File size: 33,825 Bytes
32677ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c02f8562",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:35:04.781498Z",
     "iopub.status.busy": "2025-03-25T08:35:04.781398Z",
     "iopub.status.idle": "2025-03-25T08:35:04.943708Z",
     "shell.execute_reply": "2025-03-25T08:35:04.943369Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Cystic_Fibrosis\"\n",
    "cohort = \"GSE129168\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Cystic_Fibrosis\"\n",
    "in_cohort_dir = \"../../input/GEO/Cystic_Fibrosis/GSE129168\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Cystic_Fibrosis/GSE129168.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Cystic_Fibrosis/gene_data/GSE129168.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Cystic_Fibrosis/clinical_data/GSE129168.csv\"\n",
    "json_path = \"../../output/preprocess/Cystic_Fibrosis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "dfcf5971",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "4f3f951a",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:35:04.945154Z",
     "iopub.status.busy": "2025-03-25T08:35:04.945013Z",
     "iopub.status.idle": "2025-03-25T08:35:05.005716Z",
     "shell.execute_reply": "2025-03-25T08:35:05.005420Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"High-throughput screening for modulators of CFTR activity applying an organotypic functional assay based on genetically engineered Cystic Fibrosis disease-specific iPSCs\"\n",
      "!Series_summary\t\"Organotypic culture systems from disease-specific induced pluripotent stem cells (iPSCs) exhibit obvious advantages compared to immortalized cell lines and primary cell cultures but implementation of iPSC-based high throughput (HT) assays is still technically challenging. Here we demonstrate the development and conduction of an organotypic HT Cl-/I- exchange assay using Cystic Fibrosis (CF) disease-specific iPSCs. The introduction of a halide sensitive YFP variant enabled automated quantitative measurement of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function in iPSC-derived intestinal epithelia. CFTR function was partially rescued by treatment with VX-770 and VX-809, and seamless gene correction of the p.Phe508del mutation resulted in full restoration of CFTR function. The identification of a series of validated primary hits that improve the function of p.Phe508del CFTR from a library of ~ 42.500 chemical compounds demonstrates that the advantages of complex iPSC-derived culture systems for disease modelling can also be utilized for drug screening at a true HT format.\"\n",
      "!Series_overall_design\t\"For detailed analysis of the differentiated hiPSC cell populations on day 15 of differentiation 32 samples in total were analyzed.  Three independent donor lines were utilized (donor 1 and 6 CFTR WT, donor 2 (p.Phe508del)) and one isogenic gene corrected control line (donor 2 gene corrected-CFTR WT.) Samples from undifferentiated and differentiated cells represent biological replicates (n=3). As controls RNA from adult intestine, liver and colon was. Tissue samples are represented as technical replicates.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['donor line: donor 2', 'donor line: donor 2 gene corrected', 'donor line: donor 6', 'donor line: donor 1', 'tissue: small intestine', 'tissue: colon', 'tissue: liver'], 1: ['cell type: pluripotent stem cell', 'developmental stage: adult'], 2: ['genotype: CFiPS (p.Phe508del)', 'genotype: CFiPS (p.Phe508del) gene corrected', 'genotype: iPS CFTR WT', 'genotype: CFTR WT'], 3: ['treatment: untreated/undifferentiated', 'treatment: day 15 of differentiation', nan]}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fb80c221",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "cc17f829",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:35:05.006916Z",
     "iopub.status.busy": "2025-03-25T08:35:05.006688Z",
     "iopub.status.idle": "2025-03-25T08:35:05.011063Z",
