File size: 24,234 Bytes
92d2f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "1594aefd",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:00.457368Z",
"iopub.status.busy": "2025-03-25T06:30:00.457262Z",
"iopub.status.idle": "2025-03-25T06:30:00.623285Z",
"shell.execute_reply": "2025-03-25T06:30:00.622917Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Aniridia\"\n",
"cohort = \"GSE204791\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Aniridia\"\n",
"in_cohort_dir = \"../../input/GEO/Aniridia/GSE204791\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Aniridia/GSE204791.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Aniridia/gene_data/GSE204791.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Aniridia/clinical_data/GSE204791.csv\"\n",
"json_path = \"../../output/preprocess/Aniridia/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "a493803a",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "6980f79a",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:00.624719Z",
"iopub.status.busy": "2025-03-25T06:30:00.624583Z",
"iopub.status.idle": "2025-03-25T06:30:00.763469Z",
"shell.execute_reply": "2025-03-25T06:30:00.763117Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Altered regulation of mRNA and miRNA expression in epithelial and stromal tissue of keratoconus corneas [RNA]\"\n",
"!Series_summary\t\"Purpose: To evaluate conjunctival cell microRNA and mRNA expression in relation to observed phenotype and genotype of aniridia-associated keratopathy (AAK) in a cohort of subjects with congenital aniridia. Methods: Using impression cytology, bulbar conjunctival cells were sampled from 20 subjects with congenital aniridia and 20 age and sex-matched healthy control subjects. RNA was extracted and microRNA and mRNA analysis was performed using microarrays. Results were related to the presence and severity of AAK determined by a standardized clinical grading scale and to the genotype (PAX6 mutation?) determined by clinical genetics. Results: Of the 2549 microRNAs analyzed, 21 were differentially expressed relative to controls. Among these miR-204-5p, an inhibitor of corneal neovascularization, was downregulated 26.8-fold, while miR-5787 and miR-224-5p were upregulated 2.8 and 2.4-fold relative to controls, respectively. At the mRNA level, 539 transcripts were differentially expressed, among these FOSB and FOS were upregulated 17.5 and 9.7-fold respectively, and JUN by 2.9-fold, all components of the AP-1 transcription factor complex. Pathway analysis revealed dysregulation of several enriched pathways including PI3K-Akt, MAPK, and Ras signaling pathways in aniridia. For several microRNAs and transcripts, expression levels aligned with AAK severity, while in very mild cases with missense or non-PAX6 coding mutations, gene expression was only minimally altered. Conclusion: In aniridia, specific factors and pathways are strongly dysregulated in conjunctival cells, suggesting that the conjunctiva in aniridia is abnormally maintained in a pro-angiogenic and proliferative state, promoting the aggressivity of AAK in a mutation-dependent manner. Transcriptional profiling of conjunctival cells at the microRNA and mRNA levels presents a powerful, minimally-invasive means to assess the regulation of cell dysfunction at the ocular surface.\"\n",
"!Series_overall_design\t\"MiRNA and mRNA expression profiles of epithelial and stromal cells from 8 patients with keratoconus compared to controls\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['age: 59', 'age: 28', 'age: 58', 'age: 56', 'age: 50', 'age: 30', 'age: 53', 'age: 77', 'age: 67', 'age: 29', 'age: 46', 'age: 65', 'age: 81', 'age: 87', 'age: 70', 'age: 79', 'age: 55'], 1: ['gender: F', 'gender: M'], 2: ['disease: KC', 'disease: healthy control'], 3: ['Stage: A4 B4 C3 D4 +', 'Stage: A4 B4 C3 D1 -', 'Stage: A4 B4 C3 D4 ++', nan, 'Stage: A2 B4 C1 D3 -', 'Stage: A2 B4 C1 D1 +', 'Stage: A4 B4 C2 D3']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "44d8e170",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "40f37372",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:00.764688Z",
"iopub.status.busy": "2025-03-25T06:30:00.764576Z",
"iopub.status.idle": "2025-03-25T06:30:00.769700Z",
