File size: 26,468 Bytes
736e4a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "62cd86d9",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:56:50.668591Z",
"iopub.status.busy": "2025-03-25T06:56:50.668184Z",
"iopub.status.idle": "2025-03-25T06:56:50.831556Z",
"shell.execute_reply": "2025-03-25T06:56:50.831223Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Bladder_Cancer\"\n",
"cohort = \"GSE185264\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Bladder_Cancer\"\n",
"in_cohort_dir = \"../../input/GEO/Bladder_Cancer/GSE185264\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Bladder_Cancer/GSE185264.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Bladder_Cancer/gene_data/GSE185264.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Bladder_Cancer/clinical_data/GSE185264.csv\"\n",
"json_path = \"../../output/preprocess/Bladder_Cancer/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "117d9a6b",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "02a8ea67",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:56:50.832933Z",
"iopub.status.busy": "2025-03-25T06:56:50.832801Z",
"iopub.status.idle": "2025-03-25T06:56:50.859069Z",
"shell.execute_reply": "2025-03-25T06:56:50.858783Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Identification of a Novel Inflamed Tumor Microenvironment Signature as a Predictive Biomarker of Bacillus Calmette-Guérin Immunotherapy in Non–Muscle-Invasive Bladder Cancer\"\n",
"!Series_summary\t\"Improved risk stratification and predictive biomarkers of treatment response are needed for non–muscle-invasive bladder cancer (NMIBC). Here we assessed the clinical utility of targeted RNA and DNA molecular profiling in NMIBC. We performed RNA-based profiling by NanoString nCounter on non–muscle-invasive bladder cancer (NMIBC) clinical specimens and found that a novel expression signature of an inflamed tumor microenvironment (TME), but not molecular subtyping, was associated with improved recurrence-free survival after bacillus Calmette-Guérin (BCG) immunotherapy. We further demonstrated that immune checkpoint gene expression was not associated with higher recurrence rates after BCG.\"\n",
"!Series_overall_design\t\"Gene expression in NMIBC samples was profiled by NanoString nCounter, an RNA quantification platform, from two independent cohorts (n = 28, n = 50).\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['studyid.sampleid: NA', 'studyid.sampleid: P-0005606-T01-IM5', 'studyid.sampleid: P-0006902-T01-IM5', 'studyid.sampleid: P-0009371-T01-IM5', 'studyid.sampleid: P-0004941-T01-IM5', 'studyid.sampleid: P-0005087-T01-IM5', 'studyid.sampleid: P-0003261-T01-IM5', 'studyid.sampleid: P-0003878-T01-IM5', 'studyid.sampleid: P-0004757-T01-IM5', 'studyid.sampleid: P-0003438-T01-IM5', 'studyid.sampleid: P-0003823-T01-IM5', 'studyid.sampleid: P-0003352-T01-IM5', 'studyid.sampleid: P-0003690-T01-IM5', 'studyid.sampleid: P-0003433-T01-IM5', 'studyid.sampleid: P-0008240-T01-IM5', 'studyid.sampleid: P-0004424-T01-IM5', 'studyid.sampleid: P-0003408-T01-IM5', 'studyid.sampleid: P-0003238-T01-IM5', 'studyid.sampleid: P-0008867-T01-IM5', 'studyid.sampleid: P-0003257-T01-IM5', 'studyid.sampleid: P-0006645-T01-IM5', 'studyid.sampleid: P-0003817-T01-IM5', 'studyid.sampleid: P-0006142-T01-IM5', 'studyid.sampleid: P-0006291-T01-IM5', 'studyid.sampleid: P-0007966-T01-IM5', 'studyid.sampleid: P-0006194-T01-IM5', 'studyid.sampleid: P-0003403-T01-IM5', 'studyid.sampleid: P-0007285-T01-IM5', 'studyid.sampleid: P-0004224-T01-IM5', 'studyid.sampleid: P-0008834-T01-IM5'], 1: ['study: UNC', 'study: MSK'], 2: ['tissue: Bladder Cancer'], 3: ['hede: Early Basal-like (H3)', 'hede: Luminal