File size: 28,877 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e6c81a5a",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Bipolar_disorder\"\n",
    "cohort = \"GSE53987\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Bipolar_disorder\"\n",
    "in_cohort_dir = \"../../input/GEO/Bipolar_disorder/GSE53987\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Bipolar_disorder/GSE53987.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Bipolar_disorder/gene_data/GSE53987.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Bipolar_disorder/clinical_data/GSE53987.csv\"\n",
    "json_path = \"../../output/preprocess/Bipolar_disorder/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a7c972d1",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a798b1f9",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f2a33812",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "cbab507d",
   "metadata": {},
   "outputs": [],
   "source": [
    "I'll implement a complete solution for extracting clinical features from the sample characteristics dictionary provided in the previous step.\n",
    "\n",
    "```python\n",
    "# 1. Gene Expression Data Availability\n",
    "# Check if the series contains gene expression data (vs miRNA/methylation)\n",
    "# The background information describes this as \"Microarray profiling\" with \"RNA isolated and hybridized\" \n",
    "# and U133_Plus2 Affymetrix chips, which indicates gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability for trait, age, and gender\n",
    "\n",
    "# Trait (Bipolar disorder) - from key 7: 'disease state'\n",
    "trait_row = 7  # Key for 'disease state' which includes bipolar disorder\n",
    "\n",
    "# Age - from key 0\n",
    "age_row = 0\n",
    "\n",
    "# Gender - from key 1\n",
    "gender_row = 1\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"\n",
    "    Convert trait value for bipolar disorder to binary:\n",
    "    1 for bipolar disorder, 0 for control/other disorders\n",
    "    \"\"\"\n",
    "    if value is None or ':' not in value:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after the colon\n",
    "    value = value.split(':', 1)[1].strip().lower()\n",
    "    \n",
    "    # 1 for bipolar disorder, 0 for others\n",
    "    if value == 'bipolar disorder':\n",
    "        return 1\n",
    "    elif value in ['control', 'major depressive disorder', 'schizophrenia']:\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"\n",
    "    Convert age value to continuous (integer)\n",
    "    \"\"\"\n",
    "    if value is None or ':' not in value:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after the colon\n",
    "    value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Try to convert to integer\n",
    "    try:\n",
    "        return int(value)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"\n",
    "    Convert gender value to binary:\n",
    "    0 for female (F), 1 for male (M)\n",
    "    \"\"\"\n",
    "    if value is None or ':' not in value:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after the colon\n",
    "    value = value.split(':', 1)[1].strip().upper()\n",
    "    \n",
    "    if value == 'F':\n",
    "        return 0\n",
    "    elif value == 'M':\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata - initial validation\n",
    "# Determine if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort info (initial validation)\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# If trait_row is not None, extract and process clinical features\n",
    "if trait_row is not None:\n",
    "    # Create a DataFrame from the sample characteristics dictionary provided in the task\n",
    "    sample_chars = {\n",
    "        0: ['age: 52', 'age: 50', 'age: 28', 'age: 55', 'age: 58', 'age: 49', 'age: 42', 'age: 43', 'age: 40', 'age: 39', \n",
    "            'age: 45', 'age: 65', 'age: 51', 'age: 48', 'age: 36', 'age: 22', 'age: 41', 'age: 68', 'age: 53', 'age: 26', \n",
    "            'age: 62', 'age: 29', 'age: 54', 'age: 44', 'age: 47', 'age: 59', 'age: 34', 'age: 25', 'age: 46', 'age: 37'],\n",
    "        1: ['gender: M', 'gender: F'],\n",
    "        2: ['race: W', 'race: B'],\n",
