File size: 43,329 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "aa3710ea",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:33:28.058163Z",
     "iopub.status.busy": "2025-03-25T06:33:28.057996Z",
     "iopub.status.idle": "2025-03-25T06:33:28.223674Z",
     "shell.execute_reply": "2025-03-25T06:33:28.223342Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Arrhythmia\"\n",
    "cohort = \"GSE182600\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Arrhythmia\"\n",
    "in_cohort_dir = \"../../input/GEO/Arrhythmia/GSE182600\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Arrhythmia/GSE182600.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Arrhythmia/gene_data/GSE182600.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Arrhythmia/clinical_data/GSE182600.csv\"\n",
    "json_path = \"../../output/preprocess/Arrhythmia/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d91be95a",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "3ac9435e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:33:28.225082Z",
     "iopub.status.busy": "2025-03-25T06:33:28.224937Z",
     "iopub.status.idle": "2025-03-25T06:33:28.404435Z",
     "shell.execute_reply": "2025-03-25T06:33:28.404098Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene Expression of Cardiogenic Shock Patients under Extracorporeal Membrane Oxygenation\"\n",
      "!Series_summary\t\"Prognosis for cardiogenic shock patients under ECMO was our study goal. Success defined as survived more than 7 days after ECMO installation and failure died or had multiple organ failure in 7 days. Total 34 cases were enrolled, 17 success and 17 failure.\"\n",
      "!Series_summary\t\"Peripheral blood mononuclear cells collected at ECMO installation 0hr, 2hr and removal were used analyzed.\"\n",
      "!Series_overall_design\t\"Analysis of the cardiogenic shock patients at extracorporeal membrane oxygenation treatment by genome-wide gene expression. Transcriptomic profiling between successful and failure groups were analyzed.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['disease state: Acute myocarditis', 'disease state: Acute myocardial infarction', 'disease state: Dilated cardiomyopathy, DCMP', 'disease state: Congestive heart failure', 'disease state: Dilated cardiomyopathy', 'disease state: Arrhythmia', 'disease state: Aortic dissection'], 1: ['age: 33.4', 'age: 51.2', 'age: 51.9', 'age: 47.8', 'age: 41.5', 'age: 67.3', 'age: 52.8', 'age: 16.1', 'age: 78.9', 'age: 53.2', 'age: 70.9', 'age: 59.9', 'age: 21.9', 'age: 45.2', 'age: 52.4', 'age: 32.3', 'age: 55.8', 'age: 47', 'age: 57.3', 'age: 31.7', 'age: 49.3', 'age: 66.1', 'age: 55.9', 'age: 49.1', 'age: 63', 'age: 21', 'age: 53.6', 'age: 50.1', 'age: 37.4', 'age: 71.5'], 2: ['gender: F', 'gender: M'], 3: ['outcome: Success', 'outcome: Failure', 'outcome: failure'], 4: ['cell type: PBMC'], 5: ['time: 0hr', 'time: 2hr', 'time: Removal']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "79a910d8",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "f6072df9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:33:28.405615Z",
     "iopub.status.busy": "2025-03-25T06:33:28.405507Z",
     "iopub.status.idle": "2025-03-25T06:33:28.418433Z",
     "shell.execute_reply": "2025-03-25T06:33:28.418149Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of extracted clinical features:\n",
      "{'GSM5532093': [0.0, 33.4, 0.0], 'GSM5532094': [0.0, 51.2, 1.0], 'GSM5532095': [0.0, 51.9, 0.0], 'GSM5532096': [0.0, 47.8, 1.0], 'GSM5532097': [0.0, 41.5, 0.0], 'GSM5532098': [0.0, 67.3, 1.0], 'GSM5532099': [0.0, 52.8, 1.0], 'GSM5532100': [0.0, 16.1, 1.0], 'GSM5532101': [0.0, 78.9, 1.0], 'GSM5532102': [0.0, 53.2, 1.0], 'GSM5532103': [0.0, 70.9, 1.0], 'GSM5532104': [0.0, 59.9, 1.0], 'GSM5532105': [0.0, 21.9, 0.0], 'GSM5532106': [0.0, 45.2, 0.0], 'GSM5532107': [0.0, 52.4, 1.0], 'GSM5532108': [0.0, 32.3, 1.0], 'GSM5532109': [0.0, 52.8, 1.0], 'GSM5532110': [1.0, 55.8, 1.0], 'GSM5532111': [0.0, 47.0, 1.0], 'GSM5532112': [0.0, 55.8, 1.0], 'GSM5532113': [0.0, 57.3, 0.0], 'GSM5532114': [1.0, 31.7, 0.0], 'GSM5532115': [0.0, 49.3, 1.0], 'GSM5532116': [0.0, 66.1, 1.0], 'GSM5532117': [0.0, 55.9, 1.0], 