CIS-like (H2)', 'hede: Luminal (H1)'], 4: ['mda: Basal', 'mda: TP53', 'mda: NA', 'mda: Luminal'], 5: ['lund: GenomicUnstable', 'lund: SCC-Like', 'lund: NA', 'lund: Infiltrated', 'lund: UrobasalA', 'lund: UrobasalB'], 6: ['immune: high', 'immune: low', 'immune: medium'], 7: ['Sex: F', 'Sex: M'], 8: ['Stage: Ta', 'Stage: T1', 'Stage: Ta/T1'], 9: ['grade: Low', 'grade: High', 'grade: .'], 10: ['cis: No', 'cis: Yes'], 11: ['tumor_no: NA', 'tumor_no: 1', 'tumor_no: 2'], 12: ['recurrence: NA', 'recurrence: No.Recurrence', 'recurrence: Recurrence'], 13: ['bcg.y.n: NA', 'bcg.y.n: Treated.BCG'], 14: ['bcg: NA', 'bcg: BCG', 'bcg: Observation', 'bcg: Cystectomy', 'bcg: MMC']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "b75167d7",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d2a5a4e0",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:56:50.860076Z",
"iopub.status.busy": "2025-03-25T06:56:50.859968Z",
"iopub.status.idle": "2025-03-25T06:56:50.870375Z",
"shell.execute_reply": "2025-03-25T06:56:50.870098Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical features preview:\n",
"{0: [nan, 0.0], 1: [1.0, 1.0], 2: [nan, nan], 3: [nan, nan], 4: [nan, nan], 5: [nan, nan], 6: [nan, nan], 7: [nan, nan], 8: [nan, nan], 9: [nan, nan], 10: [nan, nan], 11: [nan, nan], 12: [nan, nan], 13: [nan, nan], 14: [nan, nan], 15: [nan, nan], 16: [nan, nan], 17: [nan, nan], 18: [nan, nan], 19: [nan, nan], 20: [nan, nan], 21: [nan, nan], 22: [nan, nan], 23: [nan, nan], 24: [nan, nan], 25: [nan, nan], 26: [nan, nan], 27: [nan, nan], 28: [nan, nan], 29: [nan, nan]}\n",
"Clinical data saved to: ../../output/preprocess/Bladder_Cancer/clinical_data/GSE185264.csv\n"
]
}
],
"source": [
"# 1. Determine gene expression data availability\n",
"is_gene_available = True # Based on the Series_summary and overall_design, this contains RNA-based profiling\n",
"\n",
"# 2.1 Determine data availability for trait, age, and gender\n",
"# For trait (Bladder Cancer), we'll use bcg response as the trait since this is the focus of the study\n",
"trait_row = 13 # bcg.y.n field\n",
"# Age is not available in the data\n",
"age_row = None\n",
"# Gender is available\n",
"gender_row = 7 # Sex field\n",
"\n",
"# 2.2 Define conversion functions for each variable\n",
"def convert_trait(value):\n",
" \"\"\"Convert BCG treatment status to binary format.\"\"\"\n",
" if value is None or pd.isna(value) or 'NA' in value:\n",
" return None\n",
" \n",
" # Extract value after colon\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if 'Treated.BCG' in value:\n",
" return 1 # BCG treated\n",
" else:\n",
" return 0 # Not treated with BCG\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age to numeric value.\"\"\"\n",
" # Age is not available\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender to binary format: female=0, male=1.\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after colon\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if value == 'F':\n",
" return 0 # Female\n",
" elif value == 'M':\n",
" return 1 # Male\n",
" else:\n",
" return None # Unknown or other\n",
"\n",
"# 3. Save metadata\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Extract clinical features if trait data is available\n",
"if trait_row is not None:\n",
" # Create the clinical data DataFrame correctly\n",
" sample_chars = {\n",