     "shell.execute_reply": "2025-03-25T08:35:05.010778Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical data file not found at ../../input/GEO/Cystic_Fibrosis/GSE129168/clinical_data.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# This dataset contains gene expression data as it relates to CFTR function analysis\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait (Cystic Fibrosis): \n",
    "# We can infer this from row 2 which contains genotype information about CFTR mutations\n",
    "trait_row = 2\n",
    "\n",
    "# For age: Age is not explicitly provided and cannot be reliably inferred\n",
    "age_row = None\n",
    "\n",
    "# For gender: Gender is not specified in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert CFTR genotype to binary trait value for Cystic Fibrosis\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # CFTR p.Phe508del mutation indicates CF\n",
    "    if 'p.Phe508del' in value and 'gene corrected' not in value:\n",
    "        return 1  # Has CF\n",
    "    else:\n",
    "        return 0  # Does not have CF (CFTR WT or gene corrected)\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Placeholder function since age data is not available\"\"\"\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Placeholder function since gender data is not available\"\"\"\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Initial filtering on usability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Read the clinical data file\n",
    "    clinical_data_path = os.path.join(in_cohort_dir, \"clinical_data.csv\")\n",
    "    if os.path.exists(clinical_data_path):\n",
    "        clinical_data = pd.read_csv(clinical_data_path)\n",
    "        \n",
    "        # Extract clinical features\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the dataframe\n",
    "        print(\"Preview of selected clinical features:\")\n",
    "        print(preview_df(selected_clinical_df))\n",
    "        \n",
    "        # Create directory if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        \n",
    "        # Save the clinical features dataframe\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    else:\n",
    "        print(f\"Clinical data file not found at {clinical_data_path}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2b30c678",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "c6ab63f3",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:35:05.012077Z",
     "iopub.status.busy": "2025-03-25T08:35:05.011971Z",
     "iopub.status.idle": "2025-03-25T08:35:05.080214Z",
     "shell.execute_reply": "2025-03-25T08:35:05.079885Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found data marker at line 73\n",
      "Header line: \"ID_REF\"\t\"GSM3701915\"\t\"GSM3701916\"\t\"GSM3701917\"\t\"GSM3701918\"\t\"GSM3701919\"\t\"GSM3701920\"\t\"GSM3701921\"\t\"GSM3701922\"\t\"GSM3701923\"\t\"GSM3701924\"\t\"GSM3701925\"\t\"GSM3701926\"\t\"GSM3701927\"\t\"GSM3701928\"\t\"GSM3701929\"\t\"GSM3701930\"\t\"GSM3701931\"\t\"GSM3701932\"\t\"GSM3701933\"\t\"GSM3701934\"\t\"GSM3701935\"\t\"GSM3701936\"\t\"GSM3701937\"\t\"GSM3701938\"\t\"GSM3701939\"\t\"GSM3701940\"\t\"GSM3701941\"\t\"GSM3701942\"\t\"GSM3701943\"\t\"GSM3701944\"\t\"GSM3701945\"\t\"GSM3701946\"\n",
      "First data line: \"A_23_P100001\"\t1884\t1647\t1959\t3268\t3346\t3801\t1817\t1418\t1572\t3890\t3638\t4027\t2250\t1820\t7073\t8081\t7426\t2005\t2163\t2350\t5476\t4873\t4716\t2374\t2490\t2381\t1399\t1333\t1287\t818\t984\t901\n",
      "Index(['A_23_P100001', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074',\n",
      "       'A_23_P100127', 'A_23_P100141', 'A_23_P100189', 'A_23_P100196',\n",
      "       'A_23_P100203', 'A_23_P100220', 'A_23_P100240', 'A_23_P10025',\n",
      "       'A_23_P100292', 'A_23_P100315', 'A_23_P100326', 'A_23_P100344',\n",
      "       'A_23_P100355', 'A_23_P100386', 'A_23_P100392', 'A_23_P100420'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e010ed08",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "e53445f2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:35:05.081483Z",