'GSM5532118': [0.0, 49.1, 0.0], 'GSM5532119': [0.0, 63.0, 1.0], 'GSM5532120': [0.0, 21.0, 1.0], 'GSM5532121': [0.0, 53.6, 1.0], 'GSM5532122': [0.0, 50.1, 0.0], 'GSM5532123': [0.0, 37.4, 1.0], 'GSM5532124': [0.0, 71.5, 0.0], 'GSM5532125': [0.0, 56.5, 1.0], 'GSM5532126': [0.0, 33.4, 0.0], 'GSM5532127': [0.0, 51.2, 1.0], 'GSM5532128': [0.0, 51.9, 0.0], 'GSM5532129': [0.0, 47.8, 1.0], 'GSM5532130': [0.0, 41.5, 0.0], 'GSM5532131': [0.0, 67.3, 1.0], 'GSM5532132': [0.0, 52.8, 1.0], 'GSM5532133': [0.0, 78.9, 1.0], 'GSM5532134': [0.0, 53.2, 1.0], 'GSM5532135': [0.0, 70.9, 1.0], 'GSM5532136': [0.0, 59.9, 1.0], 'GSM5532137': [0.0, 21.9, 0.0], 'GSM5532138': [0.0, 45.2, 0.0], 'GSM5532139': [0.0, 52.4, 1.0], 'GSM5532140': [0.0, 32.3, 1.0], 'GSM5532141': [1.0, 55.8, 1.0], 'GSM5532142': [0.0, 47.0, 1.0], 'GSM5532143': [0.0, 55.8, 1.0], 'GSM5532144': [0.0, 57.3, 0.0], 'GSM5532145': [1.0, 31.7, 0.0], 'GSM5532146': [0.0, 49.3, 1.0], 'GSM5532147': [0.0, 66.1, 1.0], 'GSM5532148': [0.0, 55.9, 1.0], 'GSM5532149': [0.0, 49.1, 0.0], 'GSM5532150': [0.0, 63.0, 1.0], 'GSM5532151': [0.0, 21.0, 1.0], 'GSM5532152': [0.0, 53.6, 1.0], 'GSM5532153': [0.0, 50.1, 0.0], 'GSM5532154': [0.0, 37.4, 1.0], 'GSM5532155': [0.0, 71.5, 0.0], 'GSM5532156': [0.0, 56.5, 1.0], 'GSM5532157': [0.0, 33.4, 0.0], 'GSM5532158': [0.0, 51.2, 1.0], 'GSM5532159': [0.0, 51.9, 0.0], 'GSM5532160': [0.0, 47.8, 1.0], 'GSM5532161': [0.0, 52.8, 1.0], 'GSM5532162': [0.0, 53.2, 1.0], 'GSM5532163': [0.0, 21.9, 0.0], 'GSM5532164': [1.0, 55.8, 1.0], 'GSM5532165': [0.0, 47.0, 1.0], 'GSM5532166': [0.0, 49.3, 1.0], 'GSM5532167': [0.0, 66.1, 1.0], 'GSM5532168': [0.0, 53.6, 1.0], 'GSM5532169': [0.0, 50.1, 0.0], 'GSM5532170': [0.0, 56.5, 1.0]}\n",
      "Clinical features saved to ../../output/preprocess/Arrhythmia/clinical_data/GSE182600.csv\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import numpy as np\n",
    "from typing import Optional, Callable, Dict, Any, List\n",
    "import json\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset contains genome-wide gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# Looking at the sample characteristics dictionary:\n",
    "\n",
    "# For trait (Arrhythmia):\n",
    "# We can see in key 0, there are different disease states including 'Arrhythmia'\n",
    "trait_row = 0\n",
    "\n",
    "# For age:\n",
    "# We can see in key 1, there are different age values\n",
    "age_row = 1\n",
    "\n",
    "# For gender:\n",
    "# We can see in key 2, there are gender values (F and M)\n",
    "gender_row = 2\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert disease state value to binary (1 if Arrhythmia, 0 otherwise)\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Check if the value contains 'Arrhythmia'\n",
    "    if 'Arrhythmia' in value:\n",
    "        return 1\n",
    "    else:\n",
    "        return 0\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age value to continuous numeric value\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if value.upper() == 'F':\n",
    "        return 0\n",
    "    elif value.upper() == 'M':\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Conduct initial filtering and save metadata\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# If trait_row is not None, extract clinical features\n",
    "if trait_row is not None:\n",
    "    # Use the clinical_data variable that should be available from a previous step\n",
    "    # Extract clinical features using the geo_select_clinical_features function\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical features\n",
    "    preview = preview_df(clinical_features)\n",
    "    print(\"Preview of extracted clinical features:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Ensure the output directory exists\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the clinical features to CSV\n",
    "    clinical_features.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical features saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cb69c283",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "02550821",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:33:28.419547Z",