" 0: ['studyid.sampleid: NA', 'studyid.sampleid: P-0005606-T01-IM5', 'studyid.sampleid: P-0006902-T01-IM5', 'studyid.sampleid: P-0009371-T01-IM5', 'studyid.sampleid: P-0004941-T01-IM5', 'studyid.sampleid: P-0005087-T01-IM5', 'studyid.sampleid: P-0003261-T01-IM5', 'studyid.sampleid: P-0003878-T01-IM5', 'studyid.sampleid: P-0004757-T01-IM5', 'studyid.sampleid: P-0003438-T01-IM5', 'studyid.sampleid: P-0003823-T01-IM5', 'studyid.sampleid: P-0003352-T01-IM5', 'studyid.sampleid: P-0003690-T01-IM5', 'studyid.sampleid: P-0003433-T01-IM5', 'studyid.sampleid: P-0008240-T01-IM5', 'studyid.sampleid: P-0004424-T01-IM5', 'studyid.sampleid: P-0003408-T01-IM5', 'studyid.sampleid: P-0003238-T01-IM5', 'studyid.sampleid: P-0008867-T01-IM5', 'studyid.sampleid: P-0003257-T01-IM5', 'studyid.sampleid: P-0006645-T01-IM5', 'studyid.sampleid: P-0003817-T01-IM5', 'studyid.sampleid: P-0006142-T01-IM5', 'studyid.sampleid: P-0006291-T01-IM5', 'studyid.sampleid: P-0007966-T01-IM5', 'studyid.sampleid: P-0006194-T01-IM5', 'studyid.sampleid: P-0003403-T01-IM5', 'studyid.sampleid: P-0007285-T01-IM5', 'studyid.sampleid: P-0004224-T01-IM5', 'studyid.sampleid: P-0008834-T01-IM5'],\n",
" 1: ['study: UNC', 'study: MSK'], \n",
" 2: ['tissue: Bladder Cancer'], \n",
" 3: ['hede: Early Basal-like (H3)', 'hede: Luminal CIS-like (H2)', 'hede: Luminal (H1)'], \n",
" 4: ['mda: Basal', 'mda: TP53', 'mda: NA', 'mda: Luminal'], \n",
" 5: ['lund: GenomicUnstable', 'lund: SCC-Like', 'lund: NA', 'lund: Infiltrated', 'lund: UrobasalA', 'lund: UrobasalB'], \n",
" 6: ['immune: high', 'immune: low', 'immune: medium'], \n",
" 7: ['Sex: F', 'Sex: M'], \n",
" 8: ['Stage: Ta', 'Stage: T1', 'Stage: Ta/T1'], \n",
" 9: ['grade: Low', 'grade: High', 'grade: .'], \n",
" 10: ['cis: No', 'cis: Yes'], \n",
" 11: ['tumor_no: NA', 'tumor_no: 1', 'tumor_no: 2'], \n",
" 12: ['recurrence: NA', 'recurrence: No.Recurrence', 'recurrence: Recurrence'], \n",
" 13: ['bcg.y.n: NA', 'bcg.y.n: Treated.BCG'], \n",
" 14: ['bcg: NA', 'bcg: BCG', 'bcg: Observation', 'bcg: Cystectomy', 'bcg: MMC']\n",
" }\n",
" \n",
" # Create a proper DataFrame from the sample characteristics\n",
" clinical_data = pd.DataFrame.from_dict(sample_chars, orient='index')\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical features\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Clinical features preview:\")\n",
" print(preview)\n",
" \n",
" # Save clinical data to CSV\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to: {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "c0b3edaf",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "25e105be",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:56:50.871347Z",
"iopub.status.busy": "2025-03-25T06:56:50.871247Z",
"iopub.status.idle": "2025-03-25T06:56:50.884346Z",
"shell.execute_reply": "2025-03-25T06:56:50.884069Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['53BP1', 'ABCD3', 'ACTB', 'ADIRF', 'ADPRHL2', 'AFTPH', 'AHNAK2', 'AKT',\n",
" 'ALDH1L1', 'ALOX5', 'ALOX5AP', 'ANLN', 'APEX1', 'APH1B', 'APOBEC3A',\n",
" 'APOBEC3B', 'APOBEC3C', 'APOBEC3D', 'APOBEC3F', 'APOBEC3G'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "79d77abc",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "abf8c1bd",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:56:50.885295Z",
"iopub.status.busy": "2025-03-25T06:56:50.885195Z",
"iopub.status.idle": "2025-03-25T06:56:50.886915Z",
"shell.execute_reply": "2025-03-25T06:56:50.886652Z"
}
},
"outputs": [],
"source": [
"# Based on the provided gene identifiers, I can analyze whether they are standard human gene symbols or other identifiers\n",
"\n",
"# Looking at the sample gene identifiers:\n",
"# - 53BP1, ACTB, AKT: These are standard human gene symbols\n",
"# - APOBEC3A, APOBEC3B, etc.: These are proper human gene symbols for the APOBEC3 family\n",
"# - ALDH1L1, ALOX5, etc.: These are standard human gene nomenclature\n",
"\n",
"# All of these appear to be standard HGNC (HUGO Gene Nomenclature Committee) gene symbols\n",
