File size: 35,519 Bytes
32677ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "d2b26b7c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:41:36.885459Z",
"iopub.status.busy": "2025-03-25T08:41:36.885124Z",
"iopub.status.idle": "2025-03-25T08:41:37.046538Z",
"shell.execute_reply": "2025-03-25T08:41:37.046116Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Eczema\"\n",
"cohort = \"GSE63741\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Eczema\"\n",
"in_cohort_dir = \"../../input/GEO/Eczema/GSE63741\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Eczema/GSE63741.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Eczema/gene_data/GSE63741.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Eczema/clinical_data/GSE63741.csv\"\n",
"json_path = \"../../output/preprocess/Eczema/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "7846782c",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "df60fe3c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:41:37.047928Z",
"iopub.status.busy": "2025-03-25T08:41:37.047793Z",
"iopub.status.idle": "2025-03-25T08:41:37.069790Z",
"shell.execute_reply": "2025-03-25T08:41:37.069417Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Gene Expression Analyses of Homo sapiens Inflammatory Skin Diseases\"\n",
"!Series_summary\t\"Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO)\"\n",
"!Series_summary\t\"In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.\"\n",
"!Series_overall_design\t\"Ex vivo analyses: gene expression analyses (total RNA) of lesional skin versus common skin reference (two channel)\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['tissue: whole skin biopsy'], 1: ['sample type: skin biopsies from pool of 160 patients with skin disorders and healthy donors']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "01532724",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "68f4466b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:41:37.070782Z",
"iopub.status.busy": "2025-03-25T08:41:37.070677Z",
"iopub.status.idle": "2025-03-25T08:41:37.082095Z",
"shell.execute_reply": "2025-03-25T08:41:37.081752Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of selected clinical features:\n",
"{'GSM1556392': [0.0], 'GSM1556393': [0.0], 'GSM1556394': [0.0], 'GSM1556395': [0.0], 'GSM1556396': [0.0], 'GSM1556397': [0.0], 'GSM1556398': [0.0], 'GSM1556399': [0.0], 'GSM1556400': [0.0], 'GSM1556401': [0.0], 'GSM1556402': [0.0], 'GSM1556403': [0.0], 'GSM1556404': [0.0], 'GSM1556405': [0.0], 'GSM1556406': [0.0], 'GSM1556407': [0.0], 'GSM1556408': [0.0], 'GSM1556409': [0.0], 'GSM1556410': [0.0], 'GSM1556411': [0.0], 'GSM1556412': [0.0], 'GSM1556413': [0.0], 'GSM1556414': [0.0], 'GSM1556415': [0.0], 'GSM1556416': [0.0], 'GSM1556417': [0.0], 'GSM1556418': [0.0], 'GSM1556419': [0.0], 'GSM1556420': [0.0], 'GSM1556421': [0.0], 'GSM1556422': [0.0], 'GSM1556423': [0.0], 'GSM1556424': [0.0], 'GSM1556425': [0.0], 'GSM1556426': [0.0], 'GSM1556427': [0.0], 'GSM1556428': [0.0], 'GSM1556429': [0.0], 'GSM1556430': [0.0], 'GSM1556431': [0.0], 'GSM1556432': [0.0], 'GSM1556433': [0.0], 'GSM1556434': [0.0], 'GSM1556435': [0.0], 'GSM1556436': [0.0], 'GSM1556437': [0.0], 'GSM1556438': [0.0], 'GSM1556439': [0.0], 'GSM1556440': [0.0], 'GSM1556441': [0.0], 'GSM1556442': [0.0], 'GSM1556443': [0.0], 'GSM1556444': [0.0], 'GSM1556445': [0.0], 'GSM1556446': [0.0], 'GSM1556447': [0.0], 'GSM1556448': [0.0], 'GSM1556449': [0.0], 'GSM1556450': [0.0], 