     "iopub.status.busy": "2025-03-25T06:33:28.419448Z",
     "iopub.status.idle": "2025-03-25T06:33:28.745690Z",
     "shell.execute_reply": "2025-03-25T06:33:28.745319Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Arrhythmia/GSE182600/GSE182600_series_matrix.txt.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (29363, 78)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['ILMN_1343291', 'ILMN_1651209', 'ILMN_1651228', 'ILMN_1651229',\n",
      "       'ILMN_1651235', 'ILMN_1651236', 'ILMN_1651237', 'ILMN_1651238',\n",
      "       'ILMN_1651254', 'ILMN_1651260', 'ILMN_1651262', 'ILMN_1651268',\n",
      "       'ILMN_1651278', 'ILMN_1651282', 'ILMN_1651285', 'ILMN_1651286',\n",
      "       'ILMN_1651292', 'ILMN_1651303', 'ILMN_1651309', 'ILMN_1651315'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "96c9ee00",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "cf320ea5",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:33:28.747011Z",
     "iopub.status.busy": "2025-03-25T06:33:28.746885Z",
     "iopub.status.idle": "2025-03-25T06:33:28.748726Z",
     "shell.execute_reply": "2025-03-25T06:33:28.748454Z"
    }
   },
   "outputs": [],
   "source": [
    "# These identifiers are from the Illumina microarray platform\n",
    "# The ILMN_ prefix indicates Illumina probe IDs which need to be mapped to human gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b92ccf96",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "9a37e229",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:33:28.750057Z",
     "iopub.status.busy": "2025-03-25T06:33:28.749901Z",
     "iopub.status.idle": "2025-03-25T06:33:49.483932Z",
     "shell.execute_reply": "2025-03-25T06:33:49.483270Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'Transcript', 'Species', 'Source', 'Search_Key', 'ILMN_Gene', 'Source_Reference_ID', 'RefSeq_ID', 'Entrez_Gene_ID', 'GI', 'Accession', 'Symbol', 'Protein_Product', 'Array_Address_Id', 'Probe_Type', 'Probe_Start', 'SEQUENCE', 'Chromosome', 'Probe_Chr_Orientation', 'Probe_Coordinates', 'Cytoband', 'Definition', 'Ontology_Component', 'Ontology_Process', 'Ontology_Function', 'Synonyms', 'Obsolete_Probe_Id', 'GB_ACC']\n",
      "{'ID': ['ILMN_3166687', 'ILMN_3165566', 'ILMN_3164811', 'ILMN_3165363', 'ILMN_3166511'], 'Transcript': ['ILMN_333737', 'ILMN_333646', 'ILMN_333584', 'ILMN_333628', 'ILMN_333719'], 'Species': ['ILMN Controls', 'ILMN Controls', 'ILMN Controls', 'ILMN Controls', 'ILMN Controls'], 'Source': ['ILMN_Controls', 'ILMN_Controls', 'ILMN_Controls', 'ILMN_Controls', 'ILMN_Controls'], 'Search_Key': ['ERCC-00162', 'ERCC-00071', 'ERCC-00009', 'ERCC-00053', 'ERCC-00144'], 'ILMN_Gene': ['ERCC-00162', 'ERCC-00071', 'ERCC-00009', 'ERCC-00053', 'ERCC-00144'], 'Source_Reference_ID': ['ERCC-00162', 'ERCC-00071', 'ERCC-00009', 'ERCC-00053', 'ERCC-00144'], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': ['DQ516750', 'DQ883654', 'DQ668364', 'DQ516785', 'DQ854995'], 'Symbol': ['ERCC-00162', 'ERCC-00071', 'ERCC-00009', 'ERCC-00053', 'ERCC-00144'], 'Protein_Product': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5270161.0, 4260594.0, 7610424.0, 5260356.0, 2030196.0], 'Probe_Type': ['S', 'S', 'S', 'S', 'S'], 'Probe_Start': [12.0, 224.0, 868.0, 873.0, 130.0], 'SEQUENCE': ['CCCATGTGTCCAATTCTGAATATCTTTCCAGCTAAGTGCTTCTGCCCACC', 'GGATTAACTGCTGTGGTGTGTCATACTCGGCTACCTCCTGGTTTGGCGTC', 'GACCACGCCTTGTAATCGTATGACACGCGCTTGACACGACTGAATCCAGC', 'CTGCAATGCCATTAACAACCTTAGCACGGTATTTCCAGTAGCTGGTGAGC', 'CGTGCAGACAGGGATCGTAAGGCGATCCAGCCGGTATACCTTAGTCACAT'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': ['Methanocaldococcus jannaschii spike-in control MJ-500-33 genomic sequence', 'Synthetic construct clone NISTag13 external RNA control sequence', 'Synthetic construct clone TagJ microarray control', 'Methanocaldococcus jannaschii spike-in control MJ-1000-68 genomic sequence', 'Synthetic construct clone AG006.1100 external RNA control sequence'], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': ['DQ516750', 'DQ883654', 'DQ668364', 'DQ516785', 'DQ854995']}\n",
      "\n",
      "Analyzing SPOT_ID.1 column for gene symbols:\n",
      "\n",