"# They follow the conventional naming patterns for human genes\n",
"# No mapping appears to be needed as these are already human gene symbols\n",
"\n",
"requires_gene_mapping = False\n"
]
},
{
"cell_type": "markdown",
"id": "7f251872",
"metadata": {},
"source": [
"### Step 5: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7b991f1e",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:56:50.887861Z",
"iopub.status.busy": "2025-03-25T06:56:50.887765Z",
"iopub.status.idle": "2025-03-25T06:56:51.065788Z",
"shell.execute_reply": "2025-03-25T06:56:51.065473Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original gene count: 446\n",
"Sample of gene symbols before normalization:\n",
"Index(['53BP1', 'ABCD3', 'ACTB', 'ADIRF', 'ADPRHL2', 'AFTPH', 'AHNAK2', 'AKT',\n",
" 'ALDH1L1', 'ALOX5', 'ALOX5AP', 'ANLN', 'APEX1', 'APH1B', 'APOBEC3A',\n",
" 'APOBEC3B', 'APOBEC3C', 'APOBEC3D', 'APOBEC3F', 'APOBEC3G'],\n",
" dtype='object', name='ID')\n",
"Normalized gene count: 432\n",
"Gene data saved to ../../output/preprocess/Bladder_Cancer/gene_data/GSE185264.csv\n",
"Found 15 GSM IDs in clinical data\n",
"First 5 GSM IDs: ['!Sample_characteristics_ch1', '!Sample_characteristics_ch1', '!Sample_characteristics_ch1', '!Sample_characteristics_ch1', '!Sample_characteristics_ch1']\n",
"Number of common samples between clinical and gene data: 78\n",
"Clinical data saved to ../../output/preprocess/Bladder_Cancer/clinical_data/GSE185264.csv\n",
"Linked data shape after proper ID matching: (78, 434)\n",
"Percentage of missing values in trait: 53.85%\n",
"Linked data shape after handling missing values: (36, 434)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Quartiles for 'Bladder_Cancer':\n",
" 25%: 1.0\n",
" 50% (Median): 1.0\n",
" 75%: 1.0\n",
"Min: 1.0\n",
"Max: 1.0\n",
"The distribution of the feature 'Bladder_Cancer' in this dataset is severely biased.\n",
"\n",
"For the feature 'Gender', the least common label is '0.0' with 8 occurrences. This represents 22.22% of the dataset.\n",
"The distribution of the feature 'Gender' in this dataset is fine.\n",
"\n",
"The dataset was determined to be not usable for analysis. Bias in trait: True\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(f\"Original gene count: {len(gene_data)}\")\n",
"print(f\"Sample of gene symbols before normalization:\")\n",
"print(gene_data.index[:20]) # Display first 20 gene symbols\n",
"\n",
"# Normalize the gene data (skip mapping since we already have gene symbols)\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Normalized gene count: {len(normalized_gene_data)}\")\n",
"\n",
"# Since this dataset has a small number of genes, we'll use the original data if normalization removes too many\n",
"if len(normalized_gene_data) < len(gene_data) * 0.9: # If we lost more than 10% of genes\n",
" print(\"Warning: Gene symbol normalization removed too many genes. Using original gene data without normalization.\")\n",
" normalized_gene_data = gene_data # Use the original data without normalization\n",
"\n",
"# Create directory for the gene data file if it doesn't exist\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"\n",
"# Save the gene data to a CSV file\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Fix the clinical data extraction to properly use sample accessions\n",
"# Reread the clinical data from the matrix file\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"_, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# Check if we have the Sample_geo_accession column to identify GSM IDs\n",
"if '!Sample_geo_accession' in clinical_data.columns:\n",
" # Extract the GSM IDs from the clinical data\n",
" gsm_ids = clinical_data['!Sample_geo_accession'].tolist()\n",
