File size: 27,995 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c2f3e216",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Anxiety_disorder\"\n",
    "cohort = \"GSE68526\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Anxiety_disorder\"\n",
    "in_cohort_dir = \"../../input/GEO/Anxiety_disorder/GSE68526\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Anxiety_disorder/GSE68526.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Anxiety_disorder/gene_data/GSE68526.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Anxiety_disorder/clinical_data/GSE68526.csv\"\n",
    "json_path = \"../../output/preprocess/Anxiety_disorder/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a0d41705",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c7435175",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "676e3e8c",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "679846f6",
   "metadata": {},
   "outputs": [],
   "source": [
    "I'll provide a correctly formatted code solution for this step:\n",
    "\n",
    "```python\n",
    "# 1. Determine if gene expression data is available\n",
    "# The background information mentions \"Gene expression profiling was carried out on peripheral blood RNA samples\"\n",
    "# This suggests the dataset contains gene expression data, not just miRNA or methylation data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Identify and convert clinical data\n",
    "\n",
    "# 2.1. Trait (Anxiety disorder)\n",
    "# The sample characteristics include \"anxiety\" scores at index 13\n",
    "# This is from the Beck Anxiety Inventory mentioned in the description\n",
    "trait_row = 13\n",
    "\n",
    "def convert_trait(value):\n",
    "    if 'missing' in str(value).lower():\n",
    "        return None\n",
    "    try:\n",
    "        # Extract the numeric part after the colon\n",
    "        parts = value.split(':', 1)\n",
    "        if len(parts) > 1:\n",
    "            anxiety_score = float(parts[1].strip())\n",
    "            # Convert to binary based on a threshold\n",
    "            # Beck Anxiety Inventory: higher values indicate greater anxiety\n",
    "            # Using threshold of 2.0 (moderate anxiety)\n",
    "            return 1 if anxiety_score >= 2.0 else 0\n",
    "        return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "# 2.2. Age\n",
    "# Age is recorded at index 0\n",
    "age_row = 0\n",
    "\n",
    "def convert_age(value):\n",
    "    try:\n",
    "        # Extract the numeric part after the colon\n",
    "        parts = value.split(':', 1)\n",
    "        if len(parts) > 1:\n",
    "            age = float(parts[1].strip())\n",
    "            return age\n",
    "        return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "# 2.3. Gender\n",
    "# Gender is recorded at index 1 as \"female: 0\" or \"female: 1\"\n",
    "gender_row = 1\n",
    "\n",
    "def convert_gender(value):\n",
    "    try:\n",
    "        # Extract the numeric part after the colon\n",
    "        parts = value.split(':', 1)\n",
    "        if len(parts) > 1:\n",
    "            female = int(parts[1].strip())\n",
    "            # Convert to standard format where 0=female, 1=male\n",
    "            # In the data, female=1 means it's a female, female=0 means it's a male\n",
    "            return 1 - female  # Reverse the coding to match our standard\n",
    "        return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "# 3. Perform initial filtering and save metadata\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Extract clinical features if trait_row is not None\n",
    "if trait_row is not None:\n",
    "    # Create a DataFrame from the sample characteristics dictionary provided\n",
    "    sample_characteristics = {0: ['age (yrs): 79', 'age (yrs): 76', 'age (yrs): 70', 'age (yrs): 65', 'age (yrs): 64', 'age (yrs): 75', 'age (yrs): 66', 'age (yrs): 93', 'age (yrs): 69', 'age (yrs): 67', 'age (yrs): 77', 'age (yrs): 74', 'age (yrs): 73', 'age (yrs): 80', 'age (yrs): 68', 'age (yrs): 83', 'age (yrs): 87', 'age (yrs): 81', 'age (yrs): 84', 'age (yrs): 55', 'age (yrs): 62', 'age (yrs): 58', 'age (yrs): 60', 'age (yrs): 56', 'age (yrs): 86', 'age (yrs): 78', 'age (yrs): 48', 'age (yrs): 82', 'age (yrs): 95', 'age (yrs): 71'], 1: ['female: 0', 'female: 1'], 2: ['black: 0', 'black: 1'], 3: ['hispanic: 0', 'hispanic: 1'], 4: ['bmi: 22.7', 'bmi: 29.1', 'bmi: 25.8', 'bmi: 24.8', 'bmi: 42.1', 'bmi: 29.6', 'bmi: 21.4', 'bmi: 32.7', 'bmi: 30.7', 'bmi: 29.2', 'bmi: 34.0', 'bmi: 44.3', 'bmi: 28.7', 'bmi: 27.4', 'bmi: 30.6', 'bmi: 31.3', 'bmi: 30.0', 'bmi: 25.1', 'bmi: 26.4', 'bmi: 21.6', 'bmi: 18.6', 'bmi: 24.1', 'bmi: 22.9', 'bmi: 28.6', 'bmi: 25.0', 'bmi: 27.5', 'bmi: 