File size: 23,090 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "5240718c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:54.882163Z",
     "iopub.status.busy": "2025-03-25T06:41:54.881977Z",
     "iopub.status.idle": "2025-03-25T06:41:55.050315Z",
     "shell.execute_reply": "2025-03-25T06:41:55.049910Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Asthma\"\n",
    "cohort = \"GSE205151\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Asthma\"\n",
    "in_cohort_dir = \"../../input/GEO/Asthma/GSE205151\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Asthma/GSE205151.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Asthma/gene_data/GSE205151.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Asthma/clinical_data/GSE205151.csv\"\n",
    "json_path = \"../../output/preprocess/Asthma/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3140b43f",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "0ad75ca0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:55.051845Z",
     "iopub.status.busy": "2025-03-25T06:41:55.051686Z",
     "iopub.status.idle": "2025-03-25T06:41:55.075598Z",
     "shell.execute_reply": "2025-03-25T06:41:55.075265Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Functional Immunophenotyping of Children with Critical Status Asthmaticus Identifies Differential Gene Expression Responses in Neutrophils Exposed to a Poly(I:C) Stimulus\"\n",
      "!Series_summary\t\"We determined whether we could identify clusters of children with critical asthma by functional immunophenotyping using an intracellular viral analog stimulus.\"\n",
      "!Series_summary\t\"We performed a single-center, prospective, observational cohort study of 43 children ages 6 – 17 years admitted to a pediatric intensive care unit for an asthma attack between July 2019 to February 2021.\"\n",
      "!Series_overall_design\t\"Neutrophils were isolated from children, stimulated overnight with LyoVec poly(I:C), and mRNA was analyzed using a targeted Nanostring immunology array. Network analysis of the differentially expressed transcripts for the paired LyoVec poly(I:C) samples was performed.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['polyic_stimulation: Unstimulated', 'polyic_stimulation: Stimulated', 'polyic_stimulation: No'], 1: ['cluster: 1', 'cluster: 2', nan]}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "63102b45",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "59e2a46c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:55.076753Z",
     "iopub.status.busy": "2025-03-25T06:41:55.076636Z",
     "iopub.status.idle": "2025-03-25T06:41:55.109649Z",
     "shell.execute_reply": "2025-03-25T06:41:55.109314Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Available files in ../../input/GEO/Asthma/GSE205151: ['GSE205151_family.soft.gz', 'GSE205151_series_matrix.txt.gz']\n",
      "Found series matrix file: ../../input/GEO/Asthma/GSE205151/GSE205151_series_matrix.txt.gz\n",
      "Extracted sample characteristics:\n",
      "Row 0: ['\"polyic_stimulation: Stimulated\"', '\"polyic_stimulation: Unstimulated\"', '\"polyic_stimulation: No\"']\n",
      "Row 1: ['\"\"', '\"cluster: 1\"', '\"cluster: 2\"']\n",
      "Preview of selected clinical features:\n",
      "{'\"GSM6205808\"': [nan], '\"GSM6205809\"': [nan], '\"GSM6205810\"': [nan], '\"GSM6205811\"': [nan], '\"GSM6205812\"': [nan], '\"GSM6205813\"': [nan], '\"GSM6205814\"': [nan], '\"GSM6205815\"': [nan], '\"GSM6205816\"': [nan], '\"GSM6205817\"': [nan], '\"GSM6205818\"': [nan], '\"GSM6205819\"': [nan], '\"GSM6205820\"': [nan], '\"GSM6205821\"': [nan], '\"GSM6205822\"': [nan], '\"GSM6205823\"': [nan], '\"GSM6205824\"': [nan], '\"GSM6205825\"': [nan], '\"GSM6205826\"': [nan], '\"GSM6205827\"': [nan], '\"GSM6205828\"': [nan], '\"GSM6205829\"': [nan], '\"GSM6205830\"': [nan], '\"GSM6205831\"': [nan], '\"GSM6205832\"': [nan], '\"GSM6205833\"': [nan], '\"GSM6205834\"': [nan], '\"GSM6205835\"': [nan], '\"GSM6205836\"': [nan], '\"GSM6205837\"': [nan], '\"GSM6205838\"': [nan], '\"GSM6205839\"': [nan], '\"GSM6205840\"': [nan], '\"GSM6205841\"': [nan], '\"GSM6205842\"': [nan], '\"GSM6205843\"': [nan], '\"GSM6205844\"': [nan], '\"GSM6205845\"': [nan], '\"GSM6205846\"': [nan], '\"GSM6205847\"': [nan], '\"GSM6205848\"': [nan], '\"GSM6205849\"': [nan], '\"GSM6205850\"': [nan], '\"GSM6205851