     "iopub.status.busy": "2025-03-25T08:35:05.081379Z",
     "iopub.status.idle": "2025-03-25T08:35:05.083189Z",
     "shell.execute_reply": "2025-03-25T08:35:05.082914Z"
    }
   },
   "outputs": [],
   "source": [
    "# Based on the output, the gene identifiers in this dataset appear to be Agilent microarray probe IDs \n",
    "# (format A_23_Pxxxxxx), not human gene symbols. These identifiers need to be mapped to gene symbols\n",
    "# for proper analysis.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c657ad9e",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "0aa49076",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:35:05.084298Z",
     "iopub.status.busy": "2025-03-25T08:35:05.084203Z",
     "iopub.status.idle": "2025-03-25T08:35:06.854120Z",
     "shell.execute_reply": "2025-03-25T08:35:06.853735Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['A_23_P100001', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074', 'A_23_P100127'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'CONTROL_TYPE': ['FALSE', 'FALSE', 'FALSE', 'FALSE', 'FALSE'], 'REFSEQ': ['NM_207446', 'NM_014848', 'NM_194272', 'NM_020371', 'NM_170589'], 'GB_ACC': ['NM_207446', 'NM_014848', 'NM_194272', 'NM_020371', 'NM_170589'], 'LOCUSLINK_ID': [400451.0, 9899.0, 348093.0, 57099.0, 57082.0], 'GENE_SYMBOL': ['FAM174B', 'SV2B', 'RBPMS2', 'AVEN', 'KNL1'], 'GENE_NAME': ['family with sequence similarity 174 member B', 'synaptic vesicle glycoprotein 2B', 'RNA binding protein, mRNA processing factor 2', 'apoptosis and caspase activation inhibitor', 'kinetochore scaffold 1'], 'UNIGENE_ID': ['Hs.27373', 'Hs.21754', 'Hs.436518', 'Hs.555966', 'Hs.181855'], 'ENSEMBL_ID': ['ENST00000553393', nan, nan, 'ENST00000306730', 'ENST00000527044'], 'TIGR_ID': [nan, nan, nan, nan, nan], 'ACCESSION_STRING': ['ref|NM_207446|ens|ENST00000553393|ens|ENST00000327355|ref|XR_931815', 'ref|NM_014848|ref|NM_001323039|ref|NM_001323032|ref|NM_001323037', 'ref|NM_194272|ref|NR_138350|ref|NR_138363|ref|NR_138364', 'ref|NM_020371|ens|ENST00000306730|ref|XM_011521819|ref|XM_011521818', 'ref|NM_170589|ref|NM_144508|ens|ENST00000527044|ens|ENST00000533001'], 'CHROMOSOMAL_LOCATION': ['chr15:93160848-93160789', 'chr15:91838329-91838388', 'chr15:65032375-65032316', 'chr15:34158739-34158680', 'chr15:40917525-40917584'], 'CYTOBAND': ['hs|15q26.1', 'hs|15q26.1', 'hs|15q22.31', 'hs|15q14', 'hs|15q15.1'], 'DESCRIPTION': ['Homo sapiens family with sequence similarity 174 member B (FAM174B), mRNA [NM_207446]', 'Homo sapiens synaptic vesicle glycoprotein 2B (SV2B), transcript variant 1, mRNA [NM_014848]', 'Homo sapiens RNA binding protein, mRNA processing factor 2 (RBPMS2), transcript variant 1, mRNA [NM_194272]', 'Homo sapiens apoptosis and caspase activation inhibitor (AVEN), mRNA [NM_020371]', 'Homo sapiens kinetochore scaffold 1 (KNL1), transcript variant 1, mRNA [NM_170589]'], 'GO_ID': ['GO:0016021(integral component of membrane)', 'GO:0001669(acrosomal vesicle)|GO:0005515(protein binding)|GO:0005886(plasma membrane)|GO:0006836(neurotransmitter transport)|GO:0007268(chemical synaptic transmission)|GO:0008021(synaptic vesicle)|GO:0016020(membrane)|GO:0016021(integral component of membrane)|GO:0022857(transmembrane transporter activity)|GO:0030054(cell junction)|GO:0030672(synaptic vesicle membrane)|GO:0043005(neuron projection)|GO:0055085(transmembrane transport)', 'GO:0000398(mRNA splicing, via spliceosome)|GO:0003729(mRNA binding)|GO:0005515(protein binding)|GO:0005737(cytoplasm)|GO:0030514(negative regulation of BMP signaling pathway)|GO:0035614(snRNA stem-loop binding)|GO:0042803(protein homodimerization activity)|GO:0048557(embryonic digestive tract morphogenesis)|GO:0048661(positive regulation of smooth muscle cell proliferation)|GO:0051151(negative regulation of smooth muscle cell differentiation)', 'GO:0005515(protein binding)|GO:0005622(intracellular)|GO:0006915(apoptotic process)|GO:0012505(endomembrane system)|GO:0016020(membrane)|GO:0043066(negative regulation of apoptotic process)', 'GO:0000777(condensed chromosome kinetochore)|GO:0001669(acrosomal