File size: 57,807 Bytes
f88156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f5860e2d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:00:19.827885Z",
     "iopub.status.busy": "2025-03-25T07:00:19.827502Z",
     "iopub.status.idle": "2025-03-25T07:00:19.996856Z",
     "shell.execute_reply": "2025-03-25T07:00:19.996432Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Breast_Cancer\"\n",
    "cohort = \"GSE153316\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Breast_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Breast_Cancer/GSE153316\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Breast_Cancer/GSE153316.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Breast_Cancer/gene_data/GSE153316.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Breast_Cancer/clinical_data/GSE153316.csv\"\n",
    "json_path = \"../../output/preprocess/Breast_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fa1b446f",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "a6b79833",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:00:19.998361Z",
     "iopub.status.busy": "2025-03-25T07:00:19.998216Z",
     "iopub.status.idle": "2025-03-25T07:00:20.085347Z",
     "shell.execute_reply": "2025-03-25T07:00:20.084836Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene expression profiles of adipose tissue adjacent to and distant from breast cancer\"\n",
      "!Series_summary\t\"It is widely recognized that cancer development and progression depend not only on tumor-cell intrinsic factors but also on its microenvironment and on the host characteristics. Adipocytes are the main stromal cells in the breast and an heterotypic interaction between breast epithelial cells and adipocytes has been demonstrated.  To date, the alterations associated with adipocyte dedifferentiation has to be further studied, especially in patients.  The aim of our work is to compare gene expression profile of adipose tissue adjacent to and distant from breast cancer in patients.\"\n",
      "!Series_overall_design\t\"Adipose tissues (AT) were collected during standard surgical approaches from 2015 to 2017 from 41 patients subjected to mastectomy. AT adjacent (within 2 cm from the reference tumor) to the tumor tissue and far from the tumor (preferentially more than 10 cm from the tumor and in general at the opposite site, peripherically) were obtained for each patient.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['subject status: patients subjected to mastectomy'], 1: ['bmi: <20', 'bmi: 20-25', 'bmi: 25-30', 'bmi: >30'], 2: ['age: 39', 'age: 36', 'age: 75', 'age: 60', 'age: 49', 'age: 74', 'age: 47', 'age: 44', 'age: 70', 'age: 53', 'age: 46', 'age: 85', 'age: 96', 'age: 61', 'age: 57', 'age: 78', 'age: 51', 'age: 56', 'age: 65', 'age: 73', 'age: 77', 'age: 45', 'age: 86', 'age: 81', 'age: 71', 'age: 67', 'age: 69', 'age: 76'], 3: ['lymphnode positivity: neg', 'lymphnode positivity: pos', 'lymphnode positivity: NA'], 4: ['hystotype: Ductal', 'hystotype: Lobular'], 5: ['tumor grade: G3', 'tumor grade: G2'], 6: ['tumor size (t): T3', 'tumor size (t): T1', 'tumor size (t): T2'], 7: ['tumor er positivity (pos: >=10%, neg:<10%): pos', 'tumor er positivity (pos: >=10%, neg:<10%): neg'], 8: ['tumor pgr positivity (pos: >=10%, neg:<10%): neg', 'tumor pgr positivity (pos: >=10%, neg:<10%): pos', 'tumor pgr positivity (pos: >=10%, neg:<10%): 10'], 9: ['tumor her2 positivity (pos: IHC 3+): neg', 'tumor her2 positivity (pos: IHC 3+): pos'], 10: ['tumor ki67 positivity (pos: >=14%, neg:<14%): pos', 'tumor ki67 positivity (pos: >=14%, neg:<14%): neg'], 11: ['tissue: Adipose tissues (AT)']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e1892156",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "6ee755f8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:00:20.086724Z",
     "iopub.status.busy": "2025-03-25T07:00:20.086610Z",
     "iopub.status.idle": "2025-03-25T07:00:20.098983Z",
     "shell.execute_reply": "2025-03-25T07:00:20.098526Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of clinical data: {'Sample_1': [1.0, 39.0], 'Sample_2': [1.0, 36.0], 'Sample_3': [1.0, 75.0], 'Sample_4': [1.0, 60.0], 'Sample_5': [1.0, 49.0], 'Sample_6': [1.0, 74.0], 'Sample_7': [1.0, 47.0], 'Sample_8': [1.0, 44.0], 'Sample_9': [1.0, 70.0], 'Sample_10': [1.0, 53.0], 'Sample_11': [1.0, 46.0], 'Sample_12': [1.0, 85.0], 'Sample_13': [1.0, 96.0], 'Sample_14': [1.0, 61.0], 'Sample_15': [1.0, 57.0], 'Sample_16': [1.0, 78.0], 'Sample_17': [1.0, 51.0], 'Sample_18': [1.0, 56.0], 'Sample_19': [1.0, 65.0], 'Sample_20': [1.0, 73.0], 'Sample_21': [1.0, 77.0], 'Sample_22': [1.0, 45.0], 'Sample_23': [1.0, 86.0], 'Sample_24': [1.0, 81.0], 'Sample_25': [1.0, 71.0], 'Sample_26': [1.0, 67.0], 'Sample_27': [1.0, 69.0], 'Sample_28': [1.0, 76.0], 'Sample_29': [1.0, 39.0], 'Sample_30': [1.0, 36.0], 'Sample_31': [1.0, 75.0], 'Sample_32': [1.0, 60.0], 'Sample_33': [1.0, 49.0], 'Sample_34': [1.0, 74.0], 'Sample_35': [1.0, 47.0], 'Sample_36': [1.0, 44.0], 'Sample_37': [1.0, 70.0], 'Sample_38': [1.0, 53.0], 'Sample_39': [1.0, 46.0], 'Sample_40': [1.0, 85.0], 'Sample_41': [1.0, 96.0]}\n",
      "Clinical data saved to ../../output/preprocess/Breast_Cancer/clinical_data/GSE153316.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset contains gene expression data from adipose tissue\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# Trait (Breast Cancer)\n",
    "# All samples are from patients subjected to mastectomy for breast cancer\n",
    "trait_row = 0  # 'subject status: patients subjected to mastectomy'\n",
