File size: 24,262 Bytes
6bc7e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "afc6ca4e",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Allergies\"\n",
    "cohort = \"GSE203409\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Allergies\"\n",
    "in_cohort_dir = \"../../input/GEO/Allergies/GSE203409\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Allergies/GSE203409.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Allergies/gene_data/GSE203409.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Allergies/clinical_data/GSE203409.csv\"\n",
    "json_path = \"../../output/preprocess/Allergies/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d8b558c7",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fa35a43c",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "11adeaa3",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1a565bdb",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Dict, Any, Callable, Optional\n",
    "\n",
    "# 1. Determine gene expression data availability\n",
    "# From the background information, this appears to be a gene expression study\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Determine variable availability and create conversion functions\n",
    "# Looking at the sample characteristics dictionary:\n",
    "# - This is an in vitro cell line study (HaCaT cells)\n",
    "# - There are different knockdowns (shC and shFLG) and treatments\n",
    "# - No human age or gender data is present as this is a cell line study\n",
    "\n",
    "# For trait, we can use the knockdown status (shC vs shFLG)\n",
    "# shFLG represents filaggrin-insufficient cells which is relevant to allergies\n",
    "trait_row = 1  # knockdown data is in row 1\n",
    "\n",
    "def convert_trait(value: str) -> int:\n",
    "    \"\"\"Convert knockdown status to binary trait.\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    # Extract value after colon and strip whitespace\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary: shFLG (filaggrin-insufficient) = 1, shC (control) = 0\n",
    "    if \"shFLG\" in value:\n",
    "        return 1  # Filaggrin-insufficient (associated with allergies)\n",
    "    elif \"shC\" in value:\n",
    "        return 0  # Control\n",
    "    return None\n",
    "\n",
    "# Age and gender are not applicable as this is a cell line study\n",
    "age_row = None\n",
    "gender_row = None\n",
    "convert_age = None\n",
    "convert_gender = None\n",
    "\n",
    "# 3. Save metadata about dataset usability\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Extract clinical features if trait is available\n",
    "if trait_row is not None:\n",
    "    # Create sample characteristics dictionary from the provided output\n",
    "    sample_characteristics_dict = {\n",
    "        0: ['cell line: HaCaT'], \n",
    "        1: ['knockdown: shC', 'knockdown: shFLG'], \n",
    "        2: ['treatment: Untreated', 'treatment: Histamine', 'treatment: Amphiregulin', 'treatment: IFNy', 'treatment: IL-4/IL-13', 'treatment: Cysteine', 'treatment: Derp1/cysteine', 'treatment: Derp2'], \n",
    "        3: ['treatment compound concentration: N/A', 'treatment compound concentration: 1 ug/ml', 'treatment compound concentration: 50 ng/ml', 'treatment compound concentration: 50 ng/ml / 50 ng/ml', 'treatment compound concentration: 10 uM', 'treatment compound concentration: 100 nM / 10 uM', 'treatment compound concentration: 100 nM']\n",
    "    }\n",
    "    \n",
    "    # Create clinical_data from this dictionary - using proper transposition\n",
    "    clinical_data = pd.DataFrame(sample_characteristics_dict).T\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the processed clinical data\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of processed clinical data:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the processed clinical data\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "85dc8694",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a764ac3e",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import json\n",
    "import pandas as pd\n",
    "from typing import Callable, Optional, Dict, Any\n",
    "\n",
    "# Assuming clinical_data is already available from previous steps\n",
    "# Let's examine what we have in the clinical_data DataFrame\n",
    "try:\n",
    "    print(\"Clinical data preview:\")\n",
    "    print(clinical_data.head())\n",
    "    print(\"\\nClinical data shape:\", clinical_data.shape)\n",
    "    print(\"\\nClinical data columns:\", clinical_data.columns.tolist())\n",
    "    \n",
    "    # Print unique values for each row to analyze the content\n",
    "    print(\"\\nUnique values in clinical data:\")\n",
    "    for i in range(len(clinical_data)):\n",
    "        unique_vals = clinical_data.iloc[i].unique()\n",
    "        if len(unique_vals) < 10:  # Only print if there aren't too many unique values\n",
    "            print(f\"Row {i}: {unique_vals}\")\n",
    "        else:\n",
    "            print(f\"Row {i}: {len(unique_vals)} unique values\")\n",
    "except NameError:\n",
    "    print(\"Clinical data not available from previous steps\")\n",
    "    clinical_data = pd.DataFrame()  # Create empty DataFrame if not available\n",
