    "    # 6. Save linked data if usable\n",
    "    if is_usable:\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        linked_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(\"Dataset is not usable for trait-gene association studies due to bias or other issues.\")\n",
    "else:\n",
    "    print(\"No trait information found in the clinical data. Cannot proceed with linking.\")\n",
    "    # Save validation information\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=False,\n",
    "        is_biased=None,\n",
    "        df=None,\n",
    "        note=\"No trait information found in the clinical data.\"\n",
    "    )\n",
    "    print(f\"Dataset usability: {is_usable}\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}