vesicle)|GO:0001675(acrosome assembly)|GO:0005515(protein binding)|GO:0005634(nucleus)|GO:0005654(nucleoplasm)|GO:0005829(cytosol)|GO:0008608(attachment of spindle microtubules to kinetochore)|GO:0010923(negative regulation of phosphatase activity)|GO:0016604(nuclear body)|GO:0034080(CENP-A containing nucleosome assembly)|GO:0034501(protein localization to kinetochore)|GO:0051301(cell division)'], 'SEQUENCE': ['ATCTCATGGAAAAGCTGGATTCCTCTGCCTTACGCAGAAACACCCGGGCTCCATCTGCCA', 'ATGTCGGCTGTGGAGGGTTAAAGGGATGAGGCTTTCCTTTGTTTAGCAAATCTGTTCACA', 'CCCTGTCAGATAAGTTTAATGTTTAGTTTGAGGCATGAAGAAGAAAAGGGTTTCCATTCT', 'GACCAGCCAGTTTACAAGCATGTCTCAAGCTAGTGTGTTCCATTATGCTCACAGCAGTAA', 'CGGTCTCTAGCAAAGATTCAGGCATTGGATCTGTTGCAGGTAAACTGAACCTAAGTCCTT']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8c51b3c5",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "36ec5cbe",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:35:06.855429Z",
     "iopub.status.busy": "2025-03-25T08:35:06.855313Z",
     "iopub.status.idle": "2025-03-25T08:35:06.982482Z",
     "shell.execute_reply": "2025-03-25T08:35:06.982015Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using probe IDs from column 'ID' and gene symbols from 'GENE_SYMBOL'\n",
      "First few probe IDs: ['A_23_P100001', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074', 'A_23_P100127']\n",
      "First few gene symbols: ['FAM174B', 'SV2B', 'RBPMS2', 'AVEN', 'KNL1']\n",
      "Created mapping dataframe with shape: (30331, 2)\n",
      "Mapping preview: {'ID': ['A_23_P100001', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074', 'A_23_P100127'], 'Gene': ['FAM174B', 'SV2B', 'RBPMS2', 'AVEN', 'KNL1']}\n",
      "Generated gene expression data with shape: (20520, 32)\n",
      "First 5 gene symbols in the gene expression data: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-1']\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the columns in gene annotation for mapping\n",
    "probe_column = 'ID'           # This is the probe identifier column that matches the gene expression index\n",
    "gene_symbol_column = 'GENE_SYMBOL'  # This is the column with the gene symbols we want to map to\n",
    "\n",
    "# Print relevant information for validation\n",
    "print(f\"Using probe IDs from column '{probe_column}' and gene symbols from '{gene_symbol_column}'\")\n",
    "print(f\"First few probe IDs: {gene_annotation[probe_column][:5].tolist()}\")\n",
    "print(f\"First few gene symbols: {gene_annotation[gene_symbol_column][:5].tolist()}\")\n",
    "\n",
    "# 2. Create a mapping dataframe with these two columns\n",
    "mapping_df = get_gene_mapping(gene_annotation, probe_column, gene_symbol_column)\n",
    "print(f\"Created mapping dataframe with shape: {mapping_df.shape}\")\n",
    "print(f\"Mapping preview: {preview_df(mapping_df)}\")\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "# This function handles the many-to-many mapping and proper distribution of expression values\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"Generated gene expression data with shape: {gene_data.shape}\")\n",
    "print(f\"First 5 gene symbols in the gene expression data: {gene_data.index[:5].tolist()}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0718db00",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "42f5a015",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:35:06.983916Z",
     "iopub.status.busy": "2025-03-25T08:35:06.983807Z",
     "iopub.status.idle": "2025-03-25T08:35:15.368133Z",
     "shell.execute_reply": "2025-03-25T08:35:15.367780Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data shape: (20134, 32)"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "First few genes with their expression values after normalization:\n",
      "          GSM3701915  GSM3701916  GSM3701917  GSM3701918  GSM3701919  \\\n",
      "Gene                                                                   \n",
      "A1BG          4010.0      4608.0      3222.0       865.0       889.0   \n",
      "A1BG-AS1       197.0       166.0       205.0       122.0       101.0   \n",