    "\n",
    "# 1. Determine if gene expression data is available\n",
    "# Look for indicators in the data structure and content\n",
    "is_gene_available = True\n",
    "# We'll assume gene expression data is available unless we find evidence to the contrary\n",
    "# In a real scenario, we'd analyze clinical_data or other data to determine this\n",
    "\n",
    "# 2. Variable availability and data type conversion\n",
    "# Initialize as None, will be updated if found\n",
    "trait_row = None\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# Examine clinical data to find rows containing trait, age, and gender information\n",
    "if not clinical_data.empty:\n",
    "    for i in range(len(clinical_data)):\n",
    "        row_values = ' '.join(clinical_data.iloc[i].astype(str).tolist()).lower()\n",
    "        \n",
    "        # Look for allergy-related information\n",
    "        if any(term in row_values for term in ['allergy', 'allergic', 'atopic', 'asthma', 'rhinitis']):\n",
    "            trait_row = i\n",
    "        \n",
    "        # Look for age information\n",
    "        if any(term in row_values for term in ['age', 'years old']):\n",
    "            age_row = i\n",
    "        \n",
    "        # Look for gender/sex information\n",
    "        if any(term in row_values for term in ['gender', 'sex', 'male', 'female']):\n",
    "            gender_row = i\n",
    "\n",
    "    # Check if the identified rows have varying values (not constant)\n",
    "    if trait_row is not None:\n",
    "        unique_values = clinical_data.iloc[trait_row].astype(str).unique()\n",
    "        if len(unique_values) <= 1:\n",
    "            trait_row = None  # Consider as not available if only one unique value\n",
    "\n",
    "    if age_row is not None:\n",
    "        unique_values = clinical_data.iloc[age_row].astype(str).unique()\n",
    "        if len(unique_values) <= 1:\n",
    "            age_row = None  # Consider as not available if only one unique value\n",
    "\n",
    "    if gender_row is not None:\n",
    "        unique_values = clinical_data.iloc[gender_row].astype(str).unique()\n",
    "        if len(unique_values) <= 1:\n",
    "            gender_row = None  # Consider as not available if only one unique value\n",
    "\n",
    "# Define conversion functions\n",
    "def convert_trait(value: str) -> Optional[int]:\n",
    "    \"\"\"Convert trait (allergy) value to binary format: 1 for present, 0 for absent.\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    value = str(value).lower()\n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Positive indicators\n",
    "    if any(term in value for term in ['yes', 'positive', 'present', 'allergy', 'allergic', 'diagnosed', 'asthma', 'rhinitis', 'atopic']):\n",
    "        return 1\n",
    "    # Negative indicators\n",
    "    elif any(term in value for term in ['no', 'negative', 'absent', 'control', 'healthy', 'normal']):\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value: str) -> Optional[float]:\n",
    "    \"\"\"Convert age value to continuous format.\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    value = str(value).lower()\n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Try to extract age as a number\n",
    "    try:\n",
    "        # Extract digits from the string\n",
    "        import re\n",
    "        numbers = re.findall(r'\\d+\\.?\\d*', value)\n",
    "        if numbers:\n",
    "            return float(numbers[0])\n",
    "        else:\n",
    "            return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value: str) -> Optional[int]:\n",
    "    \"\"\"Convert gender to binary format: 0 for female, 1 for male.\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    value = str(value).lower()\n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if any(term in value for term in ['female', 'f', 'woman', 'girl']):\n",
    "        return 0\n",
    "    elif any(term in value for term in ['male', 'm', 'man', 'boy']):\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save metadata\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None and not clinical_data.empty:\n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted features\n",
    "    print(\"\\nSelected clinical features preview:\")\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(preview)\n",
    "    \n",
    "    # Save to CSV\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "else:\n",
    "    print(\"Clinical data not available or trait information not found. Skipping clinical feature extraction.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a3c2e319",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "82f52659",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First get the file paths again to access the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
    "print(\"First 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "350acbdc",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "03af5791",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Based on the gene identifiers shown, these are Illumina microarray probe IDs (ILMN_xxxxxxx format)\n",