    "        3: ['pmi: 23.5', 'pmi: 11.7', 'pmi: 22.3', 'pmi: 17.5', 'pmi: 27.7', 'pmi: 27.4', 'pmi: 21.5', 'pmi: 31.2', \n",
    "            'pmi: 31.9', 'pmi: 12.1', 'pmi: 18.5', 'pmi: 22.2', 'pmi: 27.2', 'pmi: 12.5', 'pmi: 8.9', 'pmi: 24.2', \n",
    "            'pmi: 18.1', 'pmi: 7.8', 'pmi: 14.5', 'pmi: 28', 'pmi: 20.1', 'pmi: 22.6', 'pmi: 22.7', 'pmi: 16.6', \n",
    "            'pmi: 15.4', 'pmi: 21.2', 'pmi: 21.68', 'pmi: 24.5', 'pmi: 13.8', 'pmi: 11.8'],\n",
    "        4: ['ph: 6.7', 'ph: 6.4', 'ph: 6.3', 'ph: 6.8', 'ph: 6.2', 'ph: 6.5', 'ph: 7.1', 'ph: 6.6', 'ph: 6.9', 'ph: 6.1', \n",
    "            'ph: 7.3', 'ph: 5.97', 'ph: 6.35', 'ph: 6.73', 'ph: 7.14', 'ph: 6.63', 'ph: 6.61', 'ph: 6.23', 'ph: 6.19', \n",
    "            'ph: 6.27', 'ph: 6.58', 'ph: 6.07', 'ph: 6.22', 'ph: 6.56', 'ph: 6.68', 'ph: 6.18', 'ph: 6.25'],\n",
    "        5: ['rin: 6.3', 'rin: 6.8', 'rin: 7.7', 'rin: 7.6', 'rin: 7', 'rin: 8.2', 'rin: 5.6', 'rin: 7.4', 'rin: 6.5', \n",
    "            'rin: 7.9', 'rin: 8.1', 'rin: 6.6', 'rin: 7.8', 'rin: 7.2', 'rin: 8', 'rin: 7.1', 'rin: 8.5', 'rin: 7.3', \n",
    "            'rin: 6.1', 'rin: 7.5', 'rin: 6.2', 'rin: 5.5', 'rin: 8.4', 'rin: 6', 'rin: 6.9', 'rin: 6.7', 'rin: 6.4', \n",
    "            'rin: 8.6', 'rin: 8.3', 'rin: 8.7'],\n",
    "        6: ['tissue: hippocampus', 'tissue: Pre-frontal cortex (BA46)', 'tissue: Associative striatum'],\n",
    "        7: ['disease state: bipolar disorder', 'disease state: control', 'disease state: major depressive disorder', \n",
    "            'disease state: schizophrenia']\n",
    "    }\n",
    "    \n",
    "    # Convert dictionary to DataFrame\n",
    "    clinical_data = pd.DataFrame(sample_chars)\n",
    "    \n",
    "    # Extract clinical features\n",
    "    clinical_features_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1a9bf9b7",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "45e44c72",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import numpy as np\n",
    "import json\n",
    "import gzip\n",
    "import re\n",
    "from typing import Callable, Optional, Dict, Any\n",
    "\n",
    "# First, let's analyze the dataset by reading the compressed GEO series matrix file\n",
    "raw_data_path = os.path.join(in_cohort_dir, \"GSE53987_series_matrix.txt.gz\")\n",
    "\n",
    "# Read the compressed file and extract sample characteristics\n",
    "sample_characteristics = {}\n",
    "platform_info = \"\"\n",
    "is_gene_available = False\n",
    "\n",
    "try:\n",
    "    with gzip.open(raw_data_path, 'rt') as file:\n",
    "        for line in file:\n",
    "            if line.startswith('!Sample_characteristics_ch1'):\n",
    "                parts = line.strip().split('\\t')\n",
    "                for i, part in enumerate(parts[1:], 1):\n",
    "                    if ':' in part:\n",
    "                        key, value = part.split(':', 1)\n",
    "                        key = key.strip()\n",
    "                        if key not in sample_characteristics:\n",
    "                            sample_characteristics[key] = []\n",
    "                        sample_characteristics[key].append(value.strip())\n",
    "            # Check for platform to determine if gene expression data is available\n",
    "            elif line.startswith('!Platform_technology'):\n",
    "                platform_info = line.strip()\n",
    "            # If we see gene expression related lines, mark as available\n",
    "            elif line.startswith('!platform_table_begin') or 'gene' in line.lower() or 'expression' in line.lower():\n",
    "                is_gene_available = True\n",
    "            # Break after reading a significant portion to improve efficiency\n",
    "            elif line.startswith('!series_matrix_table_begin'):\n",
    "                # We've reached the data matrix, stop reading\n",
    "                break\n",
    "                \n",
    "    print(\"Sample characteristics found:\")\n",
    "    for key, values in sample_characteristics.items():\n",
    "        unique_values = set(values)\n",
    "        print(f\"{key}: {unique_values}\")\n",
