File size: 16,672 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6b0c75c7",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Anxiety_disorder\"\n",
    "cohort = \"GSE60190\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Anxiety_disorder\"\n",
    "in_cohort_dir = \"../../input/GEO/Anxiety_disorder/GSE60190\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Anxiety_disorder/GSE60190.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Anxiety_disorder/gene_data/GSE60190.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Anxiety_disorder/clinical_data/GSE60190.csv\"\n",
    "json_path = \"../../output/preprocess/Anxiety_disorder/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b00fb8de",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "071404aa",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "67f8ed7f",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d746daa2",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "import numpy as np\n",
    "from typing import Dict, Any, Callable, Optional, List, Tuple\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset contains gene expression data from DLPFC\n",
    "# using Illumina HumanHT-12 v3 microarray, which is suitable for our analysis\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# Examining the sample characteristics dictionary to identify relevant rows\n",
    "\n",
    "# For trait, we can use row 3 which has 'dx' (diagnosis) with values including 'Control', 'ED', and 'OCD'\n",
    "trait_row = 3\n",
    "\n",
    "# For age, we can use row 5 which has 'age' values\n",
    "age_row = 5\n",
    "\n",
    "# For gender, we can use row 7 which has 'Sex' values\n",
    "gender_row = 7\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value: str) -> int:\n",
    "    \"\"\"\n",
    "    Convert anxiety disorder trait information to binary format.\n",
    "    For Anxiety_disorder as the trait of interest, we consider OCD as 1 (case) and Control as 0 (control).\n",
    "    Exclude other conditions like ED, MDD, etc.\n",
    "    \n",
    "    Args:\n",
    "        value: The raw trait value from the dataset\n",
    "    \n",
    "    Returns:\n",
    "        int: 1 for anxiety disorder (OCD), 0 for control, None for other conditions or missing values\n",
    "    \"\"\"\n",
    "    if not value or ':' not in value:\n",
    "        return None\n",
    "    \n",
    "    diagnosis = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # For anxiety disorder, we consider OCD patients as cases\n",
    "    if diagnosis == 'OCD' or diagnosis == 'Tics':  # Tics can be related to anxiety disorders\n",
    "        return 1\n",
    "    elif diagnosis == 'Control':\n",
    "        return 0\n",
    "    else:\n",
    "        return None  # Exclude other diagnoses like ED, Bipolar, MDD\n",
    "\n",
    "def convert_age(value: str) -> float:\n",
    "    \"\"\"\n",
    "    Convert age information to continuous format.\n",
    "    \n",
    "    Args:\n",
    "        value: The raw age value from the dataset\n",
    "    \n",
    "    Returns:\n",
    "        float: Age in years, or None if missing\n",
    "    \"\"\"\n",
    "    if not value or ':' not in value:\n",
    "        return None\n",
    "    \n",
    "    try:\n",
    "        age_str = value.split(':', 1)[1].strip()\n",
    "        return float(age_str)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value: str) -> int:\n",
    "    \"\"\"\n",
    "    Convert gender information to binary format (0 for female, 1 for male).\n",
    "    \n",
    "    Args:\n",
    "        value: The raw gender value from the dataset\n",
    "    \n",
    "    Returns:\n",
    "        int: 0 for female, 1 for male, or None if missing\n",
    "    \"\"\"\n",
    "    if not value or ':' not in value:\n",
    "        return None\n",
    "    \n",
    "    gender = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if gender == 'F':\n",
    "        return 0\n",
    "    elif gender == 'M':\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata - Perform initial filtering\n",
    "# Trait data is available since trait_row is not None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Use the validate_and_save_cohort_info function to save metadata\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Skip this step as clinical_data from previous step is required but not available\n",
    "# This will be executed in a subsequent step when clinical_data is available\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "207f157d",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "40d230c5",
   "metadata": {},
   "outputs": [],
   "source": [
    "I'll provide a properly formatted solution for this step:\n",
    "\n",
    "```python\n",
    "import os\n",
    "import json\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "from typing import Callable, Optional, Dict, Any\n",
    "\n",
    "# Check what files are available in the directory\n",
    "print(f\"Checking files in: {in_cohort_dir}\")\n",
    "available_files = os.listdir(in_cohort_dir) if os.path.exists(in_cohort_dir) else []\n",
    "print(f\"Available files: {available_files}\")\n",
    "\n",
    "# For GEO datasets, we typically have matrix files and series_matrix files\n",
    "matrix_files = [f for f in available_files if 'matrix' in f.lower()]\n",
    "print(f\"Matrix files found: {matrix_files}\")\n",
    "\n",
    "# Check if the gene expression data is available\n",
    "is_gene_available = False\n",
    "for file in available_files:\n",
    "    if file.endswith('.soft') or file.endswith('.txt') or 'matrix' in file.lower():\n",
    "        try:\n",
    "            with open(os.path.join(in_cohort_dir, file), 'r') as f:\n",
    "                content = f.read(10000)  # Read first 10000 characters\n",
    "                # Look for indicators of gene expression data\n",
    "                if any(term in content.lower() for term in [\"gene_expression\", \"platform_id\", \"platform =\"]):\n",
    "                    is_gene_available = True\n",
    "                    break\n",
    "                # Filter out pure miRNA or methylation datasets\n",
    "                if all(term in content.lower() for term in [\"mirna\", \"microrna\"]) and \"gene expression\" not in content.lower():\n",
    "                    is_gene_available = False\n",
    "                if \"methylation\" in content.lower() and \"gene expression\" not in content.lower():\n",
