File size: 18,240 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "fe8cf253",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:32:16.809171Z",
     "iopub.status.busy": "2025-03-25T06:32:16.808928Z",
     "iopub.status.idle": "2025-03-25T06:32:16.977623Z",
     "shell.execute_reply": "2025-03-25T06:32:16.977272Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Anxiety_disorder\"\n",
    "\n",
    "# Input paths\n",
    "tcga_root_dir = \"../../input/TCGA\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Anxiety_disorder/TCGA.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Anxiety_disorder/gene_data/TCGA.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Anxiety_disorder/clinical_data/TCGA.csv\"\n",
    "json_path = \"../../output/preprocess/Anxiety_disorder/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cb928a35",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "0a3480f2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:32:16.978852Z",
     "iopub.status.busy": "2025-03-25T06:32:16.978709Z",
     "iopub.status.idle": "2025-03-25T06:32:18.596990Z",
     "shell.execute_reply": "2025-03-25T06:32:18.596660Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Available TCGA subdirectories: ['TCGA_Liver_Cancer_(LIHC)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Thymoma_(THYM)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', '.DS_Store', 'CrawlData.ipynb', 'TCGA_Acute_Myeloid_Leukemia_(LAML)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)']\n",
      "Selected directory: TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG) - this dataset may contain clinical information about psychiatric conditions including anxiety\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Clinical data columns:\n",
      "['_INTEGRATION', '_PANCAN_CNA_PANCAN_K8', '_PANCAN_Cluster_Cluster_PANCAN', '_PANCAN_DNAMethyl_PANCAN', '_PANCAN_RPPA_PANCAN_K8', '_PANCAN_UNC_RNAseq_PANCAN_K16', '_PANCAN_mutation_PANCAN', '_PATIENT', '_cohort', '_primary_disease', '_primary_site', 'additional_pharmaceutical_therapy', 'additional_radiation_therapy', 'additional_surgery_locoregional_procedure', 'additional_surgery_metastatic_procedure', 'age_at_initial_pathologic_diagnosis', 'animal_insect_allergy_history', 'animal_insect_allergy_types', 'asthma_history', 'bcr_followup_barcode', 'bcr_patient_barcode', 'bcr_sample_barcode', 'days_to_additional_surgery_locoregional_procedure', 'days_to_additional_surgery_metastatic_procedure', 'days_to_birth', 'days_to_collection', 'days_to_death', 'days_to_initial_pathologic_diagnosis', 'days_to_last_followup', 'days_to_new_tumor_event_additional_surgery_procedure', 'days_to_new_tumor_event_after_initial_treatment', 'days_to_performance_status_assessment', 'eastern_cancer_oncology_group', 'eczema_history', 'family_history_of_cancer', 'family_history_of_primary_brain_tumor', 'first_diagnosis_age_asth_ecz_hay_fev_mold_dust', 'first_diagnosis_age_of_animal_insect_allergy', 'first_diagnosis_age_of_food_allergy', 'first_presenting_symptom', 'first_presenting_symptom_longest_duration', 'followup_case_report_form_submission_reason', 'followup_treatment_success', 'food_allergy_history', 'food_allergy_types', 'form_completion_date', 'gender', 'hay_fever_history', 'headache_history', 'histological_type', 'history_ionizing_rt_to_head', 'history_of_neoadjuvant_treatment', 'icd_10', 'icd_o_3_histology', 'icd_o_3_site', 'informed_consent_verified', 'inherited_genetic_syndrome_found', 'inherited_genetic_syndrome_result', 'initial_pathologic_diagnosis_method', 'initial_weight', 'intermediate_dimension', 'is_ffpe', 'karnofsky_performance_score', 'laterality', 'ldh1_mutation_found', 'ldh1_mutation_test_method', 'ldh1_mutation_tested', 'longest_dimension', 'lost_follow_up', 'mental_status_changes', 'mold_or_dust_allergy_history', 'motor_movement_changes', 'neoplasm_histologic_grade', 'new_neoplasm_event_type', 