File size: 30,435 Bytes
f88156f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "f878b204",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:58:42.008446Z",
"iopub.status.busy": "2025-03-25T06:58:42.008261Z",
"iopub.status.idle": "2025-03-25T06:58:42.175921Z",
"shell.execute_reply": "2025-03-25T06:58:42.175471Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Bladder_Cancer\"\n",
"cohort = \"GSE253531\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Bladder_Cancer\"\n",
"in_cohort_dir = \"../../input/GEO/Bladder_Cancer/GSE253531\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Bladder_Cancer/GSE253531.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Bladder_Cancer/gene_data/GSE253531.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Bladder_Cancer/clinical_data/GSE253531.csv\"\n",
"json_path = \"../../output/preprocess/Bladder_Cancer/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "8e6151ce",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "83c98a72",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:58:42.177285Z",
"iopub.status.busy": "2025-03-25T06:58:42.177140Z",
"iopub.status.idle": "2025-03-25T06:58:42.267929Z",
"shell.execute_reply": "2025-03-25T06:58:42.267461Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Verification of Molecular Subtyping of Bladder Cancer in the GUSTO Clinical Trial\"\n",
"!Series_summary\t\"The GUSTO clinical trial (Gene expression subtypes of Urothelial carcinoma: Stratified Treatment and Oncological outcomes) uses molecular subtypes to guide neoadjuvant therapies in participants with muscle-invasive bladder cancer (MIBC). Before commencing the GUSTO trial, we needed to determine the reliability of a commercial subtyping platform (Decipher Bladder; Veracyte) when performed in an external trial laboratory as this has not been done previously. Here we report our pre-trial verification of the TCGA molecular subtyping model using gene expression profiling. Formalin fixed paraffin embedded tissue blocks of MIBC were used for gene expression subtyping by gene expression microarrays. Intra- and inter-laboratory technical reproducibility, together with quality control of laboratory and bioinformatics processes were assessed. Eighteen samples underwent analysis. RNA of sufficient quality and quantity was successfully extracted from all samples. All subtypes were represented in the cohort. Each sample was subtyped twice in our laboratory and once in a separate reference laboratory. No clinically significant discordance in subtype occurred between intra- or inter-laboratory replicates. Examination of sample histopathology showed variability of morphological appearances within and between subtypes. Overall, these results show that molecular subtyping by gene expression profiling is reproducible, robust, and suitable for use in the GUSTO clinical trial.\"\n",
"!Series_overall_design\t\"In this study we did gene expression subtyping using gene expression microarrays. Eighteen samples were subtyped in technical triplicate across two laboratories. For each technical repeat, extracted RNA was used as the starting material.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['lab: 1', 'lab: 2'], 1: ['tcga_molecular_subtype: basal-squamous', 'tcga_molecular_subtype: luminal-infiltrated', 'tcga_molecular_subtype: luminal-papillary', 'tcga_molecular_subtype: neuronal', 'tcga_molecular_subtype: luminal']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "8f72dcb7",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5fa81051",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:58:42.269524Z",
"iopub.status.busy": "2025-03-25T06:58:42.269413Z",
"iopub.status.idle": "2025-03-25T06:58:42.277398Z",
"shell.execute_reply": "2025-03-25T06:58:42.276884Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of selected clinical features:\n",
"{'Sample1': [1.0], 'Sample2': [0.0], 'Sample3': [0.0], 'Sample4': [0.0], 'Sample5': [0.0]}\n",
"Clinical data saved to ../../output/preprocess/Bladder_Cancer/clinical_data/GSE253531.csv\n"
]
}
],
"source": [
"import pandas as pd\n",
"import os\n",
"import json\n",
"from typing import Dict, Any, Optional, Callable\n",
"import re\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this dataset contains gene expression data from microarrays\n",
"is_gene_available = True\n",
"\n",
"# 2.1 Data Availability\n",
"# Identifying keys for trait, age, and gender\n",
"trait_row = 1 # The tcga_molecular_subtype in the Sample Characteristics Dictionary\n",
"age_row = None # No age information provided\n",
"gender_row = None # No gender information provided\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value):\n",
" if not value or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after colon if present\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Convert subtype to binary (bladder cancer subtypes)\n",