"shell.execute_reply": "2025-03-25T06:30:00.769366Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data available: True\n",
"Trait data available: True\n",
"Age data available: True\n",
"Gender data available: True\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this dataset contains both mRNA and miRNA expression data\n",
"# The study is about \"microRNA and mRNA expression analysis,\" which indicates gene expression data is available\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability and 2.2 Data Type Conversion\n",
"\n",
"# For trait (Aniridia)\n",
"# Looking at disease status in row 2 (KC = keratoconus, healthy control)\n",
"trait_row = 2\n",
"\n",
"def convert_trait(value):\n",
" if pd.isna(value):\n",
" return None\n",
" value_lower = str(value).lower()\n",
" if ':' in value_lower:\n",
" value_lower = value_lower.split(':', 1)[1].strip()\n",
" \n",
" if 'kc' in value_lower or 'keratoconus' in value_lower:\n",
" return 1 # Disease present\n",
" elif 'healthy' in value_lower or 'control' in value_lower:\n",
" return 0 # Disease absent\n",
" else:\n",
" return None\n",
"\n",
"# For age - available in row 0\n",
"age_row = 0\n",
"\n",
"def convert_age(value):\n",
" if pd.isna(value):\n",
" return None\n",
" if ':' in value:\n",
" age_str = value.split(':', 1)[1].strip()\n",
" try:\n",
" return float(age_str)\n",
" except ValueError:\n",
" return None\n",
" return None\n",
"\n",
"# For gender - available in row 1\n",
"gender_row = 1\n",
"\n",
"def convert_gender(value):\n",
" if pd.isna(value):\n",
" return None\n",
" value_lower = str(value).lower()\n",
" if ':' in value_lower:\n",
" value_lower = value_lower.split(':', 1)[1].strip()\n",
" \n",
" if value_lower == 'f' or value_lower == 'female':\n",
" return 0\n",
" elif value_lower == 'm' or value_lower == 'male':\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save Metadata - Initial filtering\n",
"# Determine if trait data is available (trait_row is not None)\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Validate and save cohort info (initial filtering)\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction (if trait_row is not None)\n",
"# Note: In this case, we're unable to perform clinical feature extraction\n",
"# because we don't have access to the properly formatted clinical data.\n",
"# The sample characteristics dictionary only shows unique values for each characteristic\n",
"# and cannot be directly converted to the expected clinical data format.\n",
"\n",
"# We will print the information we've determined about the dataset\n",
"print(f\"Gene expression data available: {is_gene_available}\")\n",
"print(f\"Trait data available: {is_trait_available}\")\n",
"print(f\"Age data available: {age_row is not None}\")\n",
"print(f\"Gender data available: {gender_row is not None}\")\n"
]
},
{
"cell_type": "markdown",
"id": "e7796fd0",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "562d2f84",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:00.770798Z",
"iopub.status.busy": "2025-03-25T06:30:00.770689Z",
"iopub.status.idle": "2025-03-25T06:30:00.963602Z",
"shell.execute_reply": "2025-03-25T06:30:00.963199Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"First 20 gene/probe identifiers:\n",
"Index(['(+)E1A_r60_1', '(+)E1A_r60_3', '(+)E1A_r60_a104', '(+)E1A_r60_a107',\n",
" '(+)E1A_r60_a135', '(+)E1A_r60_a20', '(+)E1A_r60_a22', '(+)E1A_r60_a97',\n",
" '(+)E1A_r60_n11', '(+)E1A_r60_n9', '3xSLv1', 'A_19_P00315452',\n",
" 'A_19_P00315492', 'A_19_P00315493', 'A_19_P00315502', 'A_19_P00315506',\n",
" 'A_19_P00315518', 'A_19_P00315519', 'A_19_P00315529', 'A_19_P00315541'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene data dimensions: 58341 genes × 31 samples\n"
]
}
],
"source": [
"# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract the gene expression data from the matrix file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
"print(\"\\nFirst 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n",
"\n",
"# 4. Print the dimensions of the gene expression data\n",
"print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"\n",
"# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
"is_gene_available = True\n"
]
},
{
"cell_type": "markdown",
"id": "7409acec",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "11810dec",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:00.964919Z",