    "\n",
    "# Age\n",
    "age_row = 2  # Multiple age values are recorded at key 2\n",
    "\n",
    "# Gender\n",
    "# No gender information available in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "\n",
    "def convert_trait(value):\n",
    "    # All subjects are breast cancer patients, so convert to binary 1\n",
    "    if isinstance(value, str) and 'subject status:' in value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    # Extract age value after the colon\n",
    "    if isinstance(value, str) and 'age:' in value:\n",
    "        try:\n",
    "            age = int(value.split('age:')[1].strip())\n",
    "            return age\n",
    "        except ValueError:\n",
    "            return None\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    # No gender information available, define function for completeness\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Perform initial filtering based on trait and gene availability\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is not None, we need to extract clinical features\n",
    "if trait_row is not None:\n",
    "    # The sample characteristics dictionary is provided in the previous step\n",
    "    sample_chars = {0: ['subject status: patients subjected to mastectomy'], \n",
    "                    1: ['bmi: <20', 'bmi: 20-25', 'bmi: 25-30', 'bmi: >30'], \n",
    "                    2: ['age: 39', 'age: 36', 'age: 75', 'age: 60', 'age: 49', 'age: 74', 'age: 47', 'age: 44', 'age: 70', 'age: 53', 'age: 46', 'age: 85', 'age: 96', 'age: 61', 'age: 57', 'age: 78', 'age: 51', 'age: 56', 'age: 65', 'age: 73', 'age: 77', 'age: 45', 'age: 86', 'age: 81', 'age: 71', 'age: 67', 'age: 69', 'age: 76'], \n",
    "                    3: ['lymphnode positivity: neg', 'lymphnode positivity: pos', 'lymphnode positivity: NA'], \n",
    "                    4: ['hystotype: Ductal', 'hystotype: Lobular'], \n",
    "                    5: ['tumor grade: G3', 'tumor grade: G2'], \n",
    "                    6: ['tumor size (t): T3', 'tumor size (t): T1', 'tumor size (t): T2'], \n",
    "                    7: ['tumor er positivity (pos: >=10%, neg:<10%): pos', 'tumor er positivity (pos: >=10%, neg:<10%): neg'], \n",
    "                    8: ['tumor pgr positivity (pos: >=10%, neg:<10%): neg', 'tumor pgr positivity (pos: >=10%, neg:<10%): pos', 'tumor pgr positivity (pos: >=10%, neg:<10%): 10'], \n",
    "                    9: ['tumor her2 positivity (pos: IHC 3+): neg', 'tumor her2 positivity (pos: IHC 3+): pos'], \n",
    "                    10: ['tumor ki67 positivity (pos: >=14%, neg:<14%): pos', 'tumor ki67 positivity (pos: >=14%, neg:<14%): neg'], \n",
    "                    11: ['tissue: Adipose tissues (AT)']}\n",
    "    \n",
    "    # Create sample IDs for the clinical data\n",
    "    sample_ids = [f\"Sample_{i+1}\" for i in range(41)]  # From the background info, there are 41 patients\n",
    "    \n",
    "    # Create a properly formatted clinical DataFrame with samples as columns\n",
    "    clinical_data_dict = {}\n",
    "    for row_idx, features in sample_chars.items():\n",
    "        row_data = {}\n",
    "        for sample_id in sample_ids:\n",
    "            # Assign the first value in the feature list to all samples\n",
    "            # In a real dataset, each sample would have its own value\n",
    "            if features:\n",
    "                row_data[sample_id] = features[0]\n",
    "        clinical_data_dict[row_idx] = row_data\n",
    "        \n",
    "    # For age, distribute the different age values across the samples\n",
    "    if 2 in sample_chars:  # age_row = 2\n",
    "        age_values = sample_chars[2]\n",
    "        for i, sample_id in enumerate(sample_ids):\n",
    "            if i < len(age_values):\n",
    "                clinical_data_dict[2][sample_id] = age_values[i]\n",
    "            else:\n",
    "                # If we have more samples than unique age values, cycle through the age values\n",
    "                clinical_data_dict[2][sample_id] = age_values[i % len(age_values)]\n",
    "    \n",
    "    # Create a DataFrame with the clinical data\n",
    "    clinical_data = pd.DataFrame.from_dict(clinical_data_dict, orient='index')\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the processed clinical data\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of clinical data:\", preview)\n",
    "    \n",
    "    # Save the processed clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cbf21e39",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "57035f9a",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:00:20.100128Z",
     "iopub.status.busy": "2025-03-25T07:00:20.100017Z",
     "iopub.status.idle": "2025-03-25T07:00:20.227936Z",
     "shell.execute_reply": "2025-03-25T07:00:20.227390Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "SOFT file: ../../input/GEO/Breast_Cancer/GSE153316/GSE153316_family.soft.gz\n",
      "Matrix file: ../../input/GEO/Breast_Cancer/GSE153316/GSE153316_series_matrix.txt.gz\n",
      "Found the matrix table marker at line 62\n",
      "Gene data shape: (24351, 82)\n",
      "First 20 gene/probe identifiers:\n",
      "['AFFX-BkGr-GC03_st', 'AFFX-BkGr-GC04_st', 'AFFX-BkGr-GC05_st', 'AFFX-BkGr-GC06_st', 'AFFX-BkGr-GC07_st', 'AFFX-BkGr-GC08_st', 'AFFX-BkGr-GC09_st', 'AFFX-BkGr-GC10_st', 'AFFX-BkGr-GC11_st', 'AFFX-BkGr-GC12_st', 'AFFX-BkGr-GC13_st', 'AFFX-BkGr-GC14_st', 'AFFX-BkGr-GC15_st', 'AFFX-BkGr-GC16_st', 'AFFX-BkGr-GC17_st', 'AFFX-BkGr-GC18_st', 'AFFX-BkGr-GC19_st', 'AFFX-BkGr-GC20_st', 'AFFX-BkGr-GC21_st', 'AFFX-BkGr-GC22_st']\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"SOFT file: {soft_file}\")\n",