\"': [nan], '\"GSM6205852\"': [nan], '\"GSM6205853\"': [nan], '\"GSM6205854\"': [nan], '\"GSM6205855\"': [nan], '\"GSM6205856\"': [nan], '\"GSM6205857\"': [nan], '\"GSM6205858\"': [nan], '\"GSM6205859\"': [nan], '\"GSM6205860\"': [nan], '\"GSM6205861\"': [nan], '\"GSM6205862\"': [nan], '\"GSM6205863\"': [nan], '\"GSM6205864\"': [nan], '\"GSM6205865\"': [nan], '\"GSM6205866\"': [nan], '\"GSM6205867\"': [nan], '\"GSM6205868\"': [nan], '\"GSM6205869\"': [nan], '\"GSM6205870\"': [nan], '\"GSM6205871\"': [nan], '\"GSM6205872\"': [nan], '\"GSM6205873\"': [nan], '\"GSM6205874\"': [nan], '\"GSM6205875\"': [nan], '\"GSM6205876\"': [nan], '\"GSM6205877\"': [nan], '\"GSM6205878\"': [nan], '\"GSM6205879\"': [nan], '\"GSM6205880\"': [nan], '\"GSM6205881\"': [nan], '\"GSM6205882\"': [nan], '\"GSM6205883\"': [nan], '\"GSM6205884\"': [nan], '\"GSM6205885\"': [nan], '\"GSM6205886\"': [nan], '\"GSM6205887\"': [nan], '\"GSM6205888\"': [nan], '\"GSM6205889\"': [nan], '\"GSM6205890\"': [nan], '\"GSM6205891\"': [nan], '\"GSM6205892\"': [nan], '\"GSM6205893\"': [nan], '\"GSM6205894\"': [nan], '\"GSM6205895\"': [nan], '\"GSM6205896\"': [nan], '\"GSM6205897\"': [nan], '\"GSM6205898\"': [nan], '\"GSM6205899\"': [nan], '\"GSM6205900\"': [nan], '\"GSM6205901\"': [nan], '\"GSM6205902\"': [nan], '\"GSM6205903\"': [nan], '\"GSM6205904\"': [nan], '\"GSM6205905\"': [nan], '\"GSM6205906\"': [nan], '\"GSM6205907\"': [nan], '\"GSM6205908\"': [nan], '\"GSM6205909\"': [nan], '\"GSM6205910\"': [nan], '\"GSM6205911\"': [nan], '\"GSM6205912\"': [nan], '\"GSM6205913\"': [nan], '\"GSM6205914\"': [nan], '\"GSM6205915\"': [nan], '\"GSM6205916\"': [nan], '\"GSM6205917\"': [nan], '\"GSM6205918\"': [nan], '\"GSM6205919\"': [nan], '\"GSM6205920\"': [nan], '\"GSM6205921\"': [nan], '\"GSM6205922\"': [nan], '\"GSM6205923\"': [nan], '\"GSM6205924\"': [nan], '\"GSM6205925\"': [nan], '\"GSM6205926\"': [nan], '\"GSM6205927\"': [nan], '\"GSM6205928\"': [nan], '\"GSM6205929\"': [nan], '\"GSM6205930\"': [nan], '\"GSM6205931\"': [nan], '\"GSM6205932\"': [nan], '\"GSM6205933\"': [nan], '\"GSM6205934\"': [nan], '\"GSM6205935\"': [nan], '\"GSM6205936\"': [nan], '\"GSM6205937\"': [nan], '\"GSM6205938\"': [nan], '\"GSM6205939\"': [nan], '\"GSM6205940\"': [nan], '\"GSM6205941\"': [nan], '\"GSM6205942\"': [nan], '\"GSM6205943\"': [nan], '\"GSM6205944\"': [nan], '\"GSM6205945\"': [nan], '\"GSM6205946\"': [nan], '\"GSM6205947\"': [nan], '\"GSM6205948\"': [nan], '\"GSM6205949\"': [nan], '\"GSM6205950\"': [nan], '\"GSM6205951\"': [nan]}\n",
      "Clinical data saved to ../../output/preprocess/Asthma/clinical_data/GSE205151.csv\n"
     ]
    }
   ],
   "source": [
    "import gzip\n",
    "import io\n",
    "\n",
    "# Analyze the available information\n",
    "# From the background information, we can determine this is a gene expression dataset (Nanostring immunology array)\n",
    "is_gene_available = True\n",
    "\n",
    "# Look at what files are available in the input directory\n",
    "available_files = os.listdir(in_cohort_dir)\n",
    "print(f\"Available files in {in_cohort_dir}: {available_files}\")\n",
    "\n",
    "# For trait - using 'cluster' as a potential proxy for asthma severity/subtypes\n",
    "trait_row = 1  # The row with 'cluster' information\n",
    "def convert_trait(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    # Extract value after colon\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    # Convert to binary (0 for cluster 1, 1 for cluster 2)\n",
    "    if value == '1':\n",
    "        return 0\n",
    "    elif value == '2':\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Age data is not available in the provided information\n",
    "age_row = None\n",
    "def convert_age(value):\n",
    "    return None\n",
    "\n",
    "# Gender data is not available in the provided information\n",
    "gender_row = None\n",
    "def convert_gender(value):\n",
    "    return None\n",
    "\n",
    "# Initial validation to see if we should continue processing this dataset\n",
    "is_trait_available = (trait_row is not None)\n",
    "validated = validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# If clinical data is available, extract and save it\n",
    "if trait_row is not None:\n",
    "    try:\n",
    "        # Find and extract the series matrix file which should contain clinical information\n",