"iopub.status.busy": "2025-03-25T06:30:00.964801Z",
"iopub.status.idle": "2025-03-25T06:30:00.966780Z",
"shell.execute_reply": "2025-03-25T06:30:00.966471Z"
}
},
"outputs": [],
"source": [
"# Examining the gene identifiers from the output\n",
"# These identifiers appear to be Agilent microarray probe IDs (starting with \"A_19_P\") \n",
"# and control probes (like \"(+)E1A_r60_1\"), not standard human gene symbols\n",
"\n",
"# These probe IDs will need to be mapped to standard gene symbols\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "1809d954",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "453692f3",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:00.967872Z",
"iopub.status.busy": "2025-03-25T06:30:00.967763Z",
"iopub.status.idle": "2025-03-25T06:30:03.987734Z",
"shell.execute_reply": "2025-03-25T06:30:03.987318Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['GE_BrightCorner', 'DarkCorner', 'A_21_P0014386', 'A_33_P3396872', 'A_33_P3267760'], 'CONTROL_TYPE': ['pos', 'pos', 'FALSE', 'FALSE', 'FALSE'], 'REFSEQ': [nan, nan, nan, 'NM_001105533', nan], 'GB_ACC': [nan, nan, nan, 'NM_001105533', nan], 'LOCUSLINK_ID': [nan, nan, nan, 79974.0, 54880.0], 'GENE_SYMBOL': [nan, nan, nan, 'CPED1', 'BCOR'], 'GENE_NAME': [nan, nan, nan, 'cadherin-like and PC-esterase domain containing 1', 'BCL6 corepressor'], 'UNIGENE_ID': [nan, nan, nan, 'Hs.189652', nan], 'ENSEMBL_ID': [nan, nan, nan, nan, 'ENST00000378463'], 'ACCESSION_STRING': [nan, nan, nan, 'ref|NM_001105533|gb|AK025639|gb|BC030538|tc|THC2601673', 'ens|ENST00000378463'], 'CHROMOSOMAL_LOCATION': [nan, nan, 'unmapped', 'chr7:120901888-120901947', 'chrX:39909128-39909069'], 'CYTOBAND': [nan, nan, nan, 'hs|7q31.31', 'hs|Xp11.4'], 'DESCRIPTION': [nan, nan, nan, 'Homo sapiens cadherin-like and PC-esterase domain containing 1 (CPED1), transcript variant 2, mRNA [NM_001105533]', 'BCL6 corepressor [Source:HGNC Symbol;Acc:HGNC:20893] [ENST00000378463]'], 'GO_ID': [nan, nan, nan, 'GO:0005783(endoplasmic reticulum)', 'GO:0000122(negative regulation of transcription from RNA polymerase II promoter)|GO:0000415(negative regulation of histone H3-K36 methylation)|GO:0003714(transcription corepressor activity)|GO:0004842(ubiquitin-protein ligase activity)|GO:0005515(protein binding)|GO:0005634(nucleus)|GO:0006351(transcription, DNA-dependent)|GO:0007507(heart development)|GO:0008134(transcription factor binding)|GO:0030502(negative regulation of bone mineralization)|GO:0031072(heat shock protein binding)|GO:0031519(PcG protein complex)|GO:0035518(histone H2A monoubiquitination)|GO:0042476(odontogenesis)|GO:0042826(histone deacetylase binding)|GO:0044212(transcription regulatory region DNA binding)|GO:0045892(negative regulation of transcription, DNA-dependent)|GO:0051572(negative regulation of histone H3-K4 methylation)|GO:0060021(palate development)|GO:0065001(specification of axis polarity)|GO:0070171(negative regulation of tooth mineralization)'], 'SEQUENCE': [nan, nan, 'AATACATGTTTTGGTAAACACTCGGTCAGAGCACCCTCTTTCTGTGGAATCAGACTGGCA', 'GCTTATCTCACCTAATACAGGGACTATGCAACCAAGAAACTGGAAATAAAAACAAAGATA', 'CATCAAAGCTACGAGAGATCCTACACACCCAGATTTAAAAAATAATAAAAACTTAAGGGC'], 'SPOT_ID': ['GE_BrightCorner', 'DarkCorner', 'A_21_P0014386', 'A_33_P3396872', 'A_33_P3267760']}\n"
]
}
],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "4bc299ef",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "c44f06e0",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:03.989171Z",
"iopub.status.busy": "2025-03-25T06:30:03.989030Z",
"iopub.status.idle": "2025-03-25T06:30:04.211131Z",
"shell.execute_reply": "2025-03-25T06:30:04.210694Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data after mapping: 29222 genes × 31 samples\n",
"First 10 gene symbols:\n",
"Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A1CF-2', 'A1CF-3', 'A2M', 'A2M-1',\n",
" 'A2M-AS1', 'A2ML1', 'A2MP1'],\n",
" dtype='object', name='Gene')\n"
]
}
],
"source": [
"# 1. Based on the preview, determine the columns for gene mapping\n",
"# From the preview, we can see 'ID' is the column with probe identifiers\n",
"# and 'GENE_SYMBOL' is the column with gene symbols\n",
"prob_col = 'ID' \n",
"gene_col = 'GENE_SYMBOL'\n",
"\n",
"# 2. Get a mapping dataframe by extracting the relevant columns\n",
"gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level data to gene-level data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Print information about the mapped data\n",
"print(f\"Gene data after mapping: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"print(\"First 10 gene symbols:\")\n",
"print(gene_data.index[:10])\n"
]
},
{
"cell_type": "markdown",
"id": "e718c798",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "7802cfdd",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:04.212568Z",
"iopub.status.busy": "2025-03-25T06:30:04.212447Z",
"iopub.status.idle": "2025-03-25T06:30:13.216443Z",
"shell.execute_reply": "2025-03-25T06:30:13.215676Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Aniridia/gene_data/GSE204791.csv\n",
"Gene data after normalization: 20778 genes × 31 samples\n",
"Clinical features saved to ../../output/preprocess/Aniridia/clinical_data/GSE204791.csv\n",
"Clinical features preview:\n",
"{'GSM6193900': [1.0, 59.0, 0.0], 'GSM6193903': [1.0, 28.0, 1.0], 'GSM6193906': [1.0, 58.0, 0.0], 'GSM6193908': [1.0, 56.0, 1.0], 'GSM6193911': [0.0, 50.0, 0.0], 'GSM6193913': [0.0, 30.0, 1.0], 'GSM6193916': [0.0, 53.0, 0.0], 'GSM6193918': [0.0, 77.0, 1.0], 'GSM6193920': [1.0, 50.0, 0.0], 'GSM6193923': [1.0, 67.0, 1.0], 'GSM6193925': [1.0, 29.0, 0.0], 'GSM6193928': [1.0, 46.0, 1.0], 'GSM6193930': [0.0, 56.0, 0.0], 'GSM6193933': [0.0, 65.0, 1.0], 'GSM6193935': [0.0, 58.0, 0.0], 'GSM6193938': [0.0, 81.0, 1.0], 'GSM6193940': [1.0, 28.0, 1.0], 'GSM6193943': [1.0, 58.0, 0.0], 'GSM6193945': [1.0, 67.0, 1.0], 'GSM6193948': [1.0, 46.0, 1.0], 'GSM6193950': [0.0, 87.0, 0.0], 'GSM6193953': [0.0, 87.0, 1.0], 'GSM6193955': [0.0, 70.0, 0.0], 'GSM6193957': [1.0, 50.0, 0.0], 'GSM6193960': [1.0, 29.0, 0.0], 'GSM6193962': [1.0, 56.0, 1.0], 'GSM6193965': [1.0, 59.0, 0.0], 'GSM6193967': [0.0, 79.0, 1.0], 'GSM6193970': [0.0, 55.0, 0.0], 'GSM6193972': [0.0, 65.0, 1.0], 'GSM6193975': [0.0, 87.0, 1.0]}\n",
"Linked data shape: (31, 20781)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (31, 20781)\n",
"\n",
"Checking for bias in the trait variable:\n",
"For the feature 'Aniridia', the least common label is '0.0' with 15 occurrences. This represents 48.39% of the dataset.\n",
"The distribution of the feature 'Aniridia' in this dataset is fine.\n",
"\n",
"Quartiles for 'Age':\n",
" 25%: 50.0\n",
" 50% (Median): 58.0\n",
" 75%: 67.0\n",
"Min: 28.0\n",
"Max: 87.0\n",
"The distribution of the feature 'Age' in this dataset is fine.\n",
"\n",
"For the feature 'Gender', the least common label is '0.0' with 15 occurrences. This represents 48.39% of the dataset.\n",
"The distribution of the feature 'Gender' in this dataset is fine.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Aniridia/GSE204791.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the index\n",
"gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data_normalized.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"print(f\"Gene data after normalization: {gene_data_normalized.shape[0]} genes × {gene_data_normalized.shape[1]} samples\")\n",
"\n",
"# Extract clinical features first (missed in previous steps)\n",
"clinical_features = geo_select_clinical_features(\n",
" clinical_data, \n",
" trait, \n",
" trait_row,\n",
" convert_trait,\n",
" age_row,\n",
" convert_age,\n",
" gender_row,\n",
" convert_gender\n",
")\n",
"\n",
"# Save the clinical data\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"clinical_features.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
"print(\"Clinical features preview:\")\n",
"print(preview_df(clinical_features))\n",
"\n",
"# 2. Link clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data_normalized)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 3. Handle missing values\n",
"linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
"print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 4. Determine if trait is biased\n",
"print(\"\\nChecking for bias in the trait variable:\")\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 5. Conduct final quality validation\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=\"Dataset contains gene expression data for aniridia patients and healthy controls.\"\n",
")\n",
"\n",
"# 6. Save linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|