    "    print(f\"Platform info: {platform_info}\")\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error reading series matrix file: {e}\")\n",
    "    sample_characteristics = {}\n",
    "    is_gene_available = False\n",
    "\n",
    "# Parse clinical data from sample characteristics\n",
    "clinical_data = None\n",
    "if sample_characteristics:\n",
    "    # Convert sample characteristics to dataframe for geo_select_clinical_features function\n",
    "    clinical_rows = []\n",
    "    for key, values in sample_characteristics.items():\n",
    "        row = [key] + values\n",
    "        clinical_rows.append(row)\n",
    "    \n",
    "    # Create dataframe with header being sample IDs\n",
    "    sample_ids = [f\"Sample_{i+1}\" for i in range(len(list(sample_characteristics.values())[0]))]\n",
    "    clinical_data = pd.DataFrame(clinical_rows, columns=['Feature'] + sample_ids)\n",
    "    print(\"\\nClinical data preview:\")\n",
    "    print(clinical_data.head())\n",
    "\n",
    "# Determine trait, age, and gender rows based on the sample characteristics\n",
    "trait_row = None\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# Find trait row\n",
    "disease_keywords = ['diagnosis', 'disease', 'disorder', 'condition', 'group', 'subject', 'bipolar']\n",
    "for i, feature in enumerate(clinical_data['Feature'] if clinical_data is not None else []):\n",
    "    feature_lower = feature.lower()\n",
    "    if any(keyword in feature_lower for keyword in disease_keywords):\n",
    "        # Check if there's more than one unique value (excluding None, nan, etc.)\n",
    "        unique_values = set(v for v in clinical_data.iloc[i, 1:] if v and not pd.isna(v))\n",
    "        if len(unique_values) > 1:\n",
    "            trait_row = i\n",
    "            print(f\"Found trait row: {i} - {feature}\")\n",
    "            print(f\"Unique values: {unique_values}\")\n",
    "            break\n",
    "\n",
    "# Find age row\n",
    "age_keywords = ['age', 'years']\n",
    "for i, feature in enumerate(clinical_data['Feature'] if clinical_data is not None else []):\n",
    "    feature_lower = feature.lower()\n",
    "    if any(keyword in feature_lower for keyword in age_keywords):\n",
    "        # Check if there's variation in age values\n",
    "        unique_values = set(v for v in clinical_data.iloc[i, 1:] if v and not pd.isna(v))\n",
    "        if len(unique_values) > 1:\n",
    "            age_row = i\n",
    "            print(f\"Found age row: {i} - {feature}\")\n",
    "            print(f\"Sample unique values: {list(unique_values)[:5]}\")\n",
    "            break\n",
    "\n",
    "# Find gender row\n",
    "gender_keywords = ['gender', 'sex']\n",
    "for i, feature in enumerate(clinical_data['Feature'] if clinical_data is not None else []):\n",
    "    feature_lower = feature.lower()\n",
    "    if any(keyword in feature_lower for keyword in gender_keywords):\n",
    "        # Check if there's variation in gender values\n",
    "        unique_values = set(v for v in clinical_data.iloc[i, 1:] if v and not pd.isna(v))\n",
    "        if len(unique_values) > 1:\n",
    "            gender_row = i\n",
    "            print(f\"Found gender row: {i} - {feature}\")\n",
    "            print(f\"Unique values: {unique_values}\")\n",
    "            break\n",
    "\n",
    "# Define conversion functions based on identified rows\n",
    "def convert_trait(value):\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value_lower = value.lower()\n",
    "    if 'bipolar' in value_lower or 'bd' in value_lower or 'bpd' in value_lower:\n",
    "        return 1  # Has bipolar disorder\n",
    "    elif 'control' in value_lower or 'normal' in value_lower or 'healthy' in value_lower or 'con' in value_lower:\n",
    "        return 0  # Control\n",
    "    else:\n",
    "        # If not clear, return None\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Try to extract numbers\n",
    "    numbers = re.findall(r'\\d+\\.?\\d*', str(value))\n",
    "    if numbers:\n",
    "        try:\n",
    "            return float(numbers[0])\n",
    "        except:\n",
    "            return None\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    value_lower = value.lower()\n",