    "        series_matrix_file = None\n",
    "        for file in available_files:\n",
    "            if \"series_matrix\" in file.lower():\n",
    "                series_matrix_file = os.path.join(in_cohort_dir, file)\n",
    "                break\n",
    "        \n",
    "        if series_matrix_file:\n",
    "            print(f\"Found series matrix file: {series_matrix_file}\")\n",
    "            \n",
    "            # Read and parse the gzipped series matrix file\n",
    "            clinical_data = None\n",
    "            sample_ids = []\n",
    "            sample_characteristics = {}\n",
    "            \n",
    "            with gzip.open(series_matrix_file, 'rt') as f:\n",
    "                lines = f.readlines()\n",
    "                \n",
    "                # Extract sample IDs\n",
    "                for line in lines:\n",
    "                    if line.startswith('!Sample_geo_accession'):\n",
    "                        sample_ids = line.strip().split('\\t')[1:]\n",
    "                        break\n",
    "                \n",
    "                # Extract sample characteristics\n",
    "                row_idx = 0\n",
    "                for line in lines:\n",
    "                    if line.startswith('!Sample_characteristics_ch1'):\n",
    "                        char_values = line.strip().split('\\t')[1:]\n",
    "                        sample_characteristics[row_idx] = char_values\n",
    "                        row_idx += 1\n",
    "            \n",
    "            # Create a DataFrame from the extracted sample characteristics\n",
    "            clinical_data = pd.DataFrame(sample_characteristics, index=sample_ids).T\n",
    "            \n",
    "            # Display what we've extracted\n",
    "            print(\"Extracted sample characteristics:\")\n",
    "            for row_idx, values in sample_characteristics.items():\n",
    "                unique_values = list(set([v for v in values if pd.notna(v)]))\n",
    "                print(f\"Row {row_idx}: {unique_values[:5]}{'...' if len(unique_values) > 5 else ''}\")\n",
    "            \n",
    "            # Select and process clinical features\n",
    "            selected_clinical_df = geo_select_clinical_features(\n",
    "                clinical_df=clinical_data,\n",
    "                trait=trait,\n",
    "                trait_row=trait_row,\n",
    "                convert_trait=convert_trait,\n",
    "                age_row=age_row,\n",
    "                convert_age=convert_age,\n",
    "                gender_row=gender_row,\n",
    "                convert_gender=convert_gender\n",
    "            )\n",
    "            \n",
    "            # Preview the processed clinical data\n",
    "            preview = preview_df(selected_clinical_df)\n",
    "            print(\"Preview of selected clinical features:\")\n",
    "            print(preview)\n",
    "            \n",
    "            # Save the processed clinical data\n",
    "            os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "            selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "            print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "        else:\n",
    "            print(\"No series matrix file found. Cannot extract clinical features.\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error processing clinical data: {e}\")\n",
    "        print(f\"Error traceback: {traceback.format_exc()}\")\n",
    "        print(\"Unable to extract clinical features.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8b4b343d",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "963cf8f7",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:55.110728Z",
     "iopub.status.busy": "2025-03-25T06:41:55.110612Z",
     "iopub.status.idle": "2025-03-25T06:41:55.129973Z",
     "shell.execute_reply": "2025-03-25T06:41:55.129641Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Asthma/GSE205151/GSE205151_series_matrix.txt.gz\n",
      "Gene data shape: (608, 144)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['ABCB1', 'ABCF1', 'ABL1', 'ADA', 'AHR', 'AICDA', 'AIRE', 'ALAS1', 'APP',\n",
      "       'ARG1', 'ARG2', 'ARHGDIB', 'ATG10', 'ATG12', 'ATG16L1', 'ATG5', 'ATG7',\n",