'GSM1556451': [0.0], 'GSM1556452': [0.0], 'GSM1556453': [0.0], 'GSM1556454': [0.0], 'GSM1556455': [0.0], 'GSM1556456': [0.0], 'GSM1556457': [0.0], 'GSM1556458': [0.0], 'GSM1556459': [0.0], 'GSM1556460': [0.0], 'GSM1556461': [0.0], 'GSM1556462': [0.0], 'GSM1556463': [0.0], 'GSM1556464': [0.0], 'GSM1556465': [0.0], 'GSM1556466': [0.0], 'GSM1556467': [0.0], 'GSM1556468': [0.0], 'GSM1556469': [0.0], 'GSM1556470': [0.0], 'GSM1556471': [0.0], 'GSM1556472': [0.0], 'GSM1556473': [0.0], 'GSM1556474': [0.0], 'GSM1556475': [0.0], 'GSM1556476': [0.0], 'GSM1556477': [0.0], 'GSM1556478': [0.0], 'GSM1556479': [0.0], 'GSM1556480': [0.0], 'GSM1556481': [0.0], 'GSM1556482': [0.0], 'GSM1556483': [0.0], 'GSM1556484': [0.0], 'GSM1556485': [0.0], 'GSM1556486': [0.0], 'GSM1556487': [0.0], 'GSM1556488': [0.0], 'GSM1556489': [0.0], 'GSM1556490': [0.0], 'GSM1556491': [0.0], 'GSM1556492': [0.0], 'GSM1556493': [0.0], 'GSM1556494': [0.0], 'GSM1556495': [0.0], 'GSM1556496': [0.0], 'GSM1556497': [0.0], 'GSM1556498': [0.0], 'GSM1556499': [0.0], 'GSM1556500': [0.0], 'GSM1556501': [0.0], 'GSM1556502': [0.0], 'GSM1556503': [0.0], 'GSM1556504': [0.0], 'GSM1556505': [0.0], 'GSM1556506': [0.0], 'GSM1556507': [0.0], 'GSM1556508': [0.0], 'GSM1556509': [0.0], 'GSM1556510': [0.0], 'GSM1556511': [0.0], 'GSM1556512': [0.0], 'GSM1556513': [0.0], 'GSM1556514': [0.0], 'GSM1556515': [0.0], 'GSM1556516': [0.0], 'GSM1556517': [0.0], 'GSM1556518': [0.0], 'GSM1556519': [0.0], 'GSM1556520': [0.0], 'GSM1556521': [0.0], 'GSM1556522': [0.0], 'GSM1556523': [0.0], 'GSM1556524': [0.0], 'GSM1556525': [0.0], 'GSM1556526': [0.0], 'GSM1556527': [0.0], 'GSM1556528': [0.0], 'GSM1556529': [0.0], 'GSM1556530': [0.0], 'GSM1556531': [0.0], 'GSM1556532': [0.0], 'GSM1556533': [0.0], 'GSM1556534': [0.0], 'GSM1556535': [0.0], 'GSM1556536': [0.0], 'GSM1556537': [0.0], 'GSM1556538': [0.0], 'GSM1556539': [0.0], 'GSM1556540': [0.0], 'GSM1556541': [0.0]}\n",
"Clinical data saved to ../../output/preprocess/Eczema/clinical_data/GSE63741.csv\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on background information, this dataset contains gene expression data\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"\n",
"# 2.1 Data Availability\n",
"# From the background information, we can see this is a study comparing different skin conditions\n",
"# including Atopic Dermatitis (AD) which is a form of Eczema\n",
"# The dataset contains samples from patients with Eczema (Contact Eczema - KE) and other conditions\n",
"\n",
"# For trait (Eczema), we need to infer from 'sample type' information\n",
"trait_row = 1 # The information about disease status is in row 1\n",
"\n",
"# Age is not explicitly mentioned in the sample characteristics\n",
"age_row = None\n",
"\n",
"# Gender is not explicitly mentioned in the sample characteristics\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion\n",
"def convert_trait(value):\n",
" \"\"\"\n",
" Convert trait value to binary (0 or 1).\n",
" 1 if the sample is from an Eczema patient (AD - Atopic Dermatitis or KE - Contact Eczema)\n",
" 0 if the sample is from a non-Eczema patient or healthy control\n",
" \"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Extract the value after the colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip().lower()\n",
" else:\n",
" value = value.strip().lower()\n",
" \n",
" # Check if the value indicates Eczema\n",
" if 'atopic dermatitis' in value or 'contact eczema' in value or 'ad' in value or 'ke' in value:\n",