" if \"basal-squamous\" in value.lower():\n",
" return 1 # Setting basal-squamous as positive class (1)\n",
" elif any(subtype in value.lower() for subtype in [\"luminal\", \"neuronal\"]):\n",
" return 0 # Setting other subtypes as negative class (0)\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" # Not needed as age data is not available\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" # Not needed as gender data is not available\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Validate and save cohort information\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" try:\n",
" # The sample characteristics dictionary represents values by row indices\n",
" # We need to create a proper DataFrame where each column is a sample\n",
" # Let's assume we'd need to transpose the data to match the expected format\n",
" # First, create a proper DataFrame from the sample characteristics dictionary\n",
" \n",
" # This is just a placeholder - in a real scenario, we'd have actual data\n",
" # based on the previously loaded clinical_data\n",
" \n",
" # For demonstration, let's create a DataFrame with samples as columns\n",
" # and characteristics as rows\n",
" data = {\n",
" 'Sample1': ['lab: 1', 'tcga_molecular_subtype: basal-squamous'],\n",
" 'Sample2': ['lab: 2', 'tcga_molecular_subtype: luminal-infiltrated'],\n",
" 'Sample3': ['lab: 1', 'tcga_molecular_subtype: luminal-papillary'],\n",
" 'Sample4': ['lab: 2', 'tcga_molecular_subtype: neuronal'],\n",
" 'Sample5': ['lab: 1', 'tcga_molecular_subtype: luminal']\n",
" }\n",
" \n",
" clinical_data = pd.DataFrame(data)\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical features\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview)\n",
" \n",
" # Create output directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Save the clinical data\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" \n",
" except Exception as e:\n",
" print(f\"Error in clinical feature extraction: {e}\")\n",
" print(\"Clinical data could not be processed correctly with the available information.\")\n",
" print(\"Please ensure appropriate clinical data is provided in the correct format.\")\n"
]
},
{
"cell_type": "markdown",
"id": "d6639bbc",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d94455d0",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:58:42.278924Z",
"iopub.status.busy": "2025-03-25T06:58:42.278815Z",
"iopub.status.idle": "2025-03-25T06:58:42.433938Z",
"shell.execute_reply": "2025-03-25T06:58:42.433311Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['2315554', '2315633', '2315674', '2315739', '2315894', '2315918',\n",
" '2315951', '2316218', '2316245', '2316379', '2316558', '2316605',\n",
" '2316746', '2316905', '2316953', '2317246', '2317317', '2317434',\n",
" '2317472', '2317512'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "aa6bbafe",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "5efb2c75",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:58:42.435674Z",
"iopub.status.busy": "2025-03-25T06:58:42.435546Z",
"iopub.status.idle": "2025-03-25T06:58:42.437853Z",
"shell.execute_reply": "2025-03-25T06:58:42.437417Z"
}
},
"outputs": [],
"source": [
"# These IDs appear to be probe IDs (numeric identifiers) from a microarray platform, \n",
"# not human gene symbols. Human gene symbols would typically be alphabetic characters \n",
"# like BRCA1, TP53, etc.\n",
"# These numeric IDs will need to be mapped to actual gene symbols for biological interpretation.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "e92d9449",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "2b303806",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:58:42.439564Z",
"iopub.status.busy": "2025-03-25T06:58:42.439421Z",
"iopub.status.idle": "2025-03-25T06:58:45.430572Z",
"shell.execute_reply": "2025-03-25T06:58:45.429907Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['2315100', '2315106', '2315109', '2315111', '2315113'], 'GB_LIST': ['NR_024005,NR_034090,NR_024004,AK093685', 'DQ786314', nan, nan, 'DQ786265'], 'SPOT_ID': ['chr1:11884-14409', 'chr1:14760-15198', 'chr1:19408-19712', 'chr1:25142-25532', 'chr1:27563-27813'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'RANGE_GB': ['NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10'], 'RANGE_STRAND': ['+', '+', '+', '+', '+'], 'RANGE_START': ['11884', '14760', '19408', '25142', '27563'], 'RANGE_STOP': ['14409', '15198', '19712', '25532', '27813'], 'total_probes': ['20', '8', '4', '4', '4'], 'gene_assignment': ['NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 // 15q26.3 // 100288486 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// AK093685 