      "       'ATM', 'B2M', 'B3GAT1'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5b7f040e",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "a38c2ef5",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:55.131038Z",
     "iopub.status.busy": "2025-03-25T06:41:55.130915Z",
     "iopub.status.idle": "2025-03-25T06:41:55.132776Z",
     "shell.execute_reply": "2025-03-25T06:41:55.132450Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examining the gene identifiers from the previous step\n",
    "# The identifiers appear to be official human gene symbols (e.g., ABCB1, ABCF1, ABL1)\n",
    "# These are proper human gene symbols that don't require further mapping\n",
    "\n",
    "requires_gene_mapping = False\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9af17d3b",
   "metadata": {},
   "source": [
    "### Step 5: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "1ed1cbde",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:55.133861Z",
     "iopub.status.busy": "2025-03-25T06:41:55.133748Z",
     "iopub.status.idle": "2025-03-25T06:41:55.321489Z",
     "shell.execute_reply": "2025-03-25T06:41:55.321142Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data saved to ../../output/preprocess/Asthma/gene_data/GSE205151.csv\n",
      "Clinical data saved to ../../output/preprocess/Asthma/clinical_data/GSE205151.csv\n",
      "Linked data shape: (144, 609)\n",
      "Linked data preview (first 5 rows, 5 columns):\n",
      "            Asthma  ABCB1  ABCF1  ABL1   ADA\n",
      "GSM6205808     0.0    5.0   21.0  49.0  27.0\n",
      "GSM6205809     0.0    3.0   16.0   5.0   3.0\n",
      "GSM6205810     1.0    3.0   15.0   3.0  15.0\n",
      "GSM6205811     1.0    5.0   15.0   7.0  19.0\n",
      "GSM6205812     0.0    5.0   17.0   2.0   8.0\n",
      "Data shape after handling missing values: (143, 609)\n",
      "For the feature 'Asthma', the least common label is '0.0' with 69 occurrences. This represents 48.25% of the dataset.\n",
      "The distribution of the feature 'Asthma' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Asthma/GSE205151.csv\n"
     ]
    }
   ],
   "source": [
    "# First, re-extract the necessary files from the cohort directory\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Get the gene data again\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# Read background information and clinical data again to ensure we have the correct data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Save the gene data (no normalization needed as the gene symbols are already standard)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Using the correct trait_row identified in step 2\n",
    "# Using the correct convert_trait function from step 2\n",
    "def convert_trait(value):\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    # Extract value after colon\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    # Convert to binary (0 for cluster 1, 1 for cluster 2)\n",
    "    if value == '1':\n",
    "        return 0\n",
    "    elif value == '2':\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Extract clinical features using the appropriate conversion functions\n",
    "selected_clinical_data = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=1,  # Using trait_row = 1 for cluster as identified in step 2\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=None,  # No age data available\n",
    "    convert_age=None,\n",
    "    gender_row=None,  # No gender data available\n",
    "    convert_gender=None\n",
    ")\n",
    "\n",
    "# Save the processed clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_data.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_data, gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Linked data is empty\")\n",
    "\n",
    "# Handle missing values\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# Check for bias in features\n",
    "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# Validate and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains gene expression data from neutrophils with cluster information indicating response patterns to viral stimuli in children with critical asthma.\"\n",
    ")\n",
    "\n",
    "# Save the linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset is not usable for analysis. No linked data file saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}