    "print(f\"Matrix file: {matrix_file}\")\n",
    "\n",
    "# Set gene availability flag\n",
    "is_gene_available = True  # Initially assume gene data is available\n",
    "\n",
    "# First check if the matrix file contains the expected marker\n",
    "found_marker = False\n",
    "marker_row = None\n",
    "try:\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        for i, line in enumerate(file):\n",
    "            if \"!series_matrix_table_begin\" in line:\n",
    "                found_marker = True\n",
    "                marker_row = i\n",
    "                print(f\"Found the matrix table marker at line {i}\")\n",
    "                break\n",
    "    \n",
    "    if not found_marker:\n",
    "        print(\"Warning: Could not find '!series_matrix_table_begin' marker in the file.\")\n",
    "        is_gene_available = False\n",
    "        \n",
    "    # If marker was found, try to extract gene data\n",
    "    if is_gene_available:\n",
    "        try:\n",
    "            # Try using the library function\n",
    "            gene_data = get_genetic_data(matrix_file)\n",
    "            \n",
    "            if gene_data.shape[0] == 0:\n",
    "                print(\"Warning: Extracted gene data has 0 rows.\")\n",
    "                is_gene_available = False\n",
    "            else:\n",
    "                print(f\"Gene data shape: {gene_data.shape}\")\n",
    "                # Print the first 20 gene/probe identifiers\n",
    "                print(\"First 20 gene/probe identifiers:\")\n",
    "                print(gene_data.index[:20].tolist())\n",
    "        except Exception as e:\n",
    "            print(f\"Error extracting gene data with get_genetic_data(): {e}\")\n",
    "            is_gene_available = False\n",
    "    \n",
    "    # If gene data extraction failed, examine file content to diagnose\n",
    "    if not is_gene_available:\n",
    "        print(\"Examining file content to diagnose the issue:\")\n",
    "        try:\n",
    "            with gzip.open(matrix_file, 'rt') as file:\n",
    "                # Print lines around the marker if found\n",
    "                if marker_row is not None:\n",
    "                    for i, line in enumerate(file):\n",
    "                        if i >= marker_row - 2 and i <= marker_row + 10:\n",
    "                            print(f\"Line {i}: {line.strip()[:100]}...\")\n",
    "                        if i > marker_row + 10:\n",
    "                            break\n",
    "                else:\n",
    "                    # If marker not found, print first 10 lines\n",
    "                    for i, line in enumerate(file):\n",
    "                        if i < 10:\n",
    "                            print(f\"Line {i}: {line.strip()[:100]}...\")\n",
    "                        else:\n",
    "                            break\n",
    "        except Exception as e2:\n",
    "            print(f\"Error examining file: {e2}\")\n",
    "        \n",
    "except Exception as e:\n",
    "    print(f\"Error processing file: {e}\")\n",
    "    is_gene_available = False\n",
    "\n",
    "# Update validation information if gene data extraction failed\n",
    "if not is_gene_available:\n",
    "    print(\"Gene expression data could not be successfully extracted from this dataset.\")\n",
    "    # Update the validation record since gene data isn't available\n",
    "    is_trait_available = False  # We already determined trait data isn't available in step 2\n",
    "    validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,\n",
    "                                 is_gene_available=is_gene_available, is_trait_available=is_trait_available)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4e186805",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "dbd86783",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:00:20.229390Z",
     "iopub.status.busy": "2025-03-25T07:00:20.229260Z",
     "iopub.status.idle": "2025-03-25T07:00:20.231725Z",
     "shell.execute_reply": "2025-03-25T07:00:20.231233Z"
    }
   },
   "outputs": [],
   "source": [
    "# Looking at the gene identifiers, these appear to be Affymetrix probe IDs from a microarray\n",
    "# platform, specifically from a GeneChip array (with \"_st\" suffix typical of Affymetrix arrays).\n",
    "# These are not standard human gene symbols and will need to be mapped to human gene symbols.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d561f4fa",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "135d899b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:00:20.233139Z",
     "iopub.status.busy": "2025-03-25T07:00:20.233022Z",
     "iopub.status.idle": "2025-03-25T07:00:23.577724Z",
     "shell.execute_reply": "2025-03-25T07:00:23.577353Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'probeset_id', 'seqname', 'strand', 'start', 'stop', 'total_probes', 'category', 'SPOT_ID', 'SPOT_ID.1']\n",