'new_tumor_event_additional_surgery_procedure', 'new_tumor_event_after_initial_treatment', 'oct_embedded', 'other_dx', 'pathology_report_file_name', 'patient_id', 'performance_status_scale_timing', 'person_neoplasm_cancer_status', 'postoperative_rx_tx', 'preoperative_antiseizure_meds', 'preoperative_corticosteroids', 'primary_therapy_outcome_success', 'prior_glioma', 'radiation_therapy', 'sample_type', 'sample_type_id', 'seizure_history', 'sensory_changes', 'shortest_dimension', 'supratentorial_localization', 'targeted_molecular_therapy', 'tissue_prospective_collection_indicator', 'tissue_retrospective_collection_indicator', 'tissue_source_site', 'tumor_location', 'tumor_tissue_site', 'vial_number', 'visual_changes', 'vital_status', 'year_of_initial_pathologic_diagnosis', '_GENOMIC_ID_TCGA_GBMLGG_exp_HiSeqV2', '_GENOMIC_ID_TCGA_GBMLGG_PDMarrayCNV', '_GENOMIC_ID_TCGA_GBMLGG_mutation', '_GENOMIC_ID_TCGA_GBMLGG_hMethyl450', '_GENOMIC_ID_TCGA_GBMLGG_PDMarray', '_GENOMIC_ID_TCGA_GBMLGG_gistic2', '_GENOMIC_ID_TCGA_GBMLGG_PDMRNAseq', '_GENOMIC_ID_TCGA_GBMLGG_exp_HiSeqV2_PANCAN', '_GENOMIC_ID_TCGA_GBMLGG_PDMRNAseqCNV', '_GENOMIC_ID_TCGA_GBMLGG_gistic2thd', '_GENOMIC_ID_TCGA_GBMLGG_exp_HiSeqV2_exon']\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import os\n",
    "\n",
    "# Step 1: Look for directories related to Anxiety disorder\n",
    "tcga_subdirs = os.listdir(tcga_root_dir)\n",
    "print(f\"Available TCGA subdirectories: {tcga_subdirs}\")\n",
    "\n",
    "# Look for directory related to Anxiety disorder\n",
    "# Anxiety disorder might be found as a comorbidity in neurological or brain-related cancers\n",
    "# Examine if any directories might contain data relevant to anxiety disorders\n",
    "\n",
    "# While anxiety is common in cancer patients, it's not a primary cancer type\n",
    "# After reviewing all subdirectories, we need to determine if any datasets might contain \n",
    "# anxiety-related clinical information\n",
    "\n",
    "# For this analysis, we'll use the brain cancer datasets as they may be more likely to \n",
    "# contain psychiatric comorbidity data\n",
    "potential_matches = [\n",
    "    'TCGA_Glioblastoma_(GBM)',\n",
    "    'TCGA_Lower_Grade_Glioma_(LGG)',\n",
    "    'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)'\n",
    "]\n",
    "\n",
    "# Select the most comprehensive dataset from potential matches\n",
    "target_dir = 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)'\n",
    "target_path = os.path.join(tcga_root_dir, target_dir)\n",
    "\n",
    "print(f\"Selected directory: {target_dir} - this dataset may contain clinical information about psychiatric conditions including anxiety\")\n",
    "\n",
    "# Step 2: Get the clinical and genetic data file paths\n",
    "clinical_path, genetic_path = tcga_get_relevant_filepaths(target_path)\n",
    "\n",
    "# Step 3: Load the datasets\n",
    "clinical_df = pd.read_csv(clinical_path, sep='\\t', index_col=0)\n",
    "genetic_df = pd.read_csv(genetic_path, sep='\\t', index_col=0)\n",
    "\n",
    "# Step 4: Print column names of clinical data\n",
    "print(\"\\nClinical data columns:\")\n",
    "print(clinical_df.columns.tolist())\n",
    "\n",
    "# Check if we have both gene data and potential trait data\n",
    "has_gene_data = not genetic_df.empty\n",
    "has_potential_trait_data = not clinical_df.empty\n",
    "\n",
    "# Record our initial assessment\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False, \n",
    "    cohort=\"TCGA\", \n",
    "    info_path=json_path, \n",
    "    is_gene_available=has_gene_data, \n",
    "    is_trait_available=has_potential_trait_data\n",
    ")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d7241c54",
   "metadata": {},
   "source": [
    "### Step 2: Find Candidate Demographic Features"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "a7a14e08",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:32:18.598815Z",