" return 1\n",
" elif 'healthy' in value or 'control' in value or 'ko' in value or 'psoriasis' in value or 'lichen planus' in value or 'pso' in value or 'li' in value:\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"# These functions are not needed as age and gender data are not available,\n",
"# but we'll define them as placeholders\n",
"def convert_age(value):\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Conduct initial filtering\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the dataframe\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview)\n",
" \n",
" # Save to CSV\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=True)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "7349de24",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "e83951f3",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:41:37.083122Z",
"iopub.status.busy": "2025-03-25T08:41:37.083007Z",
"iopub.status.idle": "2025-03-25T08:41:37.118278Z",
"shell.execute_reply": "2025-03-25T08:41:37.117975Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Matrix file found: ../../input/GEO/Eczema/GSE63741/GSE63741_series_matrix.txt.gz\n",
"Gene data shape: (1542, 150)\n",
"First 20 gene/probe identifiers:\n",
"Index(['3', '5', '16', '18', '20', '33', '35', '37', '39', '43', '47', '49',\n",
" '55', '57', '59', '61', '67', '71', '73', '81'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Get the SOFT and matrix file paths again \n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"Matrix file found: {matrix_file}\")\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" \n",
" # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "68d97f8a",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "f7f41dc4",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:41:37.119544Z",
"iopub.status.busy": "2025-03-25T08:41:37.119433Z",
"iopub.status.idle": "2025-03-25T08:41:37.121732Z",
"shell.execute_reply": "2025-03-25T08:41:37.121452Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Based on the observed identifiers which are numeric ('3', '5', '16', etc.), these are not human gene symbols.\n",
"These appear to be probe IDs that require mapping to standard gene symbols.\n",
"requires_gene_mapping = True\n"
]
}
],
"source": [
"# The gene identifiers in the data appear to be numeric identifiers (e.g., '3', '5', '16', etc.)\n",
"# These are not standard human gene symbols (which would look like BRCA1, TP53, IL6, etc.)\n",
"# These appear to be probe IDs or some other numeric identifiers that need to be mapped to gene symbols\n",
"\n",
"# Therefore, we need to perform gene mapping\n",
"requires_gene_mapping = True\n",
"\n",
"# Print the conclusion for clarity\n",
"print(f\"Based on the observed identifiers which are numeric ('3', '5', '16', etc.), these are not human gene symbols.\")\n",
"print(f\"These appear to be probe IDs that require mapping to standard gene symbols.\")\n",
"print(f\"requires_gene_mapping = {requires_gene_mapping}\")\n"
]
},
{
"cell_type": "markdown",
"id": "1809e337",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "36057f55",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:41:37.122938Z",
"iopub.status.busy": "2025-03-25T08:41:37.122830Z",
"iopub.status.idle": "2025-03-25T08:41:37.423643Z",
"shell.execute_reply": "2025-03-25T08:41:37.423257Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene annotation preview:\n",