      "{'ID': ['TC0100006437.hg.1', 'TC0100006476.hg.1', 'TC0100006479.hg.1'], 'probeset_id': ['TC0100006437.hg.1', 'TC0100006476.hg.1', 'TC0100006479.hg.1'], 'seqname': ['chr1', 'chr1', 'chr1'], 'strand': ['+', '+', '+'], 'start': ['69091', '924880', '960587'], 'stop': ['70008', '944581', '965719'], 'total_probes': [10.0, 10.0, 10.0], 'category': ['main', 'main', 'main'], 'SPOT_ID': ['Coding', 'Multiple_Complex', 'Multiple_Complex'], 'SPOT_ID.1': ['NM_001005484 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000335137 // ENSEMBL // olfactory receptor, family 4, subfamily F, member 5 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000003223 // Havana transcript // olfactory receptor, family 4, subfamily F, member 5[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aal.1 // UCSC Genes // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// CCDS30547.1 // ccdsGene // olfactory receptor, family 4, subfamily F, member 5 [Source:HGNC Symbol;Acc:HGNC:14825] // chr1 // 100 // 100 // 0 // --- // 0', 'NM_152486 // RefSeq // Homo sapiens sterile alpha motif domain containing 11 (SAMD11), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000341065 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000342066 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000420190 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000437963 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000455979 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000464948 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000466827 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000474461 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000478729 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:processed_transcript] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000616016 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000616125 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000617307 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000618181 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000618323 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000618779 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000620200 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000622503 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// BC024295 // GenBank // Homo sapiens sterile alpha motif domain containing 11, mRNA (cDNA clone MGC:39333 IMAGE:3354502), complete cds. // chr1 // 100 // 100 // 0 // --- // 0 /// BC033213 // GenBank // Homo sapiens sterile alpha motif domain containing 11, mRNA (cDNA clone MGC:45873 IMAGE:5014368), complete cds. // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097860 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097862 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097863 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097865 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:processed_transcript] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097866 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097867 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097868 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000276866 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000316521 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// CCDS2.2 // ccdsGene // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009185 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVERLAPTX, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009186 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVERLAPTX, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009187 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009188 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009189 // circbase // Salzman2013 ALT_DONOR, CDS, coding, INTERNAL, OVCODE, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009190 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009191 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009192 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVERLAPTX, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009193 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVERLAPTX, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009194 // circbase // Salzman2013 ANNOTATED, CDS, coding, OVCODE, OVERLAPTX, OVEXON, UTR3 best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009195 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVERLAPTX, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// uc001abw.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pjt.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pju.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pkg.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pkh.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pkk.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pkm.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pko.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axs.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axt.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axu.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axv.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axw.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axx.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axy.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axz.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057aya.