" print(f\"Found {len(gsm_ids)} GSM IDs in clinical data\")\n",
" print(f\"First 5 GSM IDs: {gsm_ids[:5]}\")\n",
" \n",
" # Extract clinical features with proper GSM IDs\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Transpose the clinical dataframe to have samples as rows and features as columns\n",
" selected_clinical_df = selected_clinical_df.T\n",
" \n",
" # Check if the sample IDs match between clinical and gene data\n",
" common_samples = set(selected_clinical_df.index).intersection(set(normalized_gene_data.columns))\n",
" print(f\"Number of common samples between clinical and gene data: {len(common_samples)}\")\n",
" \n",
" # Save the properly formatted clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" \n",
" # Create a proper linked dataset using the common samples\n",
" if len(common_samples) > 0:\n",
" # Filter both datasets to only include common samples\n",
" clinical_filtered = selected_clinical_df.loc[list(common_samples)]\n",
" gene_filtered = normalized_gene_data[list(common_samples)]\n",
" \n",
" # Combine the datasets\n",
" linked_data = pd.concat([clinical_filtered, gene_filtered.T], axis=1)\n",
" print(f\"Linked data shape after proper ID matching: {linked_data.shape}\")\n",
" \n",
" # 3. Handle missing values in the linked data with more relaxed criteria\n",
" # First, check missing value percentages\n",
" trait_missing = linked_data[trait].isna().mean() * 100\n",
" print(f\"Percentage of missing values in trait: {trait_missing:.2f}%\")\n",
" \n",
" # Apply the missing value handling\n",
" linked_data_cleaned = handle_missing_values(linked_data, trait)\n",
" print(f\"Linked data shape after handling missing values: {linked_data_cleaned.shape}\")\n",
" \n",
" # If we still have adequate data after cleaning\n",
" if linked_data_cleaned.shape[0] >= 5 and linked_data_cleaned.shape[1] >= 10: # Lower threshold\n",
" # 4. Determine whether the trait and demographic features are severely biased\n",
" is_trait_biased, linked_data_cleaned = judge_and_remove_biased_features(linked_data_cleaned, trait)\n",
" \n",
" # 5. Conduct quality check and save the cohort information\n",
" note = \"Dataset contains gene expression data from bladder cancer samples with BCG treatment information.\"\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=linked_data_cleaned, \n",
" note=note\n",
" )\n",
" \n",
" # 6. If the linked data is usable, save it as a CSV file\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data_cleaned.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" else:\n",
" print(f\"The dataset was determined to be not usable for analysis. Bias in trait: {is_trait_biased}\")\n",
" else:\n",
" print(\"Warning: After handling missing values, insufficient data remains for analysis\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=True,\n",
" df=linked_data_cleaned, \n",
" note=\"After cleaning, insufficient data remains for analysis.\"\n",
" )\n",
" print(\"The dataset was determined to be not usable for analysis.\")\n",
" else:\n",
" print(\"Warning: No common samples found between clinical and gene data\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=True,\n",
" df=pd.DataFrame(), \n",
" note=\"No common samples found between clinical and gene data.\"\n",
" )\n",
" print(\"The dataset was determined to be not usable for analysis.\")\n",
"else:\n",
" print(\"Warning: No GSM IDs found in clinical data\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=True,\n",
" df=pd.DataFrame(), \n",
" note=\"No GSM IDs found in clinical data.\"\n",
" )\n",
" print(\"The dataset was determined to be not usable for analysis.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|