"Columns in gene annotation: ['ID', 'description', 'uniprot', 'gene ID', 'REFSEQ']\n",
"{'ID': ['3', '5', '16', '18', '20'], 'description': ['IL1B: (IL1B) INTERLEUKIN-1 BETA PRECURSOR (IL-1 BETA) (CATABOLIN).', 'IL2: (IL2 OR IL-2) INTERLEUKIN-2 PRECURSOR (IL-2) (T-CELL GROWTH FACTOR) (TCGF) (ALDESLEUKIN).', 'IL7: (IL7 OR IL-7) INTERLEUKIN-7 PRECURSOR (IL-7).', 'IL8_HUMAN: (IL8) INTERLEUKIN-8 PRECURSOR (IL-8) (CXCL8) (MONOCYTE-DERIVED NEUTROPHIL CHEMOTACTIC FACTOR) (MDNCF) (T-CELL CHEMOTACTIC FACTOR) (NEUTROPHIL-ACTIVATING PROTEIN 1) (NAP-1) (LYMPHOCYTE-DERIVED NEUTROPHIL-ACTIVATING FACTOR) (LYNAP) (PROTEIN 3-10C) (NEUTROPHIL-ACTIVATING FACTOR) (NAF) (GRANULOCYTE CHEMOTACTIC PROTEIN 1) (GCP-1) (EMOCTAKIN).', 'IL9: (IL9) INTERLEUKIN-9 PRECURSOR (IL-9) (T-CELL GROWTH FACTOR P40) (P40 CYTOKINE).'], 'uniprot': ['sp|P01584,sp|Q96HE5,sp|Q9UCT6,sp|Q7RU01', 'sp|P01585,tr|Q13169,sp|P60568', 'sp|P13232', 'sp|P10145,sp|Q9C077,sp|Q96RG6,sp|Q6FGF6,sp|Q6LAE6', 'sp|P15248'], 'gene ID': ['3553', '3558', '3574', '3576', '3578'], 'REFSEQ': ['NM_000576', 'NM_000586', 'NM_000880', 'NM_000584', 'NM_000590']}\n",
"\n",
"Searching for platform information in SOFT file:\n",
"Platform ID not found in first 100 lines\n",
"\n",
"Searching for gene symbol information in SOFT file:\n",
"No explicit gene symbol references found in first 1000 lines\n",
"\n",
"Checking for additional annotation files in the directory:\n",
"[]\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
"print(\"\\nGene annotation preview:\")\n",
"print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
"print(preview_df(gene_annotation, n=5))\n",
"\n",
"# Let's look for platform information in the SOFT file to understand the annotation better\n",
"print(\"\\nSearching for platform information in SOFT file:\")\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" for i, line in enumerate(f):\n",
" if '!Series_platform_id' in line:\n",
" print(line.strip())\n",
" break\n",
" if i > 100: # Limit search to first 100 lines\n",
" print(\"Platform ID not found in first 100 lines\")\n",
" break\n",
"\n",
"# Check if the SOFT file includes any reference to gene symbols\n",
"print(\"\\nSearching for gene symbol information in SOFT file:\")\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" gene_symbol_lines = []\n",
" for i, line in enumerate(f):\n",
" if 'GENE_SYMBOL' in line or 'gene_symbol' in line.lower() or 'symbol' in line.lower():\n",
" gene_symbol_lines.append(line.strip())\n",
" if i > 1000 and len(gene_symbol_lines) > 0: # Limit search but ensure we found something\n",
" break\n",
" \n",
" if gene_symbol_lines:\n",
" print(\"Found references to gene symbols:\")\n",
" for line in gene_symbol_lines[:5]: # Show just first 5 matches\n",
" print(line)\n",
" else:\n",
" print(\"No explicit gene symbol references found in first 1000 lines\")\n",
"\n",
"# Look for alternative annotation files or references in the directory\n",
"print(\"\\nChecking for additional annotation files in the directory:\")\n",
"all_files = os.listdir(in_cohort_dir)\n",
"print([f for f in all_files if 'annotation' in f.lower() or 'platform' in f.lower() or 'gpl' in f.lower()])\n"
]
},
{
"cell_type": "markdown",
"id": "0098e116",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "afcc815f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:41:37.425056Z",
"iopub.status.busy": "2025-03-25T08:41:37.424932Z",
"iopub.status.idle": "2025-03-25T08:41:37.669024Z",