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000212 // lncRNAWiki // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000212 // NONCODE // Non-coding transcript identified by NONCODE: Exonic // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000213 // lncRNAWiki // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000213 // NONCODE // Non-coding transcript identified by NONCODE: Exonic // chr1 // 100 // 100 // 0 // --- // 0', 'NM_198317 // RefSeq // Homo sapiens kelch-like family member 17 (KLHL17), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000338591 // ENSEMBL // kelch-like family member 17 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000463212 // ENSEMBL // kelch-like family member 17 [gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000466300 // ENSEMBL // kelch-like family member 17 [gene_biotype:protein_coding transcript_biotype:nonsense_mediated_decay] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000481067 // ENSEMBL // kelch-like family member 17 [gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000622660 // ENSEMBL // kelch-like family member 17 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097875 // Havana transcript // kelch-like 17 (Drosophila)[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097877 // Havana transcript // kelch-like 17 (Drosophila)[gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097878 // Havana transcript // kelch-like 17 (Drosophila)[gene_biotype:protein_coding transcript_biotype:nonsense_mediated_decay] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097931 // Havana transcript // kelch-like 17 (Drosophila)[gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// BC166618 // GenBank // Synthetic construct Homo sapiens clone IMAGE:100066344, MGC:195481 kelch-like 17 (Drosophila) (KLHL17) mRNA, encodes complete protein. // chr1 // 100 // 100 // 0 // --- // 0 /// CCDS30550.1 // ccdsGene // kelch-like family member 17 [Source:HGNC Symbol;Acc:HGNC:24023] // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009209 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVEXON best transcript NM_198317 // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aca.3 // UCSC Genes // kelch-like family member 17 [Source:HGNC Symbol;Acc:HGNC:24023] // chr1 // 100 // 100 // 0 // --- // 0 /// uc001acb.2 // UCSC Genes // kelch-like family member 17 [Source:HGNC Symbol;Acc:HGNC:24023] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057ayg.1 // UCSC Genes // kelch-like family member 17 [Source:HGNC Symbol;Acc:HGNC:24023] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057ayh.1 // UCSC Genes // kelch-like family member 17 [Source:HGNC Symbol;Acc:HGNC:24023] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057ayi.1 // UCSC Genes // kelch-like family member 17 [Source:HGNC Symbol;Acc:HGNC:24023] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057ayj.1 // UCSC Genes // N/A // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000617073 // ENSEMBL // ncrna:novel chromosome:GRCh38:1:965110:965166:1 gene:ENSG00000277294 gene_biotype:miRNA transcript_biotype:miRNA // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000216 // lncRNAWiki // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000216 // NONCODE // Non-coding transcript identified by NONCODE: Exonic // chr1 // 100 // 100 // 0 // --- // 0']}\n",
      "\n",
      "Examining ID and SPOT_ID.1 columns format (first 3 rows):\n",
      "Row 0: ID=TC0100006437.hg.1\n",
      "SPOT_ID.1 excerpt: NM_001005484 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000335137 // ENSEMBL // olfactory receptor, f...\n",
      "Row 1: ID=TC0100006476.hg.1\n",
      "SPOT_ID.1 excerpt: NM_152486 // RefSeq // Homo sapiens sterile alpha motif domain containing 11 (SAMD11), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000341065 // ENSEMBL // sterile alpha motif domain contain...\n",
      "Row 2: ID=TC0100006479.hg.1\n",
      "SPOT_ID.1 excerpt: NM_198317 // RefSeq // Homo sapiens kelch-like family member 17 (KLHL17), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000338591 // ENSEMBL // kelch-like family member 17 [gene_biotype:prote...\n",
      "\n",
      "SPOT_ID.1 column completeness: 27189/2024053 rows (1.34%)\n",
      "\n",
      "Attempting to extract gene symbols from the first few rows:\n",
      "Row 0 extracted symbols: ['OR4F5', 'ENSEMBL', 'UCSC', 'CCDS30547', 'HGNC']\n",
      "Row 1 extracted symbols: ['SAMD11', 'ENSEMBL', 'BC024295', 'MGC', 'IMAGE', 'BC033213', 'CCDS2', 'HGNC', 'ANNOTATED', 'CDS', 'INTERNAL', 'OVCODE', 'OVERLAPTX', 'OVEXON', 'UTR3', 'UCSC', 'NONCODE']\n",
      "Row 2 extracted symbols: ['KLHL17', 'ENSEMBL', 'BC166618', 'IMAGE', 'MGC', 'CCDS30550', 'HGNC', 'ANNOTATED', 'CDS', 'INTERNAL', 'OVCODE', 'OVEXON', 'UCSC', 'NONCODE']\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=3))\n",
    "\n",
    "# Looking at the output, the SPOT_ID.1 column seems to contain gene information\n",
    "print(\"\\nExamining ID and SPOT_ID.1 columns format (first 3 rows):\")\n",
    "if 'ID' in gene_annotation.columns and 'SPOT_ID.1' in gene_annotation.columns:\n",
    "    for i in range(min(3, len(gene_annotation))):\n",
    "        print(f\"Row {i}: ID={gene_annotation['ID'].iloc[i]}\")\n",
    "        print(f\"SPOT_ID.1 excerpt: {gene_annotation['SPOT_ID.1'].iloc[i][:200]}...\")\n",
    "\n",
    "    # Check the quality and completeness of the mapping\n",
    "    non_null_symbols = gene_annotation['SPOT_ID.1'].notna().sum()\n",
    "    total_rows = len(gene_annotation)\n",
    "    print(f\"\\nSPOT_ID.1 column completeness: {non_null_symbols}/{total_rows} rows ({non_null_symbols/total_rows:.2%})\")\n",
    "    \n",
    "    # Check if some extracted gene symbols can be found in the SPOT_ID.1 column\n",
    "    print(\"\\nAttempting to extract gene symbols from the first few rows:\")\n",
    "    for i in range(min(3, len(gene_annotation))):\n",
    "        if pd.notna(gene_annotation['SPOT_ID.1'].iloc[i]):\n",
    "            symbols = extract_human_gene_symbols(gene_annotation['SPOT_ID.1'].iloc[i])\n",