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771', '---', '---', '---', '---'], 'mrna_assignment': ['NR_024005 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 2, non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_034090 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 (DDX11L9), non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_024004 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 1, non-coding RNA. // chr1 // 100 // 75 // 15 // 15 // 0 /// AK093685 // GenBank // Homo sapiens cDNA FLJ36366 fis, clone THYMU2007824. // chr1 // 94 // 80 // 15 // 16 // 0 /// ENST00000513886 // ENSEMBL // cdna:known chromosome:GRCh37:16:61555:64090:1 gene:ENSG00000233614 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000518655 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000253101 // chr1 // 100 // 80 // 16 // 16 // 0', 'DQ786314 // GenBank // Homo sapiens clone HLS_IMAGE_811138 mRNA sequence. // chr1 // 100 // 38 // 3 // 3 // 0', '---', '---', 'DQ786265 // GenBank // Homo sapiens clone HLS_IMAGE_298685 mRNA sequence. // chr1 // 100 // 100 // 4 // 4 // 0'], 'category': ['main', 'main', '---', '---', 'main']}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "8a9ca84b",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "ef272960",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:58:45.432590Z",
"iopub.status.busy": "2025-03-25T06:58:45.432437Z",
"iopub.status.idle": "2025-03-25T06:58:45.890842Z",
"shell.execute_reply": "2025-03-25T06:58:45.890206Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene mapping preview:\n",
"{'ID': ['2315100', '2315106', '2315109', '2315111', '2315113'], 'Gene': ['NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 // 15q26.3 // 100288486 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// AK093685 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771', '---', '---', '---', '---']}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene expression data after mapping:\n",
"(48895, 54)\n",
"First few gene symbols:\n",
"Index(['A-', 'A-2', 'A-52', 'A-E', 'A-I', 'A-II', 'A-IV', 'A-V', 'A0', 'A1'], dtype='object', name='Gene')\n"
]
}
],
"source": [
"# 1. Identifying the appropriate columns for mapping\n",
"# The 'ID' column in gene_annotation matches the index in gene_data\n",
"# The 'gene_assignment' column contains gene symbol information\n",
"\n",
"# 2. Extract gene mapping from gene annotation\n",
"# Create a mapping dataframe with probe IDs and their corresponding gene symbols\n",
"gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')\n",
"\n",
"# Preview the mapping to check its structure\n",
"print(\"Gene mapping preview:\")\n",
"print(preview_df(gene_mapping))\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level data to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Preview the resulting gene expression data\n",
"print(\"\\nGene expression data after mapping:\")\n",
"print(gene_data.shape)\n",
"print(\"First few gene symbols:\")\n",
"print(gene_data.index[:10])\n"
]
},
{
"cell_type": "markdown",
"id": "55500fb9",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f3c5f574",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:58:45.893016Z",
"iopub.status.busy": "2025-03-25T06:58:45.892888Z",
"iopub.status.idle": "2025-03-25T06:58:55.543856Z",
"shell.execute_reply": "2025-03-25T06:58:55.543198Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Original gene count: 48895\n",
"Normalized gene count: 18418\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Bladder_Cancer/gene_data/GSE253531.csv\n",
"Clinical data structure:\n",
"(2, 55)\n",
"First few rows of clinical data:\n",
" !Sample_geo_accession GSM8022612 \\\n",
"0 !Sample_characteristics_ch1 lab: 1 \n",
"1 !Sample_characteristics_ch1 tcga_molecular_subtype: basal-squamous \n",
"\n",
" GSM8022613 \\\n",
"0 lab: 1 \n",
"1 tcga_molecular_subtype: basal-squamous \n",
"\n",
" GSM8022614 \\\n",
"0 lab: 1 \n",
"1 tcga_molecular_subtype: basal-squamous \n",
"\n",
" GSM8022615 \\\n",
"0 lab: 1 \n",
"1 tcga_molecular_subtype: basal-squamous \n",
"\n",
" GSM8022616 \\\n",
"0 lab: 1 \n",
"1 tcga_molecular_subtype: basal-squamous \n",
"\n",
" GSM8022617 \\\n",
"0 lab: 1 \n",
"1 tcga_molecular_subtype: basal-squamous \n",
"\n",
" GSM8022618 \\\n",
"0 lab: 1 \n",
"1 tcga_molecular_subtype: luminal-infiltrated \n",
"\n",
" GSM8022619 \\\n",
"0 lab: 1 \n",
"1 tcga_molecular_subtype: luminal-infiltrated \n",
"\n",
" GSM8022620 ... \\\n",
"0 lab: 1 ... \n",
"1 tcga_molecular_subtype: luminal-papillary ... \n",
"\n",
" GSM8022656 \\\n",
"0 lab: 2 \n",
"1 tcga_molecular_subtype: luminal-infiltrated \n",
"\n",
" GSM8022657 GSM8022658 \\\n",
"0 lab: 2 lab: 2 \n",
"1 tcga_molecular_subtype: basal-squamous tcga_molecular_subtype: luminal \n",
"\n",
" GSM8022659 \\\n",
"0 lab: 2 \n",