     "iopub.status.busy": "2025-03-25T06:32:18.598670Z",
     "iopub.status.idle": "2025-03-25T06:32:18.613769Z",
     "shell.execute_reply": "2025-03-25T06:32:18.613461Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Age columns preview:\n",
      "{'age_at_initial_pathologic_diagnosis': [44.0, 50.0, 59.0, 56.0, 40.0], 'days_to_birth': [-16179.0, -18341.0, -21617.0, -20516.0, -14806.0], 'first_diagnosis_age_asth_ecz_hay_fev_mold_dust': [nan, nan, nan, nan, nan], 'first_diagnosis_age_of_animal_insect_allergy': [nan, nan, nan, nan, nan], 'first_diagnosis_age_of_food_allergy': [nan, nan, nan, nan, nan]}\n",
      "\n",
      "Gender columns preview:\n",
      "{'gender': ['FEMALE', 'MALE', 'MALE', 'FEMALE', 'FEMALE']}\n"
     ]
    }
   ],
   "source": [
    "# Identify candidate age and gender columns\n",
    "candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth', 'first_diagnosis_age_asth_ecz_hay_fev_mold_dust', \n",
    "                     'first_diagnosis_age_of_animal_insect_allergy', 'first_diagnosis_age_of_food_allergy']\n",
    "candidate_gender_cols = ['gender']\n",
    "\n",
    "# Get the first TCGA dataset from the directory to examine the candidates\n",
    "cohort_dir = os.path.join(tcga_root_dir, 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)')\n",
    "clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)\n",
    "\n",
    "# Load the clinical data\n",
    "clinical_df = pd.read_csv(clinical_file_path, sep='\\t', index_col=0)\n",
    "\n",
    "# Extract and preview age columns\n",
    "age_preview = {}\n",
    "if candidate_age_cols:\n",
    "    for col in candidate_age_cols:\n",
    "        if col in clinical_df.columns:\n",
    "            age_preview[col] = clinical_df[col].head(5).tolist()\n",
    "\n",
    "# Extract and preview gender columns\n",
    "gender_preview = {}\n",
    "if candidate_gender_cols:\n",
    "    for col in candidate_gender_cols:\n",
    "        if col in clinical_df.columns:\n",
    "            gender_preview[col] = clinical_df[col].head(5).tolist()\n",
    "\n",
    "print(\"Age columns preview:\")\n",
    "print(age_preview)\n",
    "print(\"\\nGender columns preview:\")\n",
    "print(gender_preview)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2c04f702",
   "metadata": {},
   "source": [
    "### Step 3: Select Demographic Features"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "bfe8d56c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:32:18.615546Z",
     "iopub.status.busy": "2025-03-25T06:32:18.615410Z",
     "iopub.status.idle": "2025-03-25T06:32:18.618707Z",
     "shell.execute_reply": "2025-03-25T06:32:18.618419Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Selected age column: age_at_initial_pathologic_diagnosis\n",
      "Selected gender column: gender\n"
     ]
    }
   ],
   "source": [
    "# Selecting the most appropriate age column\n",
    "age_columns = {\n",
    "    'age_at_initial_pathologic_diagnosis': [44.0, 50.0, 59.0, 56.0, 40.0], \n",
    "    'days_to_birth': [-16179.0, -18341.0, -21617.0, -20516.0, -14806.0], \n",
    "    'first_diagnosis_age_asth_ecz_hay_fev_mold_dust': [float('nan'), float('nan'), float('nan'), float('nan'), float('nan')], \n",
    "    'first_diagnosis_age_of_animal_insect_allergy': [float('nan'), float('nan'), float('nan'), float('nan'), float('nan')], \n",
    "    'first_diagnosis_age_of_food_allergy': [float('nan'), float('nan'), float('nan'), float('nan'), float('nan')]\n",
    "}\n",
    "\n",
    "# 'age_at_initial_pathologic_diagnosis' has meaningful values with no missing values\n",
    "age_col = 'age_at_initial_pathologic_diagnosis'\n",
    "\n",
    "# Selecting the most appropriate gender column\n",
    "gender_columns = {\n",
    "    'gender': ['FEMALE', 'MALE', 'MALE', 'FEMALE', 'FEMALE']\n",
    "}\n",
    "\n",
    "# 'gender' is the only column and has meaningful values\n",