25.5', 'bmi: 23.7', 'bmi: 23.0', 'bmi: 28.5'], 5: ['diabcvdcastr: 1', 'diabcvdcastr: 0'], 6: ['ln_hh_income: 16.03', 'ln_hh_income: 15.49', 'ln_hh_income: 15.34', 'ln_hh_income: 15.52', 'ln_hh_income: 16.41', 'ln_hh_income: 14.20', 'ln_hh_income: 18.09', 'ln_hh_income: 13.57', 'ln_hh_income: 16.29', 'ln_hh_income: 14.64', 'ln_hh_income: 15.28', 'ln_hh_income: 15.30', 'ln_hh_income: 15.93', 'ln_hh_income: 15.02', 'ln_hh_income: 16.93', 'ln_hh_income: 14.44', 'ln_hh_income: 16.10', 'ln_hh_income: 14.22', 'ln_hh_income: 13.18', 'ln_hh_income: 14.90', 'ln_hh_income: 12.97', 'ln_hh_income: 16.36', 'ln_hh_income: 16.14', 'ln_hh_income: 14.91', 'ln_hh_income: 13.71', 'ln_hh_income: 15.99', 'ln_hh_income: 13.77', 'ln_hh_income: 15.46', 'ln_hh_income: 13.86', 'ln_hh_income: 16.42'], 7: ['smoke: 1', 'smoke: 0'], 8: ['alcohol: 0', 'alcohol: 1', 'alcohol: missing'], 9: ['loneliness: 1.00', 'loneliness: 2.00', 'loneliness: 1.67', 'loneliness: 1.33', 'loneliness: 2.67', 'loneliness: missing', 'loneliness: 2.33', 'loneliness: 3.00'], 10: ['pwb_purpose: 4.14', 'pwb_purpose: 6.00', 'pwb_purpose: 5.00', 'pwb_purpose: 5.43', 'pwb_purpose: 3.29', 'pwb_purpose: 5.14', 'pwb_purpose: 4.71', 'pwb_purpose: 5.33', 'pwb_purpose: 4.83', 'pwb_purpose: 2.67', 'pwb_purpose: 5.71', 'pw\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e9f6ca24",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "724b4e54",
   "metadata": {},
   "outputs": [],
   "source": [
    "I'll implement code that works with the available files without relying on GEOparse.\n",
    "\n",
    "```python\n",
    "# Step 1: Analyze the dataset to determine gene expression data availability\n",
    "import os\n",
    "import pandas as pd\n",
    "import json\n",
    "import numpy as np\n",
    "import gzip\n",
    "import re\n",
    "\n",
    "# First, let's check what files are available in the cohort directory\n",
    "cohort_files = os.listdir(in_cohort_dir)\n",
    "print(f\"Files in cohort directory: {cohort_files}\")\n",
    "\n",
    "# Let's check if there are matrix files that might contain gene expression data\n",
    "matrix_files = [f for f in cohort_files if 'matrix' in f.lower()]\n",
    "print(f\"Matrix files: {matrix_files}\")\n",
    "\n",
    "# Load the series matrix file to check for gene expression data\n",
    "series_matrix_path = os.path.join(in_cohort_dir, matrix_files[0] if matrix_files else cohort_files[0])\n",
    "\n",
    "# Function to check if file contains gene expression data\n",
    "def analyze_matrix_file(file_path):\n",
    "    # Check if the file contains gene expression data by reading header lines\n",
    "    with gzip.open(file_path, 'rt', encoding='utf-8') as f:\n",
    "        header_lines = [next(f) for _ in range(100) if '!' in next(f, '')]\n",
    "    \n",
    "    # Check if the file contains gene expression data\n",
    "    is_gene_expression = any(['gene' in line.lower() for line in header_lines]) or \\\n",
    "                        any(['expression' in line.lower() for line in header_lines])\n",
    "    \n",
    "    # Check if it's miRNA or methylation only\n",
    "    is_mirna_only = any(['mirna' in line.lower() for line in header_lines]) and not is_gene_expression\n",
    "    is_methylation_only = any(['methylation' in line.lower() for line in header_lines]) and not is_gene_expression\n",
    "    \n",
    "    return not (is_mirna_only or is_methylation_only)\n",
    "\n",
    "# Function to parse sample characteristics from series matrix file\n",
    "def parse_clinical_data(file_path):\n",
    "    clinical_data = None\n",
    "    characteristic_lines = []\n",
    "    sample_ids = []\n",
    "    \n",
    "    with gzip.open(file_path, 'rt', encoding='utf-8') as f:\n",
    "        in_header = True\n",
    "        for line in f:\n",
    "            if in_header:\n",
    "                if line.startswith('!Sample_geo_accession'):\n",
    "                    sample_ids = line.strip().split('\\t')[1:]\n",
    "                elif line.startswith('!Sample_characteristics_ch'):\n",
    "                    characteristic_lines.append(line.strip().split('\\t')[1:])\n",
    "                elif line.startswith('!series_matrix_table_begin'):\n",
    "                    in_header = False\n",
    "            else:\n",
    "                break\n",
    "    \n",
    "    # Create a dataframe with the clinical data\n",
    "    if sample_ids and characteristic_lines:\n",
    "        df_dict = {f'char_{i}': chars for i, chars in enumerate(characteristic_lines)}\n",
    "        clinical_data = pd.DataFrame(df_dict, index=sample_ids)\n",
    "    \n",
    "    return clinical_data\n",
    "\n",
    "# Determine if gene expression data is available\n",
    "try:\n",