      "Gene data ID prefix: ILMN\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'ID' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'Transcript' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'Species' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column 'Source' contains values matching gene data ID pattern\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Checking for columns containing transcript or gene related terms:\n",
      "Column 'Transcript' may contain gene-related information\n",
      "Sample values: ['ILMN_333737', 'ILMN_333646', 'ILMN_333584']\n",
      "Column 'ILMN_Gene' may contain gene-related information\n",
      "Sample values: ['ERCC-00162', 'ERCC-00071', 'ERCC-00009']\n",
      "Column 'Entrez_Gene_ID' may contain gene-related information\n",
      "Sample values: [nan, nan, nan]\n",
      "Column 'Symbol' may contain gene-related information\n",
      "Sample values: ['ERCC-00162', 'ERCC-00071', 'ERCC-00009']\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Check for gene information in the SPOT_ID.1 column which appears to contain gene names\n",
    "print(\"\\nAnalyzing SPOT_ID.1 column for gene symbols:\")\n",
    "if 'SPOT_ID.1' in gene_annotation.columns:\n",
    "    # Extract a few sample values\n",
    "    sample_values = gene_annotation['SPOT_ID.1'].head(3).tolist()\n",
    "    for i, value in enumerate(sample_values):\n",
    "        print(f\"Sample {i+1} excerpt: {value[:200]}...\")  # Print first 200 chars\n",
    "        # Test the extract_human_gene_symbols function on these values\n",
    "        symbols = extract_human_gene_symbols(value)\n",
    "        print(f\"  Extracted gene symbols: {symbols}\")\n",
    "\n",
    "# Try to find the probe IDs in the gene annotation\n",
    "gene_data_id_prefix = gene_data.index[0].split('_')[0]  # Get prefix of first gene ID\n",
    "print(f\"\\nGene data ID prefix: {gene_data_id_prefix}\")\n",
    "\n",
    "# Look for columns that might match the gene data IDs\n",
    "for col in gene_annotation.columns:\n",
    "    if gene_annotation[col].astype(str).str.contains(gene_data_id_prefix).any():\n",
    "        print(f\"Column '{col}' contains values matching gene data ID pattern\")\n",
    "\n",
    "# Check if there's any column that might contain transcript or gene IDs\n",
    "print(\"\\nChecking for columns containing transcript or gene related terms:\")\n",
    "for col in gene_annotation.columns:\n",
    "    if any(term in col.upper() for term in ['GENE', 'TRANSCRIPT', 'SYMBOL', 'NAME', 'DESCRIPTION']):\n",
    "        print(f\"Column '{col}' may contain gene-related information\")\n",
    "        # Show sample values\n",
    "        print(f\"Sample values: {gene_annotation[col].head(3).tolist()}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7666f3a4",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "a3646ee6",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:33:49.485747Z",
     "iopub.status.busy": "2025-03-25T06:33:49.485618Z",
     "iopub.status.idle": "2025-03-25T06:33:51.091093Z",
     "shell.execute_reply": "2025-03-25T06:33:51.090426Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping created with shape: (29377, 2)\n",
      "Sample of mapping data:\n",
      "             ID        Gene\n",
      "0  ILMN_3166687  ERCC-00162\n",
      "1  ILMN_3165566  ERCC-00071\n",
      "2  ILMN_3164811  ERCC-00009\n",
      "3  ILMN_3165363  ERCC-00053\n",
      "4  ILMN_3166511  ERCC-00144\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene expression data after mapping, shape: (20206, 78)\n",
      "Sample of first few genes:\n",
      "       GSM5532093  GSM5532094   GSM5532095  GSM5532096   GSM5532097  \\\n",
      "Gene                                                                  \n",
      "A1BG   123.145500  134.323626   100.294706  130.315854   106.890941   \n",
      "A1CF   442.425800  312.801581   459.891733  648.201284   626.514798   \n",
      "A26C3  112.721999   93.857780   135.588590  108.663091   106.769778   \n",
      "A2BP1  428.085657  406.123901  1065.127976  838.139632   437.867618   \n",
      "A2LD1  694.929347  122.913261   258.573651  693.260663  1139.789587   \n",