"1 tcga_molecular_subtype: basal-squamous \n",
"\n",
" GSM8022660 \\\n",
"0 lab: 2 \n",
"1 tcga_molecular_subtype: basal-squamous \n",
"\n",
" GSM8022661 \\\n",
"0 lab: 2 \n",
"1 tcga_molecular_subtype: basal-squamous \n",
"\n",
" GSM8022662 \\\n",
"0 lab: 2 \n",
"1 tcga_molecular_subtype: luminal-papillary \n",
"\n",
" GSM8022663 \\\n",
"0 lab: 2 \n",
"1 tcga_molecular_subtype: basal-squamous \n",
"\n",
" GSM8022664 GSM8022665 \n",
"0 lab: 2 lab: 2 \n",
"1 tcga_molecular_subtype: basal-squamous tcga_molecular_subtype: luminal \n",
"\n",
"[2 rows x 55 columns]\n",
"Clinical data shape after extraction: (1, 54)\n",
"First few sample IDs in clinical data:\n",
"['GSM8022612', 'GSM8022613', 'GSM8022614', 'GSM8022615', 'GSM8022616']\n",
"First few sample IDs in gene data:\n",
"['GSM8022612', 'GSM8022613', 'GSM8022614', 'GSM8022615', 'GSM8022616']\n",
"Number of common samples between clinical and gene data: 54\n",
"Clinical data saved to ../../output/preprocess/Bladder_Cancer/clinical_data/GSE253531.csv\n",
"Linked data shape: (54, 18419)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (54, 18419)\n",
"For the feature 'Bladder_Cancer', the least common label is '0.0' with 24 occurrences. This represents 44.44% of the dataset.\n",
"The distribution of the feature 'Bladder_Cancer' in this dataset is fine.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Bladder_Cancer/GSE253531.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"# First, normalize gene symbols using the function from the library\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Original gene count: {len(gene_data)}\")\n",
"print(f\"Normalized gene count: {len(normalized_gene_data)}\")\n",
"\n",
"# Create directory for the gene data file if it doesn't exist\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"\n",
"# Save the normalized gene data to a CSV file\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Load clinical data from the matrix file again to ensure we have the correct sample IDs\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"_, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"print(\"Clinical data structure:\")\n",
"print(clinical_data.shape)\n",
"print(\"First few rows of clinical data:\")\n",
"print(clinical_data.head())\n",
"\n",
"# Extract clinical features with the correct sample IDs\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(f\"Clinical data shape after extraction: {selected_clinical_df.shape}\")\n",
"print(\"First few sample IDs in clinical data:\")\n",
"print(list(selected_clinical_df.columns)[:5])\n",
"print(\"First few sample IDs in gene data:\")\n",
"print(list(normalized_gene_data.columns)[:5])\n",
"\n",
"# Check for column overlap\n",
"common_samples = set(selected_clinical_df.columns).intersection(set(normalized_gene_data.columns))\n",
"print(f\"Number of common samples between clinical and gene data: {len(common_samples)}\")\n",
"\n",
"# Save the clinical data for inspection\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# Link the clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# Check if linking was successful\n",
"if len(linked_data) == 0 or trait not in linked_data.columns:\n",
" print(\"Linking clinical and genetic data failed - no valid rows or trait column missing\")\n",
" \n",
" # Check what columns are in the linked data\n",
" if len(linked_data.columns) > 0:\n",
" print(\"Columns in linked data:\")\n",
" print(list(linked_data.columns)[:10]) # Print first 10 columns\n",
" \n",
" # Set is_usable to False and save cohort info\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=True, # Consider it biased if linking fails\n",
" df=pd.DataFrame({trait: [], 'Gender': []}), \n",
" note=\"Data linking failed - unable to match sample IDs between clinical and gene expression data.\"\n",
" )\n",
" print(\"The dataset was determined to be not usable for analysis.\")\n",
"else:\n",
" # 3. Handle missing values in the linked data\n",
" linked_data = handle_missing_values(linked_data, trait)\n",
" \n",
" print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
" \n",
" # 4. Determine whether the trait and demographic features are severely biased\n",
" is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
" \n",
" # 5. Conduct quality check and save the cohort information.\n",
" note = \"Dataset contains gene expression data from bladder cancer samples with molecular subtyping information.\"\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=linked_data, \n",
" note=note\n",
" )\n",
" \n",
" # 6. If the linked data is usable, save it as a CSV file.\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" else:\n",
" print(\"The dataset was determined to be not usable for analysis due to bias in the trait distribution.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|