    "# They are not human gene symbols and will need to be mapped to gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a3346495",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bc95de8c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e1fb95e6",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c4ba85dc",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify the columns containing probe IDs and gene symbols in the gene annotation dataframe\n",
    "# From the preview, we can see 'ID' contains probe identifiers matching the gene expression data\n",
    "# The column 'Symbol' appears to contain gene symbols\n",
    "probe_col = 'ID'\n",
    "gene_col = 'Symbol'\n",
    "\n",
    "# 2. Get the gene mapping dataframe by extracting the ID and Symbol columns\n",
    "gene_mapping = get_gene_mapping(gene_annotation, probe_col, gene_col)\n",
    "\n",
    "# Verify the mapping by printing a few rows\n",
    "print(\"Gene mapping preview:\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Print the first few rows of the resulting gene expression data to verify the result\n",
    "print(\"\\nGene expression data after mapping:\")\n",
    "print(gene_data.head())\n",
    "print(\"\\nShape of gene expression data:\", gene_data.shape)\n",
    "\n",
    "# Save the processed gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "db1a2295",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "473a8dc8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "print(\"Normalizing gene symbols...\")\n",
    "# First reload the gene data from the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# Extract gene mapping from annotation\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "probe_col = 'ID'\n",
    "gene_col = 'Symbol'\n",
    "gene_mapping = get_gene_mapping(gene_annotation, probe_col, gene_col)\n",
    "\n",
    "# Apply mapping to convert probe-level data to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Now normalize the gene symbols\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Save the normalized gene data to a CSV file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Evaluate if we can proceed with linking clinical and genetic data\n",
    "# From our analysis in previous steps, we know this is a cell line study with knockdown information\n",
    "trait_row = 1  # knockdown status (shC vs shFLG)\n",
    "\n",
    "# Define the trait conversion function since we need it\n",
    "def convert_trait(value: str) -> int:\n",
    "    \"\"\"Convert knockdown status to binary trait.\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    # Extract value after colon and strip whitespace\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary: shFLG (filaggrin-insufficient) = 1, shC (control) = 0\n",
    "    if \"shFLG\" in value:\n",
    "        return 1  # Filaggrin-insufficient (associated with allergies)\n",
    "    elif \"shC\" in value:\n",
    "        return 0  # Control\n",
    "    return None\n",
    "\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "if is_trait_available:\n",
    "    print(\"Extracting clinical features...\")\n",
    "    # Use the clinical_data obtained directly from the matrix file\n",
    "    background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "    \n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=None,  # Cell line study has no age\n",
    "        convert_age=None,\n",
    "        gender_row=None,  # Cell line study has no gender\n",
    "        convert_gender=None\n",
    "    )\n",
    "    \n",
    "    print(\"Clinical data preview:\")\n",
    "    print(preview_df(selected_clinical_df))\n",
    "    \n",
    "    # Save the clinical data to a CSV file\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    \n",
    "    # Link clinical and genetic data using the normalized gene data\n",
    "    print(\"Linking clinical and genetic data...\")\n",
    "    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "    \n",
    "    # 3. Handle missing values in the linked data\n",
    "    print(\"Handling missing values...\")\n",
    "    linked_data = handle_missing_values(linked_data, trait)\n",
    "    print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "    \n",
    "    # 4. Check if trait is biased\n",
    "    print(\"Checking for bias in trait distribution...\")\n",
    "    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "    \n",
    "else:\n",
    "    print(\"No trait information available - this dataset cannot be used for trait-gene association analysis.\")\n",
    "    is_biased = True  # Set to True since we can't use this dataset without trait information\n",
    "    linked_data = pd.DataFrame()  # Empty dataframe as placeholder\n",
    "\n",
    "# 5. Final validation\n",
    "note = \"Dataset contains gene expression from HaCaT keratinocyte cell line with filaggrin knockdown (shFLG) vs control (shC). This represents an in vitro model relevant to allergies rather than direct human subject data.\"\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "print(f\"Dataset usability: {is_usable}\")\n",
    "\n",
    "# 6. Save linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset is not usable for trait-gene association studies due to lack of trait information or other issues.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}