      "\n",
      "       GSM5532098  GSM5532099  GSM5532100   GSM5532101  GSM5532102  ...  \\\n",
      "Gene                                                                ...   \n",
      "A1BG   228.719478  149.074810  139.367359   109.260852  152.519107  ...   \n",
      "A1CF   456.501426  369.103327  333.509474   805.121907  333.756113  ...   \n",
      "A26C3  179.172135  115.888185  170.299522   110.064145  138.823068  ...   \n",
      "A2BP1  596.445613  461.428608  452.397602   639.169062  433.651718  ...   \n",
      "A2LD1  796.842538  408.943781  941.280859  1386.872687  416.602005  ...   \n",
      "\n",
      "       GSM5532161  GSM5532162  GSM5532163  GSM5532164  GSM5532165  GSM5532166  \\\n",
      "Gene                                                                            \n",
      "A1BG   117.791486  149.446051  112.994052  153.336376  143.952088  139.646931   \n",
      "A1CF   307.703312  349.272272  290.645402  305.882066  289.283176  275.041758   \n",
      "A26C3  117.353917  224.162991  267.033750  387.783190  640.755764  107.929602   \n",
      "A2BP1  793.561457  517.056382  393.320423  569.086339  456.026782  408.552570   \n",
      "A2LD1  562.403750  198.910772  477.380383  254.655704  568.428268  456.311147   \n",
      "\n",
      "       GSM5532167  GSM5532168  GSM5532169  GSM5532170  \n",
      "Gene                                                   \n",
      "A1BG   143.792296  116.989906  180.882782  183.258185  \n",
      "A1CF   295.336149  281.371467  293.977954  330.213920  \n",
      "A26C3  160.200142  156.934820  117.933314  133.436339  \n",
      "A2BP1  385.614119  448.595827  440.246539  364.734564  \n",
      "A2LD1  711.873099  466.636213  484.239574  471.306518  \n",
      "\n",
      "[5 rows x 78 columns]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to: ../../output/preprocess/Arrhythmia/gene_data/GSE182600.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the mapping between probe IDs (ID) and gene symbols (Symbol)\n",
    "prob_col = 'ID'  # The column with Illumina probe IDs\n",
    "gene_col = 'Symbol'  # The column with gene symbols\n",
    "\n",
    "# 2. Get gene mapping dataframe with the two columns\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "\n",
    "# Print some basic information about the mapping\n",
    "print(f\"Gene mapping created with shape: {mapping_df.shape}\")\n",
    "print(\"Sample of mapping data:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Print information about the mapped gene expression data\n",
    "print(f\"\\nGene expression data after mapping, shape: {gene_data.shape}\")\n",
    "print(\"Sample of first few genes:\")\n",
    "print(gene_data.head())\n",
    "\n",
    "# Save the gene expression data to file\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to: {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "db785b91",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "45017ae9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:33:51.092957Z",
     "iopub.status.busy": "2025-03-25T06:33:51.092827Z",
     "iopub.status.idle": "2025-03-25T06:34:03.442365Z",
     "shell.execute_reply": "2025-03-25T06:34:03.441683Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape before normalization: (20206, 78)\n",
      "Gene data shape after normalization: (19445, 78)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene expression data saved to ../../output/preprocess/Arrhythmia/gene_data/GSE182600.csv\n",
      "Original clinical data preview:\n",
      "         !Sample_geo_accession                        GSM5532093  \\\n",
      "0  !Sample_characteristics_ch1  disease state: Acute myocarditis   \n",
      "1  !Sample_characteristics_ch1                         age: 33.4   \n",
      "2  !Sample_characteristics_ch1                         gender: F   \n",
      "3  !Sample_characteristics_ch1                  outcome: Success   \n",
      "4  !Sample_characteristics_ch1                   cell type: PBMC   \n",
      "\n",
      "                         GSM5532094                        GSM5532095  \\\n",
      "0  disease state: Acute myocarditis  disease state: Acute myocarditis   \n",