      "A1CF             7.0         8.0         7.0      5318.0      5750.0   \n",
      "A2M             11.0        10.0       255.0      1018.0      1230.0   \n",
      "A2M-AS1        224.0       215.0       218.0       222.0       265.0   \n",
      "\n",
      "          GSM3701920  GSM3701921  GSM3701922  GSM3701923  GSM3701924  ...  \\\n",
      "Gene                                                                  ...   \n",
      "A1BG           810.0      5707.0      4568.0      3420.0       841.0  ...   \n",
      "A1BG-AS1       155.0       147.0       179.0       178.0       163.0  ...   \n",
      "A1CF          5530.0         6.0         6.0         7.0      5716.0  ...   \n",
      "A2M           1378.0         5.0        10.0        83.0      1544.0  ...   \n",
      "A2M-AS1        288.0       174.0       227.0       208.0       216.0  ...   \n",
      "\n",
      "          GSM3701937  GSM3701938  GSM3701939  GSM3701940  GSM3701941  \\\n",
      "Gene                                                                   \n",
      "A1BG           795.0      1465.0      1499.0      1616.0      1044.0   \n",
      "A1BG-AS1       162.0       172.0       199.0       175.0       121.0   \n",
      "A1CF          4115.0      2257.0      2270.0      2159.0      2176.0   \n",
      "A2M          17876.0     70912.0     75801.0     69552.0     56138.0   \n",
      "A2M-AS1        237.0       738.0       807.0       834.0       419.0   \n",
      "\n",
      "          GSM3701942  GSM3701943  GSM3701944  GSM3701945  GSM3701946  \n",
      "Gene                                                                  \n",
      "A1BG           990.0       953.0    200616.0    205414.0    203146.0  \n",
      "A1BG-AS1       120.0       119.0        41.0        37.0        44.0  \n",
      "A1CF          2090.0      2057.0     26980.0     27768.0     27456.0  \n",
      "A2M          52852.0     49948.0    151045.0    157701.0    150048.0  \n",
      "A2M-AS1        395.0       391.0      1355.0      1466.0      1380.0  \n",
      "\n",
      "[5 rows x 32 columns]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Cystic_Fibrosis/gene_data/GSE129168.csv\n",
      "Raw clinical data shape: (4, 33)\n",
      "Clinical features:\n",
      "                 GSM3701915  GSM3701916  GSM3701917  GSM3701918  GSM3701919  \\\n",
      "Cystic_Fibrosis         1.0         1.0         1.0         1.0         1.0   \n",
      "\n",
      "                 GSM3701920  GSM3701921  GSM3701922  GSM3701923  GSM3701924  \\\n",
      "Cystic_Fibrosis         1.0         0.0         0.0         0.0         0.0   \n",
      "\n",
      "                 ...  GSM3701937  GSM3701938  GSM3701939  GSM3701940  \\\n",
      "Cystic_Fibrosis  ...         0.0         0.0         0.0         0.0   \n",
      "\n",
      "                 GSM3701941  GSM3701942  GSM3701943  GSM3701944  GSM3701945  \\\n",
      "Cystic_Fibrosis         0.0         0.0         0.0         0.0         0.0   \n",
      "\n",
      "                 GSM3701946  \n",
      "Cystic_Fibrosis         0.0  \n",
      "\n",
      "[1 rows x 32 columns]\n",
      "Clinical features saved to ../../output/preprocess/Cystic_Fibrosis/clinical_data/GSE129168.csv\n",
      "Linked data shape: (32, 20135)\n",
      "Linked data preview (first 5 rows, first 5 columns):\n",
      "            Cystic_Fibrosis    A1BG  A1BG-AS1    A1CF     A2M\n",
      "GSM3701915              1.0  4010.0     197.0     7.0    11.0\n",
      "GSM3701916              1.0  4608.0     166.0     8.0    10.0\n",
      "GSM3701917              1.0  3222.0     205.0     7.0   255.0\n",
      "GSM3701918              1.0   865.0     122.0  5318.0  1018.0\n",
      "GSM3701919              1.0   889.0     101.0  5750.0  1230.0\n",
      "Missing values before handling:\n",
      "  Trait (Cystic_Fibrosis) missing: 0 out of 32\n",
      "  Genes with >20% missing: 0\n",
      "  Samples with >5% missing genes: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (32, 20135)\n",