    "gender_col = 'gender'\n",
    "\n",
    "# Print the chosen columns\n",
    "print(f\"Selected age column: {age_col}\")\n",
    "print(f\"Selected gender column: {gender_col}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "487f8c4d",
   "metadata": {},
   "source": [
    "### Step 4: Feature Engineering and Validation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "4122ad33",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:32:18.620290Z",
     "iopub.status.busy": "2025-03-25T06:32:18.620184Z",
     "iopub.status.idle": "2025-03-25T06:32:20.152807Z",
     "shell.execute_reply": "2025-03-25T06:32:20.152354Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Potential anxiety-related columns: ['mental_status_changes']\n",
      "Other potentially relevant columns: ['mental_status_changes', 'seizure_history', 'headache_history']\n",
      "\n",
      "Values in mental_status_changes:\n",
      "mental_status_changes\n",
      "NO     353\n",
      "YES    120\n",
      "Name: count, dtype: int64\n",
      "\n",
      "Values in seizure_history:\n",
      "seizure_history\n",
      "YES    311\n",
      "NO     183\n",
      "Name: count, dtype: int64\n",
      "\n",
      "Values in headache_history:\n",
      "headache_history\n",
      "NO     302\n",
      "YES    177\n",
      "Name: count, dtype: int64\n",
      "\n",
      "No direct anxiety disorder indicator found in the TCGA dataset\n",
      "Dataset usability status: False\n",
      "Processing completed. No data saved as anxiety disorder information is not available in TCGA datasets.\n"
     ]
    }
   ],
   "source": [
    "# Step 1: Extract and standardize the clinical features\n",
    "# Get file paths - use the brain cancer dataset identified earlier\n",
    "cohort_dir = os.path.join(tcga_root_dir, 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)')\n",
    "clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)\n",
    "\n",
    "# Load data\n",
    "clinical_df = pd.read_csv(clinical_file_path, sep='\\t', index_col=0)\n",
    "genetic_df = pd.read_csv(genetic_file_path, sep='\\t', index_col=0)\n",
    "\n",
    "# Look for any anxiety-related columns in the clinical data\n",
    "anxiety_related_cols = [col for col in clinical_df.columns if any(term in col.lower() for term in \n",
    "                       ['anxiety', 'mental', 'psychiatric', 'psychological', 'mood'])]\n",
    "print(f\"Potential anxiety-related columns: {anxiety_related_cols}\")\n",
    "\n",
    "# Check for other columns that might indirectly relate to anxiety\n",
    "other_relevant_cols = ['mental_status_changes', 'seizure_history', 'headache_history']\n",
    "existing_relevant_cols = [col for col in other_relevant_cols if col in clinical_df.columns]\n",
    "print(f\"Other potentially relevant columns: {existing_relevant_cols}\")\n",
    "\n",
    "# Examine these columns if they exist\n",
    "for col in existing_relevant_cols:\n",
    "    print(f\"\\nValues in {col}:\")\n",
    "    print(clinical_df[col].value_counts())\n",
    "\n",
    "# While mental_status_changes exists, it's not a specific indicator of anxiety disorder\n",
    "print(\"\\nNo direct anxiety disorder indicator found in the TCGA dataset\")\n",
    "\n",
    "# Set flags to indicate that anxiety disorder trait is not available\n",
    "is_gene_available = True  # We do have gene data\n",
    "is_trait_available = False  # But we don't have anxiety disorder data\n",
    "\n",
    "# Validate and save this information - use is_final=False since we're just recording unavailability\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=\"TCGA\",\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "print(f\"Dataset usability status: {is_usable}\")\n",
    "print(\"Processing completed. No data saved as anxiety disorder information is not available in TCGA datasets.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}