      "1                         age: 51.2                         age: 51.9   \n",
      "2                         gender: M                         gender: F   \n",
      "3                  outcome: Success                  outcome: Failure   \n",
      "4                   cell type: PBMC                   cell type: PBMC   \n",
      "\n",
      "                                   GSM5532096  \\\n",
      "0  disease state: Acute myocardial infarction   \n",
      "1                                   age: 47.8   \n",
      "2                                   gender: M   \n",
      "3                            outcome: Success   \n",
      "4                             cell type: PBMC   \n",
      "\n",
      "                         GSM5532097  \\\n",
      "0  disease state: Acute myocarditis   \n",
      "1                         age: 41.5   \n",
      "2                         gender: F   \n",
      "3                  outcome: Failure   \n",
      "4                   cell type: PBMC   \n",
      "\n",
      "                                   GSM5532098  \\\n",
      "0  disease state: Acute myocardial infarction   \n",
      "1                                   age: 67.3   \n",
      "2                                   gender: M   \n",
      "3                            outcome: Failure   \n",
      "4                             cell type: PBMC   \n",
      "\n",
      "                                   GSM5532099  \\\n",
      "0  disease state: Acute myocardial infarction   \n",
      "1                                   age: 52.8   \n",
      "2                                   gender: M   \n",
      "3                            outcome: Success   \n",
      "4                             cell type: PBMC   \n",
      "\n",
      "                                    GSM5532100  \\\n",
      "0  disease state: Dilated cardiomyopathy, DCMP   \n",
      "1                                    age: 16.1   \n",
      "2                                    gender: M   \n",
      "3                             outcome: Failure   \n",
      "4                              cell type: PBMC   \n",
      "\n",
      "                                   GSM5532101  ...  \\\n",
      "0  disease state: Acute myocardial infarction  ...   \n",
      "1                                   age: 78.9  ...   \n",
      "2                                   gender: M  ...   \n",
      "3                            outcome: Failure  ...   \n",
      "4                             cell type: PBMC  ...   \n",
      "\n",
      "                                   GSM5532161  \\\n",
      "0  disease state: Acute myocardial infarction   \n",
      "1                                   age: 52.8   \n",
      "2                                   gender: M   \n",
      "3                            outcome: Success   \n",
      "4                             cell type: PBMC   \n",
      "\n",
      "                                   GSM5532162  \\\n",
      "0  disease state: Acute myocardial infarction   \n",
      "1                                   age: 53.2   \n",
      "2                                   gender: M   \n",
      "3                            outcome: Success   \n",
      "4                             cell type: PBMC   \n",
      "\n",
      "                         GSM5532163                 GSM5532164  \\\n",
      "0  disease state: Acute myocarditis  disease state: Arrhythmia   \n",
      "1                         age: 21.9                  age: 55.8   \n",
      "2                         gender: F                  gender: M   \n",
      "3                  outcome: Success           outcome: Success   \n",
      "4                   cell type: PBMC            cell type: PBMC   \n",
      "\n",
      "                              GSM5532165  \\\n",
      "0  disease state: Dilated cardiomyopathy   \n",
      "1                                age: 47   \n",
      "2                              gender: M   \n",
      "3                       outcome: Success   \n",
      "4                        cell type: PBMC   \n",
      "\n",
      "                                   GSM5532166  \\\n",