"shell.execute_reply": "2025-03-25T08:41:37.668691Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Starting gene identifier mapping...\n",
"Sample of extracted gene symbols:\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" ID Gene_Symbol\n",
"0 3 IL1B\n",
"1 5 IL2\n",
"2 16 IL7\n",
"3 18 IL8_HUMAN\n",
"4 20 IL9\n",
"Creating gene mapping dataframe...\n",
"Converting probe data to gene expression data...\n",
"Gene expression data shape after mapping: (1369, 150)\n",
"First few gene symbols in mapped data:\n",
"['ABCA12', 'ABI3BP', 'ABME', 'ACADVL', 'ACP5', 'ACPP', 'ACSL3', 'ACTA2', 'ACTB', 'ACTG1']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/Eczema/gene_data/GSE63741.csv\n"
]
}
],
"source": [
"# 1. Identify which columns contain gene IDs and gene symbols\n",
"# From the preview, the 'ID' column matches the numeric identifiers in gene_data\n",
"# The 'description' column contains gene symbols at the start (e.g., \"IL1B:\")\n",
"\n",
"print(\"Starting gene identifier mapping...\")\n",
"\n",
"# Function to extract gene symbols from the description field\n",
"def extract_gene_symbol(description):\n",
" if not isinstance(description, str):\n",
" return None\n",
" # Extract text before the colon\n",
" match = re.match(r'^([^:]+):', description)\n",
" if match:\n",
" return match.group(1).strip()\n",
" return None\n",
"\n",
"# Add a column with extracted gene symbols\n",
"gene_annotation['Gene_Symbol'] = gene_annotation['description'].apply(extract_gene_symbol)\n",
"\n",
"# Preview the extracted gene symbols\n",
"print(\"Sample of extracted gene symbols:\")\n",
"print(gene_annotation[['ID', 'Gene_Symbol']].head())\n",
"\n",
"# 2. Create gene mapping dataframe\n",
"print(\"Creating gene mapping dataframe...\")\n",
"mapping_df = gene_annotation[['ID', 'Gene_Symbol']].dropna()\n",
"mapping_df = mapping_df.rename(columns={'Gene_Symbol': 'Gene'})\n",
"\n",
"# 3. Apply gene mapping to convert probe-level data to gene expression data\n",
"print(\"Converting probe data to gene expression data...\")\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"\n",
"# Print shape and preview of the gene expression data\n",
"print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
"print(\"First few gene symbols in mapped data:\")\n",
"print(gene_data.index[:10].tolist())\n",
"\n",
"# Save the gene expression data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "25a578a8",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "eb2ec526",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:41:37.670348Z",
"iopub.status.busy": "2025-03-25T08:41:37.670231Z",
"iopub.status.idle": "2025-03-25T08:41:38.077464Z",
"shell.execute_reply": "2025-03-25T08:41:38.077139Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape after normalization: (1259, 150)\n",
"Sample of normalized gene symbols: ['ABCA12', 'ABI1', 'ABI3BP', 'ACADVL', 'ACER1', 'ACER3', 'ACP3', 'ACP5', 'ACSL3', 'ACTA2']\n",
"Normalized gene data saved to ../../output/preprocess/Eczema/gene_data/GSE63741.csv\n",
"\n",
"Loading clinical data...\n",
"Clinical features shape: (1, 150)\n",
"Clinical features preview:\n",