    "    is_gene_available = analyze_matrix_file(series_matrix_path)\n",
    "    print(f\"Is gene expression data available: {is_gene_available}\")\n",
    "except Exception as e:\n",
    "    print(f\"Error analyzing gene expression: {e}\")\n",
    "    is_gene_available = False\n",
    "\n",
    "# Get clinical data from the series matrix file\n",
    "try:\n",
    "    clinical_data = parse_clinical_data(series_matrix_path)\n",
    "    \n",
    "    if clinical_data is not None:\n",
    "        print(\"Clinical data found with shape:\", clinical_data.shape)\n",
    "        print(\"Sample characteristics:\")\n",
    "        for i, col in enumerate(clinical_data.columns):\n",
    "            unique_values = clinical_data[col].unique()\n",
    "            if len(unique_values) < 10:  # Only print if there are few unique values\n",
    "                print(f\"Row {i}: {col} - Unique values: {unique_values}\")\n",
    "            else:\n",
    "                print(f\"Row {i}: {col} - {len(unique_values)} unique values\")\n",
    "    else:\n",
    "        print(\"Clinical data not found in the file.\")\n",
    "except Exception as e:\n",
    "    print(f\"Error parsing clinical data: {e}\")\n",
    "    clinical_data = pd.DataFrame()\n",
    "\n",
    "# Functions to convert trait, age, and gender data\n",
    "def convert_trait(value):\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if isinstance(value, str) and ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary (0: control, 1: anxiety disorder)\n",
    "    value = str(value).lower()\n",
    "    if 'control' in value or 'healthy' in value or 'normal' in value:\n",
    "        return 0\n",
    "    elif 'anxiety' in value or 'ptsd' in value or 'stress' in value or 'disorder' in value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if isinstance(value, str) and ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Try to convert to float\n",
    "    try:\n",
    "        age = float(value)\n",
    "        return age\n",
    "    except (ValueError, TypeError):\n",
    "        # If age is given as a range (e.g., \"25-30\"), take the average\n",
    "        if isinstance(value, str) and '-' in value:\n",
    "            try:\n",
    "                parts = value.split('-')\n",
    "                return (float(parts[0]) + float(parts[1])) / 2\n",
    "            except (ValueError, IndexError):\n",
    "                pass\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if isinstance(value, str) and ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary (0: female, 1: male)\n",
    "    value = str(value).lower()\n",
    "    if 'female' in value or 'f' == value:\n",
    "        return 0\n",
    "    elif 'male' in value or 'm' == value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Based on the analysis, determine which rows contain trait, age, and gender\n",
    "# Setting default values as None (not available)\n",
    "trait_row = None\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# Analyze clinical data to find relevant rows\n",
    "if clinical_data is not None and not clinical_data.empty:\n",
    "    for i, col in enumerate(clinical_data.columns):\n",
    "        # Get string representation of column values\n",
    "        col_str = ' '.join(str(v) for v in clinical_data[col].unique())\n",
    "        \n",
    "        # Look for trait indicators\n",
    "        if ('diagnosis' in col_str.lower() or 'disease' in col_str.lower() or \n",
    "            'condition' in col_str.lower() or 'group' in col_str.lower() or \n",
    "            'anxiety' in col_str.lower() or 'control' in col_str.lower()):\n",
    "            # Check if this column could be trait data\n",
    "            unique_values = clinical_data[col].unique()\n",
    "            # Verify if the values correspond to trait data (should have at least 2 groups)\n",
    "            if len(unique_values) > 1:\n",
    "                trait_row = i\n",
    "        \n",
    "        # Look for age indicators\n",
    "        if 'age' in col_str.lower():\n",
    "            unique_values = clinical_data[col].unique()\n",
    "            if len(unique_values) > 1:  # Should have variation in age\n",
    "                age_row = i\n",
    "        \n",
    "        # Look for gender indicators\n",
    "        if 'gender' in col_str.lower() or 'sex' in col_str.lower():\n",
    "            unique_values = clinical_data[col].unique()\n",
    "            if len(unique_values) > 1:  # Should have both males and females\n",
    "                gender_row = i\n",
    "\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "print(f\"Trait row: {trait_row}\")\n",
    "print(f\"Age row: {age_row}\")\n",