      "0  disease state: Acute myocardial infarction   \n",
      "1                                   age: 49.3   \n",
      "2                                   gender: M   \n",
      "3                            outcome: Success   \n",
      "4                             cell type: PBMC   \n",
      "\n",
      "                                GSM5532167  \\\n",
      "0  disease state: Congestive heart failure   \n",
      "1                                age: 66.1   \n",
      "2                                gender: M   \n",
      "3                         outcome: Success   \n",
      "4                          cell type: PBMC   \n",
      "\n",
      "                                   GSM5532168  \\\n",
      "0  disease state: Acute myocardial infarction   \n",
      "1                                   age: 53.6   \n",
      "2                                   gender: M   \n",
      "3                            outcome: Success   \n",
      "4                             cell type: PBMC   \n",
      "\n",
      "                                   GSM5532169  \\\n",
      "0  disease state: Acute myocardial infarction   \n",
      "1                                   age: 50.1   \n",
      "2                                   gender: F   \n",
      "3                            outcome: Success   \n",
      "4                             cell type: PBMC   \n",
      "\n",
      "                                GSM5532170  \n",
      "0  disease state: Congestive heart failure  \n",
      "1                                age: 56.5  \n",
      "2                                gender: M  \n",
      "3                         outcome: Success  \n",
      "4                          cell type: PBMC  \n",
      "\n",
      "[5 rows x 79 columns]\n",
      "Selected clinical data shape: (3, 78)\n",
      "Clinical data preview:\n",
      "            GSM5532093  GSM5532094  GSM5532095  GSM5532096  GSM5532097  \\\n",
      "Arrhythmia         0.0         0.0         0.0         0.0         0.0   \n",
      "Age               33.4        51.2        51.9        47.8        41.5   \n",
      "Gender             0.0         1.0         0.0         1.0         0.0   \n",
      "\n",
      "            GSM5532098  GSM5532099  GSM5532100  GSM5532101  GSM5532102  ...  \\\n",
      "Arrhythmia         0.0         0.0         0.0         0.0         0.0  ...   \n",
      "Age               67.3        52.8        16.1        78.9        53.2  ...   \n",
      "Gender             1.0         1.0         1.0         1.0         1.0  ...   \n",
      "\n",
      "            GSM5532161  GSM5532162  GSM5532163  GSM5532164  GSM5532165  \\\n",
      "Arrhythmia         0.0         0.0         0.0         1.0         0.0   \n",
      "Age               52.8        53.2        21.9        55.8        47.0   \n",
      "Gender             1.0         1.0         0.0         1.0         1.0   \n",
      "\n",
      "            GSM5532166  GSM5532167  GSM5532168  GSM5532169  GSM5532170  \n",
      "Arrhythmia         0.0         0.0         0.0         0.0         0.0  \n",
      "Age               49.3        66.1        53.6        50.1        56.5  \n",
      "Gender             1.0         1.0         1.0         0.0         1.0  \n",
      "\n",
      "[3 rows x 78 columns]\n",
      "Linked data shape before processing: (78, 19448)\n",
      "Linked data preview (first 5 rows, 5 columns):\n",
      "            Arrhythmia   Age  Gender        A1BG     A1BG-AS1\n",
      "GSM5532093         0.0  33.4     0.0  123.145500  1284.286536\n",
      "GSM5532094         0.0  51.2     1.0  134.323626  2123.843378\n",
      "GSM5532095         0.0  51.9     0.0  100.294706  1088.857429\n",
      "GSM5532096         0.0  47.8     1.0  130.315854  1074.517347\n",
      "GSM5532097         0.0  41.5     0.0  106.890941  1070.809003\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (78, 19448)\n",
      "For the feature 'Arrhythmia', the least common label is '1.0' with 5 occurrences. This represents 6.41% of the dataset.\n",