"{'GSM1556392': [0.0], 'GSM1556393': [0.0], 'GSM1556394': [0.0], 'GSM1556395': [0.0], 'GSM1556396': [0.0], 'GSM1556397': [0.0], 'GSM1556398': [0.0], 'GSM1556399': [0.0], 'GSM1556400': [0.0], 'GSM1556401': [0.0], 'GSM1556402': [0.0], 'GSM1556403': [0.0], 'GSM1556404': [0.0], 'GSM1556405': [0.0], 'GSM1556406': [0.0], 'GSM1556407': [0.0], 'GSM1556408': [0.0], 'GSM1556409': [0.0], 'GSM1556410': [0.0], 'GSM1556411': [0.0], 'GSM1556412': [0.0], 'GSM1556413': [0.0], 'GSM1556414': [0.0], 'GSM1556415': [0.0], 'GSM1556416': [0.0], 'GSM1556417': [0.0], 'GSM1556418': [0.0], 'GSM1556419': [0.0], 'GSM1556420': [0.0], 'GSM1556421': [0.0], 'GSM1556422': [0.0], 'GSM1556423': [0.0], 'GSM1556424': [0.0], 'GSM1556425': [0.0], 'GSM1556426': [0.0], 'GSM1556427': [0.0], 'GSM1556428': [0.0], 'GSM1556429': [0.0], 'GSM1556430': [0.0], 'GSM1556431': [0.0], 'GSM1556432': [0.0], 'GSM1556433': [0.0], 'GSM1556434': [0.0], 'GSM1556435': [0.0], 'GSM1556436': [0.0], 'GSM1556437': [0.0], 'GSM1556438': [0.0], 'GSM1556439': [0.0], 'GSM1556440': [0.0], 'GSM1556441': [0.0], 'GSM1556442': [0.0], 'GSM1556443': [0.0], 'GSM1556444': [0.0], 'GSM1556445': [0.0], 'GSM1556446': [0.0], 'GSM1556447': [0.0], 'GSM1556448': [0.0], 'GSM1556449': [0.0], 'GSM1556450': [0.0], 'GSM1556451': [0.0], 'GSM1556452': [0.0], 'GSM1556453': [0.0], 'GSM1556454': [0.0], 'GSM1556455': [0.0], 'GSM1556456': [0.0], 'GSM1556457': [0.0], 'GSM1556458': [0.0], 'GSM1556459': [0.0], 'GSM1556460': [0.0], 'GSM1556461': [0.0], 'GSM1556462': [0.0], 'GSM1556463': [0.0], 'GSM1556464': [0.0], 'GSM1556465': [0.0], 'GSM1556466': [0.0], 'GSM1556467': [0.0], 'GSM1556468': [0.0], 'GSM1556469': [0.0], 'GSM1556470': [0.0], 'GSM1556471': [0.0], 'GSM1556472': [0.0], 'GSM1556473': [0.0], 'GSM1556474': [0.0], 'GSM1556475': [0.0], 'GSM1556476': [0.0], 'GSM1556477': [0.0], 'GSM1556478': [0.0], 'GSM1556479': [0.0], 'GSM1556480': [0.0], 'GSM1556481': [0.0], 'GSM1556482': [0.0], 'GSM1556483': [0.0], 'GSM1556484': [0.0], 'GSM1556485': [0.0], 'GSM1556486': [0.0], 'GSM1556487': [0.0], 'GSM1556488': [0.0], 'GSM1556489': [0.0], 'GSM1556490': [0.0], 'GSM1556491': [0.0], 'GSM1556492': [0.0], 'GSM1556493': [0.0], 'GSM1556494': [0.0], 'GSM1556495': [0.0], 'GSM1556496': [0.0], 'GSM1556497': [0.0], 'GSM1556498': [0.0], 'GSM1556499': [0.0], 'GSM1556500': [0.0], 'GSM1556501': [0.0], 'GSM1556502': [0.0], 'GSM1556503': [0.0], 'GSM1556504': [0.0], 'GSM1556505': [0.0], 'GSM1556506': [0.0], 'GSM1556507': [0.0], 'GSM1556508': [0.0], 'GSM1556509': [0.0], 'GSM1556510': [0.0], 'GSM1556511': [0.0], 'GSM1556512': [0.0], 'GSM1556513': [0.0], 'GSM1556514': [0.0], 'GSM1556515': [0.0], 'GSM1556516': [0.0], 'GSM1556517': [0.0], 'GSM1556518': [0.0], 'GSM1556519': [0.0], 'GSM1556520': [0.0], 'GSM1556521': [0.0], 'GSM1556522': [0.0], 'GSM1556523': [0.0], 'GSM1556524': [0.0], 'GSM1556525': [0.0], 'GSM1556526': [0.0], 'GSM1556527': [0.0], 'GSM1556528': [0.0], 'GSM1556529': [0.0], 'GSM1556530': [0.0], 'GSM1556531': [0.0], 'GSM1556532': [0.0], 'GSM1556533': [0.0], 'GSM1556534': [0.0], 'GSM1556535': [0.0], 'GSM1556536': [0.0], 'GSM1556537': [0.0], 'GSM1556538': [0.0], 'GSM1556539': [0.0], 'GSM1556540': [0.0], 'GSM1556541': [0.0]}\n",
"\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (150, 1260)\n",
"Linked data preview (first 5 rows, 5 columns):\n",
" Eczema ABCA12 ABI1 ABI3BP ACADVL\n",
"GSM1556392 0.0 -0.2239 -0.0303 0.2056 -0.4101\n",
"GSM1556393 0.0 -0.1982 -0.1678 0.0363 -0.1599\n",
"GSM1556394 0.0 0.0442 -0.2122 -0.2602 -0.5624\n",
"GSM1556395 0.0 -0.3612 0.2005 -0.0170 -1.1014\n",
"GSM1556396 0.0 0.1589 0.0489 -0.3016 -0.2533\n",
"\n",
"Handling missing values...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (150, 1260)\n",
"\n",
"Checking for bias in dataset features...\n",
"Quartiles for 'Eczema':\n",
" 25%: 0.0\n",
" 50% (Median): 0.0\n",