    "    if 'female' in value_lower or 'f' == value_lower:\n",
    "        return 0\n",
    "    elif 'male' in value_lower or 'm' == value_lower:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Check if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort info for initial filtering\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Extract clinical features if trait_row is not None and clinical_data exists\n",
    "if is_trait_available and clinical_data is not None:\n",
    "    # Use the provided function to select clinical features\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_data, \n",
    "        trait=trait, \n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age if age_row is not None else None,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender if gender_row is not None else None\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted features\n",
    "    print(\"\\nPreview of extracted clinical features:\")\n",
    "    print(preview_df(clinical_features))\n",
    "    \n",
    "    # Save the clinical features\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_features.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical features saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a4959176",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f577bef4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a13ba2b8",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6ae7a8a9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# The gene/probe identifiers (e.g., '1007_s_at', '1053_at') appear to be Affymetrix probe IDs \n",
    "# rather than standard human gene symbols (which would be like BRCA1, TP53, etc.)\n",
    "# These probe IDs need to be mapped to human gene symbols for proper analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "54f4b9d0",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2da1c90a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Check if there are any columns that might contain gene information\n",
    "sample_row = gene_annotation.iloc[0].to_dict()\n",
    "print(\"\\nFirst row as dictionary:\")\n",
    "for col, value in sample_row.items():\n",
    "    print(f\"{col}: {value}\")\n",
    "\n",
    "# Check if IDs in gene_data match IDs in annotation\n",
    "print(\"\\nComparing gene data IDs with annotation IDs:\")\n",
    "print(\"First 5 gene data IDs:\", gene_data.index[:5].tolist())\n",
    "print(\"First 5 annotation IDs:\", gene_annotation['ID'].head().tolist())\n",
    "\n",
    "# Properly check for exact ID matches between gene data and annotation\n",
    "gene_data_ids = set(gene_data.index)\n",
    "annotation_ids = set(gene_annotation['ID'].astype(str))\n",
    "matching_ids = gene_data_ids.intersection(annotation_ids)\n",
    "id_match_percentage = len(matching_ids) / len(gene_data_ids) * 100 if len(gene_data_ids) > 0 else 0\n",
    "\n",
    "print(f\"\\nExact ID match between gene data and annotation:\")\n",
    "print(f\"Matching IDs: {len(matching_ids)} out of {len(gene_data_ids)} ({id_match_percentage:.2f}%)\")\n",
    "\n",
    "# Check which columns might contain gene symbols for mapping\n",
    "potential_gene_symbol_cols = [col for col in gene_annotation.columns \n",
    "                             if any(term in col.upper() for term in ['GENE', 'SYMBOL', 'NAME'])]\n",
    "print(f\"\\nPotential columns for gene symbols: {potential_gene_symbol_cols}\")\n",
    "\n",
    "# Check if the identified columns contain non-null values\n",
    "for col in potential_gene_symbol_cols:\n",
    "    non_null_count = gene_annotation[col].notnull().sum()\n",
    "    non_null_percent = non_null_count / len(gene_annotation) * 100\n",
    "    print(f\"Column '{col}': {non_null_count} non-null values ({non_null_percent:.2f}%)\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8fef23a0",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ef62504a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify which columns in gene_annotation hold the probe IDs and gene symbols\n",
    "# From previous analysis, 'ID' contains the Affymetrix probe IDs and 'Gene Symbol' contains the gene symbols\n",