      "For the feature 'Cystic_Fibrosis', the least common label is '1.0' with 6 occurrences. This represents 18.75% of the dataset.\n",
      "The distribution of the feature 'Cystic_Fibrosis' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Cystic_Fibrosis/GSE129168.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(\"First few genes with their expression values after normalization:\")\n",
    "print(normalized_gene_data.head())\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Extract clinical features directly from the matrix file\n",
    "try:\n",
    "    # Get the file paths for the matrix file to extract clinical data\n",
    "    _, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "    \n",
    "    # Get raw clinical data from the matrix file\n",
    "    _, clinical_raw = get_background_and_clinical_data(matrix_file)\n",
    "    \n",
    "    # Verify clinical data structure\n",
    "    print(\"Raw clinical data shape:\", clinical_raw.shape)\n",
    "    \n",
    "    # Extract clinical features using the defined conversion functions\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_df=clinical_raw,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    print(\"Clinical features:\")\n",
    "    print(clinical_features)\n",
    "    \n",
    "    # Save clinical features to file\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_features.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "    \n",
    "    # 3. Link clinical and genetic data\n",
    "    linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "    print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
    "    print(linked_data.iloc[:5, :5])\n",
    "    \n",
    "    # 4. Handle missing values\n",
    "    print(\"Missing values before handling:\")\n",
    "    print(f\"  Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
    "    if 'Age' in linked_data.columns:\n",
    "        print(f\"  Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n",
    "    if 'Gender' in linked_data.columns:\n",
    "        print(f\"  Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n",
    "    print(f\"  Genes with >20% missing: {sum(linked_data.iloc[:, 1:].isna().mean() > 0.2)}\")\n",
    "    print(f\"  Samples with >5% missing genes: {sum(linked_data.iloc[:, 1:].isna().mean(axis=1) > 0.05)}\")\n",
    "    \n",
    "    cleaned_data = handle_missing_values(linked_data, trait)\n",
    "    print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
    "    \n",
    "    # 5. Evaluate bias in trait and demographic features\n",
    "    is_trait_biased = False\n",
    "    if len(cleaned_data) > 0:\n",
    "        trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
    "        is_trait_biased = trait_biased\n",
    "    else:\n",
    "        print(\"No data remains after handling missing values.\")\n",
    "        is_trait_biased = True\n",
    "    \n",
    "    # 6. Final validation and save\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True, \n",
    "        is_biased=is_trait_biased, \n",
    "        df=cleaned_data,\n",
    "        note=\"Dataset contains gene expression data comparing CFTR WT vs CFTR mutant (p.Phe508del) samples.\"\n",
    "    )\n",
    "    \n",
    "    # 7. Save if usable\n",
    "    if is_usable and len(cleaned_data) > 0:\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        cleaned_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(\"Data was determined to be unusable or empty and was not saved\")\n",
    "        \n",
    "except Exception as e:\n",
    "    print(f\"Error processing data: {e}\")\n",
    "    # Handle the error case by still recording cohort info\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=False,  # Mark as not available due to processing issues\n",
    "        is_biased=True, \n",
    "        df=pd.DataFrame(),  # Empty dataframe\n",
    "        note=f\"Error processing data: {str(e)}\"\n",
    "    )\n",
    "    print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}