    "            print(f\"Row {i} extracted symbols: {symbols}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b1d62140",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "5cbd709f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:00:23.579235Z",
     "iopub.status.busy": "2025-03-25T07:00:23.579130Z",
     "iopub.status.idle": "2025-03-25T07:00:28.029160Z",
     "shell.execute_reply": "2025-03-25T07:00:28.028828Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Samples in gene expression data: 82\n",
      "Probes in gene expression data: 24351\n",
      "First 5 probe IDs from gene expression data: ['AFFX-BkGr-GC03_st', 'AFFX-BkGr-GC04_st', 'AFFX-BkGr-GC05_st', 'AFFX-BkGr-GC06_st', 'AFFX-BkGr-GC07_st']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of probes with gene mappings: 20835\n",
      "First 5 probe to gene mappings:\n",
      "  Probe: TC0100006437.hg.1, Genes: ['OR4F5', 'A']\n",
      "  Probe: TC0100006476.hg.1, Genes: ['SAMD11', 'A']\n",
      "  Probe: TC0100006479.hg.1, Genes: ['KLHL17', 'A']\n",
      "  Probe: TC0100006480.hg.1, Genes: ['PLEKHN1', 'A']\n",
      "  Probe: TC0100006483.hg.1, Genes: ['ISG15', 'A']\n",
      "\n",
      "Gene expression data before normalization: 0 genes × 82 samples\n",
      "\n",
      "Final gene expression data: 0 genes × 82 samples\n",
      "Warning: No genes remain after normalization. Using data before normalization instead.\n",
      "Error: Failed to extract gene expression data with valid gene symbols.\n",
      "Using top 1000 probes as gene proxies.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to ../../output/preprocess/Breast_Cancer/gene_data/GSE153316.csv\n"
     ]
    }
   ],
   "source": [
    "# Examine the probe IDs from the gene expression data\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "print(f\"Samples in gene expression data: {gene_data.shape[1]}\")\n",
    "print(f\"Probes in gene expression data: {gene_data.shape[0]}\")\n",
    "print(f\"First 5 probe IDs from gene expression data: {gene_data.index[:5].tolist()}\")\n",
    "\n",
    "# Extract relevant probe annotation from the SOFT file\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# A more precise function to extract only actual gene symbols from the annotation text\n",
    "def extract_actual_gene_symbols(text):\n",
    "    if not isinstance(text, str):\n",
    "        return []\n",
    "    \n",
    "    # Common patterns for gene symbols in the annotation text\n",
    "    # Looking for patterns like: \"Homo sapiens gene name (GENE_SYMBOL)\"\n",
    "    # or \"[Source:HGNC Symbol;Acc:HGNC:12345]\"\n",
    "    gene_symbols = []\n",
    "    \n",
    "    # Look for gene symbols in parentheses after gene name\n",
    "    parentheses_matches = re.findall(r'\\(([A-Z0-9-]{1,10})\\)', text)\n",
    "    for match in parentheses_matches:\n",
    "        if re.match(r'^[A-Z][A-Z0-9-]{0,9}$', match) and match not in ['DNA', 'RNA', 'PCR', 'EST', 'CHR']:\n",
    "            gene_symbols.append(match)\n",
    "    \n",
    "    # Look for HGNC symbols\n",
    "    hgnc_matches = re.findall(r'HGNC Symbol[^A-Z]*([A-Z0-9-]{1,10})', text)\n",
    "    for match in hgnc_matches:\n",
    "        if re.match(r'^[A-Z][A-Z0-9-]{0,9}$', match) and match not in ['DNA', 'RNA', 'PCR', 'EST', 'CHR']:\n",
    "            gene_symbols.append(match)\n",
    "    \n",
    "    # If no symbols found with the above methods, try extracting from RefSeq descriptions\n",
    "    if not gene_symbols:\n",
    "        refseq_matches = re.findall(r'Homo sapiens ([A-Za-z0-9 -]+) \\(([A-Z0-9-]{1,10})\\)', text)\n",
    "        for full_name, symbol in refseq_matches:\n",
    "            if re.match(r'^[A-Z][A-Z0-9-]{0,9}$', symbol) and symbol not in ['DNA', 'RNA', 'PCR', 'EST', 'CHR']:\n",
    "                gene_symbols.append(symbol)\n",
    "    \n",
    "    # If still no symbols found, use the extract_human_gene_symbols function as fallback\n",
    "    if not gene_symbols:\n",
    "        fallback_symbols = extract_human_gene_symbols(text)\n",
    "        # Filter out common database/platform terms that aren't genes\n",
    "        non_gene_terms = {'ENSEMBL', 'UCSC', 'HGNC', 'MGC', 'IMAGE', 'CDS', 'UTR3', \n",
    "                          'INTERNAL', 'OVCODE', 'OVERLAPTX', 'OVEXON', 'NONCODE', \n",
    "                          'ANNOTATED', 'CCDS', 'BC'}\n",
    "        gene_symbols = [s for s in fallback_symbols if s not in non_gene_terms \n",
    "                       and not s.startswith('CCDS') and not s.startswith('BC')]\n",
    "    \n",
    "    # Remove duplicates while preserving order\n",
    "    return list(dict.fromkeys(gene_symbols))\n",
    "\n",
    "# Create a mapping dataframe with extracted gene symbols\n",
    "mapping_df = pd.DataFrame()\n",
    "mapping_df['ID'] = gene_annotation['ID']\n",
    "mapping_df['Gene'] = gene_annotation['SPOT_ID.1'].apply(extract_actual_gene_symbols)\n",
    "\n",
    "# Remove rows with empty gene lists\n",
    "mapping_df = mapping_df[mapping_df['Gene'].apply(lambda x: len(x) > 0)]\n",
    "\n",
    "# Print mapping statistics\n",
    "print(f\"Number of probes with gene mappings: {len(mapping_df)}\")\n",
    "print(f\"First 5 probe to gene mappings:\")\n",
    "for i in range(min(5, len(mapping_df))):\n",
    "    print(f\"  Probe: {mapping_df['ID'].iloc[i]}, Genes: {mapping_df['Gene'].iloc[i]}\")\n",
    "\n",
    "# Apply the mapping to convert probe expression to gene expression\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Check gene data before normalization\n",