    "print(f\"Gender row: {gender_row}\")\n",
    "print(f\"Is trait available: {is_trait\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6fc60ab9",
   "metadata": {},
   "source": [
    "### Step 4: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "244b8b4f",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "import os\n",
    "import re\n",
    "import json\n",
    "import gzip\n",
    "import io\n",
    "from typing import Optional, Callable, Dict, Any, List\n",
    "\n",
    "def get_feature_data(clinical_df, row_index, feature_name, convert_func):\n",
    "    \"\"\"Helper function to extract and convert feature data from a row.\"\"\"\n",
    "    feature_series = clinical_df.iloc[row_index].copy()\n",
    "    feature_series.name = feature_name\n",
    "    if convert_func is not None:\n",
    "        feature_series = feature_series.apply(convert_func)\n",
    "    return pd.DataFrame(feature_series).T\n",
    "\n",
    "# First, check what files are available in the cohort directory\n",
    "files = os.listdir(in_cohort_dir)\n",
    "print(f\"Available files: {files}\")\n",
    "\n",
    "# Determine if gene expression data is available\n",
    "# GEO series matrix files typically contain gene expression data\n",
    "is_gene_available = any('series_matrix' in f for f in files)\n",
    "\n",
    "# Extract clinical data from the series matrix file\n",
    "clinical_data = None\n",
    "series_matrix_file = [f for f in files if 'series_matrix' in f.lower()][0]\n",
    "file_path = os.path.join(in_cohort_dir, series_matrix_file)\n",
    "\n",
    "# Parse the GEO series matrix file to extract sample characteristics\n",
    "sample_char_lines = []\n",
    "with gzip.open(file_path, 'rt') as f:\n",
    "    in_sample_char_section = False\n",
    "    sample_ids = []\n",
    "    \n",
    "    for line in f:\n",
    "        line = line.strip()\n",
    "        \n",
    "        # Extract sample IDs\n",
    "        if line.startswith('!Sample_geo_accession'):\n",
    "            sample_ids = line.split('\\t')[1:]\n",
    "            \n",
    "        # Collect sample characteristics lines\n",
    "        elif line.startswith('!Sample_characteristics_ch'):\n",
    "            sample_char_lines.append(line.split('\\t')[1:])\n",
    "            \n",
    "        # Check if we're done with the characteristics section\n",
    "        elif line.startswith('!Sample_') and sample_char_lines:\n",
    "            continue\n",
    "        elif line.startswith('!series_matrix_table_begin'):\n",
    "            break\n",
    "\n",
    "# Create clinical dataframe if sample characteristics were found\n",
    "if sample_char_lines and sample_ids:\n",
    "    clinical_data = pd.DataFrame(sample_char_lines, columns=sample_ids)\n",
    "    print(f\"Clinical data shape: {clinical_data.shape}\")\n",
    "    print(\"First few rows of clinical data:\")\n",
    "    print(clinical_data.head(10))\n",
    "\n",
    "    # Look for trait (anxiety disorder), age, and gender data in the characteristics\n",
    "    trait_row = None\n",
    "    age_row = None\n",
    "    gender_row = None\n",
    "    \n",
    "    # Print unique values for each row to help identify relevant rows\n",
    "    for i in range(len(clinical_data.index)):\n",
    "        unique_vals = clinical_data.iloc[i, :].unique()\n",
    "        print(f\"Row {i} unique values: {unique_vals}\")\n",
    "        \n",
    "        # Check if this row might contain trait data\n",
    "        row_str = ' '.join(str(val).lower() for val in unique_vals)\n",
    "        if ('anxiety' in row_str or 'patient' in row_str or 'diagnosis' in row_str or \n",
    "            'disorder' in row_str or 'case' in row_str or 'control' in row_str):\n",
    "            print(f\"Potential trait row: {i}\")\n",
    "            trait_row = i\n",
    "        \n",
    "        # Check if this row might contain age data\n",
    "        if 'age' in row_str or 'years' in row_str:\n",
    "            print(f\"Potential age row: {i}\")\n",
    "            age_row = i\n",
    "        \n",
    "        # Check if this row might contain gender data\n",
    "        if 'gender' in row_str or 'sex' in row_str or 'male' in row_str or 'female' in row_str:\n",
    "            print(f\"Potential gender row: {i}\")\n",
    "            gender_row = i\n",
    "\n",
    "    # Define conversion functions based on observed data patterns\n",
    "    def convert_trait(value):\n",
    "        if pd.isnull(value):\n",
    "            return None\n",
    "        value_str = str(value).lower()\n",
    "        \n",
    "        # Extract value after colon if present\n",
    "        if \":\" in value_str:\n",
    "            value_str = value_str.split(\":\", 1)[1].strip()\n",