      "The distribution of the feature 'Arrhythmia' in this dataset is fine.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: 47.0\n",
      "  50% (Median): 52.15\n",
      "  75%: 56.35\n",
      "Min: 16.1\n",
      "Max: 78.9\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '0.0' with 24 occurrences. This represents 30.77% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n",
      "Data shape after removing biased features: (78, 19448)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Arrhythmia/GSE182600.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "# Use normalize_gene_symbols_in_index to standardize gene symbols\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Save the normalized gene data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Load the actual clinical data from the matrix file that was previously obtained in Step 1\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "\n",
    "# Get preview of clinical data to understand its structure\n",
    "print(\"Original clinical data preview:\")\n",
    "print(clinical_data.head())\n",
    "\n",
    "# 2. If we have trait data available, proceed with linking\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features using the original clinical data\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "\n",
    "    print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n",
    "    print(\"Clinical data preview:\")\n",
    "    print(selected_clinical_df.head())\n",
    "\n",
    "    # Link the clinical and genetic data\n",
    "    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "    print(f\"Linked data shape before processing: {linked_data.shape}\")\n",
    "    print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "    print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Empty dataframe\")\n",
    "\n",
    "    # 3. Handle missing values\n",
    "    try:\n",
    "        linked_data = handle_missing_values(linked_data, trait)\n",
    "        print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error handling missing values: {e}\")\n",
    "        linked_data = pd.DataFrame()  # Create empty dataframe if error occurs\n",
    "\n",
    "    # 4. Check for bias in features\n",
    "    if not linked_data.empty and linked_data.shape[0] > 0:\n",
    "        is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "        print(f\"Data shape after removing biased features: {linked_data.shape}\")\n",
    "    else:\n",
    "        is_biased = True\n",
    "        print(\"Cannot check for bias as dataframe is empty or has no rows after missing value handling\")\n",
    "\n",
    "    # 5. Validate and save cohort information\n",
    "    note = \"\"\n",
    "    if linked_data.empty or linked_data.shape[0] == 0:\n",
    "        note = \"Dataset contains gene expression data related to liver fibrosis progression, but linking clinical and genetic data failed, possibly due to mismatched sample IDs.\"\n",
    "    else:\n",
    "        note = \"Dataset contains gene expression data for liver fibrosis progression, which is relevant to liver cirrhosis research.\"\n",
    "    \n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=True,\n",
    "        is_biased=is_biased,\n",
    "        df=linked_data,\n",
    "        note=note\n",
    "    )\n",
    "\n",
    "    # 6. Save the linked data if usable\n",
    "    if is_usable:\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        linked_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(\"Dataset is not usable for analysis. No linked data file saved.\")\n",
    "else:\n",
    "    # If no trait data available, validate with trait_available=False\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=False,\n",
    "        is_biased=True,  # Set to True since we can't use data without trait\n",
    "        df=pd.DataFrame(),  # Empty DataFrame\n",
    "        note=\"Dataset contains gene expression data but lacks proper clinical trait information for liver cirrhosis analysis.\"\n",
    "    )\n",
    "    \n",
    "    print(\"Dataset is not usable for liver cirrhosis analysis due to lack of clinical trait data. No linked data file saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}