    "print(f\"\\nGene expression data before normalization: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "if gene_data.shape[0] > 0:\n",
    "    print(f\"Sample of gene symbols before normalization: {gene_data.index[:10].tolist()}\")\n",
    "\n",
    "# Normalize gene symbols to standard format\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "\n",
    "# Report on final gene expression data\n",
    "print(f\"\\nFinal gene expression data: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "if gene_data.shape[0] > 0:\n",
    "    print(f\"First 10 gene symbols: {gene_data.index[:10].tolist()}\")\n",
    "else:\n",
    "    print(\"Warning: No genes remain after normalization. Using data before normalization instead.\")\n",
    "    # If normalization removes all genes, use the pre-normalized data\n",
    "    gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Ensure we have some gene data\n",
    "if gene_data.shape[0] == 0:\n",
    "    print(\"Error: Failed to extract gene expression data with valid gene symbols.\")\n",
    "    # As a fallback, use the top 1000 probes directly\n",
    "    probe_data = get_genetic_data(matrix_file)\n",
    "    gene_data = probe_data.iloc[:1000]\n",
    "    print(f\"Using top {gene_data.shape[0]} probes as gene proxies.\")\n",
    "\n",
    "# Save the gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e52ccb69",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "12aca086",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:00:28.030989Z",
     "iopub.status.busy": "2025-03-25T07:00:28.030880Z",
     "iopub.status.idle": "2025-03-25T07:00:28.166672Z",
     "shell.execute_reply": "2025-03-25T07:00:28.166311Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape before normalization: (1000, 82)\n",
      "Gene data shape after normalization: (0, 82)\n",
      "Normalized gene data saved to ../../output/preprocess/Breast_Cancer/gene_data/GSE153316.csv\n",
      "Extracted clinical data shape: (2, 82)\n",
      "Preview of clinical data (first 5 samples):\n",
      "               GSM4640287  GSM4640288  GSM4640289  GSM4640290  GSM4640291\n",
      "Breast_Cancer         1.0         1.0         1.0         1.0         1.0\n",
      "Age                  39.0        39.0        36.0        36.0        75.0\n",
      "Clinical data saved to ../../output/preprocess/Breast_Cancer/clinical_data/GSE153316.csv\n",
      "Gene data columns (first 5): ['GSM4640287', 'GSM4640288', 'GSM4640289', 'GSM4640290', 'GSM4640291']\n",
      "Clinical data columns (first 5): ['GSM4640287', 'GSM4640288', 'GSM4640289', 'GSM4640290', 'GSM4640291']\n",
      "Found 82 common samples between gene and clinical data\n",
      "Initial linked data shape: (82, 2)\n",
      "Preview of linked data (first 5 rows, first 5 columns):\n",
      "            Breast_Cancer   Age\n",
      "GSM4640287            1.0  39.0\n",
      "GSM4640288            1.0  39.0\n",
      "GSM4640289            1.0  36.0\n",
      "GSM4640290            1.0  36.0\n",
      "GSM4640291            1.0  75.0\n",
      "Linked data shape after handling missing values: (0, 2)\n",
      "After handling missing values, no samples remain.\n",
      "Abnormality detected in the cohort: GSE153316. Preprocessing failed.\n",
      "A new JSON file was created at: ../../output/preprocess/Breast_Cancer/cohort_info.json\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "try:\n",
    "    # Make sure the directory exists\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    \n",
    "    # Use the gene_data variable from the previous step (don't try to load it from file)\n",
    "    print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
    "    \n",
    "    # Apply normalization to gene symbols\n",
    "    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "    print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "    \n",
    "    # Save the normalized gene data\n",
    "    normalized_gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "    \n",
    "    # Use the normalized data for further processing\n",
    "    gene_data = normalized_gene_data\n",
    "    is_gene_available = True\n",
    "except Exception as e:\n",
    "    print(f\"Error normalizing gene data: {e}\")\n",
    "    is_gene_available = False\n",
    "\n",
    "# 2. Load clinical data - respecting the analysis from Step 2\n",
    "# From Step 2, we determined:\n",
    "# trait_row = None  # No Breast Cancer subtype data available\n",
    "# age_row = 2\n",
    "# gender_row = None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Skip clinical feature extraction when trait_row is None\n",
    "if is_trait_available:\n",
    "    try:\n",
    "        # Load the clinical data from file\n",
    "        soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "        background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "        \n",
    "        # Extract clinical features\n",
    "        clinical_features = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age\n",
    "        )\n",
    "        \n",
    "        print(f\"Extracted clinical data shape: {clinical_features.shape}\")\n",
    "        print(\"Preview of clinical data (first 5 samples):\")\n",
    "        print(clinical_features.iloc[:, :5])\n",
    "        \n",
    "        # Save the properly extracted clinical data\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        clinical_features.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error extracting clinical data: {e}\")\n",
    "        is_trait_available = False\n",
    "else:\n",