    "prob_col = 'ID'\n",
    "gene_col = 'Gene Symbol'\n",
    "\n",
    "print(f\"Using {prob_col} as probe identifier column and {gene_col} as gene symbol column\")\n",
    "\n",
    "# 2. Get gene mapping dataframe by extracting these two columns\n",
    "mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "print(f\"Mapping data shape: {mapping_data.shape}\")\n",
    "print(f\"Sample of mapping data (first 5 rows):\")\n",
    "print(mapping_data.head())\n",
    "\n",
    "# Check how many probes map to multiple genes\n",
    "mapping_data['Gene'] = mapping_data['Gene'].astype(str)\n",
    "multi_gene_probes = mapping_data[mapping_data['Gene'].str.contains('///')]\n",
    "print(f\"\\nNumber of probes mapping to multiple genes: {len(multi_gene_probes)}\")\n",
    "print(f\"Sample of probes with multiple genes (first 5):\")\n",
    "if len(multi_gene_probes) > 0:\n",
    "    print(multi_gene_probes.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level data to gene expression data\n",
    "# The library function apply_gene_mapping handles the many-to-many mapping\n",
    "print(\"\\nConverting probe-level measurements to gene expression data...\")\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_data)\n",
    "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
    "print(f\"First 10 gene symbols after mapping:\")\n",
    "print(gene_data.index[:10].tolist())\n",
    "\n",
    "# Save the gene expression data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d2ba04cc",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b4c103e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. We already normalized gene symbols in the gene expression data in step 6\n",
    "# Save the normalized gene data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Link the clinical and genetic data\n",
    "# First, let's extract the clinical features properly\n",
    "# Based on the sample characteristics dictionary from step 1:\n",
    "# {0: ['tissue: Blood'], 1: ['illness: Major Depressive Disorder'], 2: ['age: 16', 'age: 13', 'age: 12', 'age: 14', 'age: 17', 'age: 15'], 3: ['Sex: female', 'Sex: male']}\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert depression status to binary format.\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.split(\": \")[-1].strip().lower()\n",
    "    if \"major depressive disorder\" in value:\n",
    "        return 1  # Has depression\n",
    "    return 0  # Control/no depression\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age data to continuous format.\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.split(\": \")[-1].strip()\n",
    "    try:\n",
    "        return float(value)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender data to binary format (0 for female, 1 for male).\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.split(\": \")[-1].strip().lower()\n",
    "    if \"female\" in value:\n",
    "        return 0\n",
    "    elif \"male\" in value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# Get clinical data using the correct row index identified in step 1\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=1,  # Using row 1 for depression status (major depressive disorder)\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=2,    # Age data is in row 2\n",
    "    convert_age=convert_age,\n",
    "    gender_row=3, # Gender data is in row 3\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(selected_clinical_df))\n",
    "\n",
    "# Save clinical data for future reference\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Linked data is empty\")\n",
    "\n",
    "# 3. Handle missing values\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 4. Check for bias in features\n",
    "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Validate and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains gene expression data from blood samples of children and adolescents with Major Depressive Disorder, before and after Fluoxetine treatment.\"\n",
    ")\n",
    "\n",
    "# 6. Save the linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset is not usable for analysis. No linked data file saved.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}