    "        \n",
    "        # Convert to binary: 1 for anxiety, 0 for control/healthy\n",
    "        if re.search(r'anxi|patient|disorder|case', value_str):\n",
    "            return 1\n",
    "        elif re.search(r'control|healthy|normal', value_str):\n",
    "            return 0\n",
    "        return None\n",
    "\n",
    "    def convert_age(value):\n",
    "        if pd.isnull(value):\n",
    "            return None\n",
    "        value_str = str(value).lower()\n",
    "        \n",
    "        # Extract value after colon if present\n",
    "        if \":\" in value_str:\n",
    "            value_str = value_str.split(\":\", 1)[1].strip()\n",
    "        \n",
    "        # Try to extract numeric age value\n",
    "        age_match = re.search(r'(\\d+(?:\\.\\d+)?)', value_str)\n",
    "        if age_match:\n",
    "            return float(age_match.group(1))\n",
    "        return None\n",
    "\n",
    "    def convert_gender(value):\n",
    "        if pd.isnull(value):\n",
    "            return None\n",
    "        value_str = str(value).lower()\n",
    "        \n",
    "        # Extract value after colon if present\n",
    "        if \":\" in value_str:\n",
    "            value_str = value_str.split(\":\", 1)[1].strip()\n",
    "        \n",
    "        # Convert to binary: 0 for female, 1 for male\n",
    "        if re.search(r'female|f\\b|woman|women', value_str):\n",
    "            return 0\n",
    "        elif re.search(r'male|m\\b|man|men', value_str):\n",
    "            return 1\n",
    "        return None\n",
    "\n",
    "    # Check if trait data is available\n",
    "    is_trait_available = trait_row is not None\n",
    "\n",
    "    # Save initial metadata\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=False,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=is_gene_available,\n",
    "        is_trait_available=is_trait_available\n",
    "    )\n",
    "\n",
    "    # Extract clinical features if trait data is available\n",
    "    if is_trait_available:\n",
    "        print(\"\\nExtracting clinical features...\")\n",
    "        selected_clinical_data = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age if age_row is not None else None,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender if gender_row is not None else None\n",
    "        )\n",
    "        \n",
    "        # Preview the selected clinical data\n",
    "        preview = preview_df(selected_clinical_data)\n",
    "        print(\"\\nSelected Clinical Data Preview:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Save the clinical data\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        selected_clinical_data.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    else:\n",
    "        print(\"\\nNo suitable trait data found in the clinical information.\")\n",
    "else:\n",
    "    print(\"No sample characteristics found in the series matrix file.\")\n",
    "    is_trait_available = False\n",
    "    \n",
    "    # Save the negative result\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=False,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=is_gene_available,\n",
    "        is_trait_available=False\n",
    "    )\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "35adae85",
   "metadata": {},
   "source": [
    "### Step 5: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "40f614d6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract the gene expression data from the matrix file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "print(\"\\nFirst 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n",
    "\n",
    "# 4. Print the dimensions of the gene expression data\n",
    "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "\n",
    "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
    "is_gene_available = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e1b1321a",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f5ee5479",
   "metadata": {},
   "outputs": [],
   "source": [
    "# The identifiers in the gene expression data appear to be human gene symbols.\n",
    "# This can be determined because we see standard gene symbols like A1BG, A2M, AAAS, etc.\n",
    "# These are official HGNC (HUGO Gene Nomenclature Committee) gene symbols for human genes.\n",
    "\n",
    "# Since the data is already using human gene symbols, we don't need to perform mapping.\n",
    "requires_gene_mapping = False\n",
    "\n",
    "# Printing the result for clarification (though the variable assignment above is sufficient)\n",
    "print(f\"Gene mapping requirement: {requires_gene_mapping}\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}