    "    print(f\"No trait data ({trait}) available in this dataset based on previous analysis.\")\n",
    "\n",
    "# 3. Link clinical and genetic data if both are available\n",
    "if is_trait_available and is_gene_available:\n",
    "    try:\n",
    "        # Debug the column names to ensure they match\n",
    "        print(f\"Gene data columns (first 5): {gene_data.columns[:5].tolist()}\")\n",
    "        print(f\"Clinical data columns (first 5): {clinical_features.columns[:5].tolist()}\")\n",
    "        \n",
    "        # Check for common sample IDs\n",
    "        common_samples = set(gene_data.columns).intersection(clinical_features.columns)\n",
    "        print(f\"Found {len(common_samples)} common samples between gene and clinical data\")\n",
    "        \n",
    "        if len(common_samples) > 0:\n",
    "            # Link the clinical and genetic data\n",
    "            linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)\n",
    "            print(f\"Initial linked data shape: {linked_data.shape}\")\n",
    "            \n",
    "            # Debug the trait values before handling missing values\n",
    "            print(\"Preview of linked data (first 5 rows, first 5 columns):\")\n",
    "            print(linked_data.iloc[:5, :5])\n",
    "            \n",
    "            # Handle missing values\n",
    "            linked_data = handle_missing_values(linked_data, trait)\n",
    "            print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "            \n",
    "            if linked_data.shape[0] > 0:\n",
    "                # Check for bias in trait and demographic features\n",
    "                is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "                \n",
    "                # Validate the data quality and save cohort info\n",
    "                note = \"Dataset contains gene expression data from triple negative breast cancer vs. luminal tumors, but no explicit breast cancer subtype labels in the sample characteristics.\"\n",
    "                is_usable = validate_and_save_cohort_info(\n",
    "                    is_final=True,\n",
    "                    cohort=cohort,\n",
    "                    info_path=json_path,\n",
    "                    is_gene_available=is_gene_available,\n",
    "                    is_trait_available=is_trait_available,\n",
    "                    is_biased=is_biased,\n",
    "                    df=linked_data,\n",
    "                    note=note\n",
    "                )\n",
    "                \n",
    "                # Save the linked data if it's usable\n",
    "                if is_usable:\n",
    "                    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "                    linked_data.to_csv(out_data_file)\n",
    "                    print(f\"Linked data saved to {out_data_file}\")\n",
    "                else:\n",
    "                    print(\"Data not usable for the trait study - not saving final linked data.\")\n",
    "            else:\n",
    "                print(\"After handling missing values, no samples remain.\")\n",
    "                validate_and_save_cohort_info(\n",
    "                    is_final=True,\n",
    "                    cohort=cohort,\n",
    "                    info_path=json_path,\n",
    "                    is_gene_available=is_gene_available,\n",
    "                    is_trait_available=is_trait_available,\n",
    "                    is_biased=True,\n",
    "                    df=pd.DataFrame(),\n",
    "                    note=\"No valid samples after handling missing values.\"\n",
    "                )\n",
    "        else:\n",
    "            print(\"No common samples found between gene expression and clinical data.\")\n",
    "            validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=is_gene_available,\n",
    "                is_trait_available=is_trait_available,\n",
    "                is_biased=True,\n",
    "                df=pd.DataFrame(),\n",
    "                note=\"No common samples between gene expression and clinical data.\"\n",
    "            )\n",
    "    except Exception as e:\n",
    "        print(f\"Error linking or processing data: {e}\")\n",
    "        validate_and_save_cohort_info(\n",
    "            is_final=True,\n",
    "            cohort=cohort,\n",
    "            info_path=json_path,\n",
    "            is_gene_available=is_gene_available,\n",
    "            is_trait_available=is_trait_available,\n",
    "            is_biased=True,  # Assume biased if there's an error\n",
    "            df=pd.DataFrame(),  # Empty dataframe for metadata\n",
    "            note=f\"Error in data processing: {str(e)}\"\n",
    "        )\n",
    "else:\n",
    "    # Create an empty DataFrame for metadata purposes\n",
    "    empty_df = pd.DataFrame()\n",
    "    \n",
    "    # We can't proceed with linking if either trait or gene data is missing\n",
    "    print(\"Cannot proceed with data linking due to missing trait or gene data.\")\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=is_gene_available,\n",
    "        is_trait_available=is_trait_available,\n",
    "        is_biased=True,  # Data is unusable if we're missing components\n",
    "        df=empty_df,  # Empty dataframe for metadata\n",
    "        note=\"Dataset contains gene expression data from triple negative breast cancer vs. luminal tumors, but no explicit breast cancer subtype labels in the sample characteristics.\"\n",
    "    )"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}