    "                    is_gene_available = False\n",
    "        except Exception as e:\n",
    "            print(f\"Error checking file {file}: {e}\")\n",
    "\n",
    "# Load sample characteristics if available\n",
    "sample_characteristics = {}\n",
    "clinical_data = None\n",
    "\n",
    "# Try different file patterns for clinical data\n",
    "possible_clinical_files = [\n",
    "    os.path.join(in_cohort_dir, \"clinical_data.csv\"),\n",
    "    os.path.join(in_cohort_dir, \"GSE60190_series_matrix.txt\"),\n",
    "    os.path.join(in_cohort_dir, \"series_matrix.txt\")\n",
    "]\n",
    "\n",
    "for file_path in possible_clinical_files:\n",
    "    if os.path.exists(file_path):\n",
    "        print(f\"Found clinical data file: {file_path}\")\n",
    "        if file_path.endswith('.csv'):\n",
    "            clinical_data = pd.read_csv(file_path)\n",
    "        else:\n",
    "            # For series_matrix files, we need to parse the !Sample_characteristics lines\n",
    "            try:\n",
    "                with open(file_path, 'r') as f:\n",
    "                    lines = f.readlines()\n",
    "                \n",
    "                # Extract sample characteristics lines\n",
    "                char_lines = [line.strip() for line in lines if line.startswith(\"!Sample_characteristics\")]\n",
    "                \n",
    "                # Parse sample characteristics\n",
    "                for i, line in enumerate(char_lines):\n",
    "                    # Extract values after the equals sign\n",
    "                    values = [part.split(\"=\")[1].strip() if \"=\" in part else part.strip() \n",
    "                             for part in line.split(\"\\t\")[1:]]\n",
    "                    if values:\n",
    "                        sample_characteristics[i] = values\n",
    "                \n",
    "                # Also create a dataframe from the characteristics\n",
    "                if sample_characteristics:\n",
    "                    # Convert to a format suitable for a dataframe\n",
    "                    samples = list(set([val for sublist in sample_characteristics.values() for val in sublist]))\n",
    "                    clinical_data = pd.DataFrame(index=range(len(sample_characteristics)), \n",
    "                                               columns=['characteristic'] + samples)\n",
    "                    for i, values in sample_characteristics.items():\n",
    "                        clinical_data.iloc[i, 0] = f\"characteristic_{i}\"\n",
    "                        for val in values:\n",
    "                            clinical_data.loc[i, val] = val\n",
    "            except Exception as e:\n",
    "                print(f\"Error parsing series matrix file: {e}\")\n",
    "        break\n",
    "\n",
    "if clinical_data is None and sample_characteristics:\n",
    "    # If we have sample characteristics but no dataframe, create one\n",
    "    clinical_data = pd.DataFrame()\n",
    "    for i, values in sample_characteristics.items():\n",
    "        clinical_data.loc[i, 'characteristic'] = f\"characteristic_{i}\"\n",
    "        for val in values:\n",
    "            clinical_data.loc[i, val] = val\n",
    "\n",
    "# Also check for a background info file\n",
    "background_info = \"\"\n",
    "background_path = os.path.join(in_cohort_dir, \"background_info.txt\")\n",
    "if os.path.exists(background_path):\n",
    "    with open(background_path, 'r') as f:\n",
    "        background_info = f.read()\n",
    "    print(\"\\nBackground Info:\")\n",
    "    print(background_info)\n",
    "\n",
    "# Print sample characteristics for analysis\n",
    "print(\"\\nSample Characteristics:\")\n",
    "for key, values in sample_characteristics.items():\n",
    "    print(f\"Row {key}: {values}\")\n",
    "\n",
    "# Based on available information, determine trait, age, and gender data\n",
    "trait_row = None\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# Check each row in sample characteristics to identify relevant data\n",
    "for key, values in sample_characteristics.items():\n",
    "    # Convert values to strings for easier analysis\n",
    "    str_values = [str(v).lower() if v is not None else \"\" for v in values]\n",
    "    joined_values = \" \".join(str_values).lower()\n",
    "    \n",
    "    # Look for anxiety-related terms\n",
    "    if any(term in joined_values for term in [\"anxiety\", \"anxious\", \"anx\", \"gad\", \"panic\", \"diagnosis\", \"condition\", \"disorder\"]):\n",
    "        trait_row = key\n",
    "    \n",
    "    # Look for age-related terms\n",
    "    if any(term in joined_values for term in [\"age\", \"years\", \"yr\", \"yrs\"]):\n",
    "        age_row = key\n",
    "    \n",
    "    # Look for gender-related terms\n",
    "    if any(term in joined_values for term in [\"gender\", \"sex\", \"male\", \"female\"]):\n",
    "        gender_row = key\n",
    "\n",
    "# Define conversion functions\n",
    "def convert_trait(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    value_lower = str(value).lower()\n",
    "    \n",
    "    # Look for anxiety indicators\n",
    "    if any(term in value_lower for term in [\"anxiety\", \"anxious\", \"anxiety disorder\", \"gad\", \"panic\"]):\n",
    "        return 1\n",
    "    elif any(term in value_lower for term in [\"control\", \"healthy\", \"normal\", \"none\"]):\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Try to extract numeric age\n",
    "    import re\n",
    "    age_match = re.search(r'(\\d+\\.?\\d*)', str(value))\n",
    "    if age_match:\n",
    "        return float(age_match.group(1))\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    value_lower = str(value).lower()\n",
    "    \n",
    "    if any(term in value_lower for term in [\"female\", \"f\", \"woman\", \"women\"]):\n",
    "        return 0\n",
    "    elif any(term in value_lower for term in [\"male\", \"m\", \"man\", \"men\"]):\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata - Initial Filtering\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction (if trait data is available and clinical data exists)\n",
    "if trait_row is not None and clinical_data is not None:\n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features("
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}