" 75%: 0.0\n",
"Min: 0.0\n",
"Max: 0.0\n",
"The distribution of the feature 'Eczema' in this dataset is severely biased.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset deemed not usable for associative studies. Linked data not saved.\n"
]
}
],
"source": [
"# 1. Normalize gene symbols using NCBI Gene database information\n",
"print(\"Normalizing gene symbols...\")\n",
"try:\n",
" # Load the gene data if needed\n",
" if 'gene_data' not in locals() or gene_data is None:\n",
" gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n",
" \n",
" # Normalize gene symbols\n",
" normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
" print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
" print(f\"Sample of normalized gene symbols: {normalized_gene_data.index[:10].tolist()}\")\n",
" \n",
" # Save the normalized gene data\n",
" normalized_gene_data.to_csv(out_gene_data_file)\n",
" print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"except Exception as e:\n",
" print(f\"Error normalizing gene symbols: {e}\")\n",
"\n",
"# 2. Load the clinical data that was saved in step 2\n",
"print(\"\\nLoading clinical data...\")\n",
"try:\n",
" clinical_features = pd.read_csv(out_clinical_data_file, index_col=0)\n",
" print(f\"Clinical features shape: {clinical_features.shape}\")\n",
" print(\"Clinical features preview:\")\n",
" print(preview_df(clinical_features))\n",
" \n",
" # 3. Link clinical and genetic data\n",
" print(\"\\nLinking clinical and genetic data...\")\n",
" linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
" print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
" if linked_data.shape[0] > 0 and linked_data.shape[1] > 5:\n",
" print(linked_data.iloc[:5, :5])\n",
" else:\n",
" print(linked_data)\n",
" \n",
" # 4. Handle missing values\n",
" print(\"\\nHandling missing values...\")\n",
" linked_data_clean = handle_missing_values(linked_data, trait)\n",
" print(f\"Linked data shape after handling missing values: {linked_data_clean.shape}\")\n",
" \n",
" # 5. Check for bias in the dataset\n",
" print(\"\\nChecking for bias in dataset features...\")\n",
" is_biased, linked_data_clean = judge_and_remove_biased_features(linked_data_clean, trait)\n",
" \n",
" # 6. Conduct final quality validation\n",
" note = \"Dataset contains gene expression data from skin biopsies comparing different skin conditions including eczema (atopic dermatitis and contact eczema) against other conditions like psoriasis and healthy controls.\"\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data_clean,\n",
" note=note\n",
" )\n",
" \n",
" # 7. Save the linked data if it's usable\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data_clean.to_csv(out_data_file, index=True)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" else:\n",
" print(\"Dataset deemed not usable for associative studies. Linked data not saved.\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error processing data: {e}\")\n",
" # If processing fails, we should still validate the dataset status\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True, # We know trait data is available from step 2\n",
" is_biased=True, # Set to True to ensure it's not marked usable\n",
" df=pd.DataFrame(), # Empty dataframe since processing failed\n",
" note=f\"Failed to process data: {e}\"\n",
" )\n",
" print(\"Dataset validation completed with error status.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|