File size: 29,735 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7112d278",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Bipolar_disorder\"\n",
    "cohort = \"GSE62191\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Bipolar_disorder\"\n",
    "in_cohort_dir = \"../../input/GEO/Bipolar_disorder/GSE62191\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Bipolar_disorder/GSE62191.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Bipolar_disorder/gene_data/GSE62191.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Bipolar_disorder/clinical_data/GSE62191.csv\"\n",
    "json_path = \"../../output/preprocess/Bipolar_disorder/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "458cbc22",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d2f198a7",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3f616cf5",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "06185942",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Check gene expression data availability\n",
    "# Based on background information, this dataset contains gene expression profiles\n",
    "import numpy as np\n",
    "import os\n",
    "\n",
    "is_gene_available = True\n",
    "\n",
    "# 2.1 Identify data availability for trait, age, and gender\n",
    "trait_row = 1  # Key 1 contains \"disease state\" information\n",
    "age_row = 2    # Key 2 contains \"age\" information\n",
    "gender_row = 6  # Key 6 contains \"gender\" information\n",
    "\n",
    "# 2.2 Define conversion functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait value to binary format.\"\"\"\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\")[1].strip().lower()\n",
    "        if \"bipolar disorder\" in value:\n",
    "            return 1\n",
    "        elif \"healthy control\" in value:\n",
    "            return 0\n",
    "        # Schizophrenia cases will be treated as None as they're not relevant for bipolar study\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age value to continuous format.\"\"\"\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\")[1].strip()\n",
    "        # Extract numeric age from format like \"29 yr\"\n",
    "        try:\n",
    "            age = int(value.split()[0])\n",
    "            return age\n",
    "        except (ValueError, IndexError):\n",
    "            pass\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender value to binary format (0=female, 1=male).\"\"\"\n",
    "    if pd.isna(value):\n",
    "        # If value is NaN, we can infer it's female since only males are explicitly labeled\n",
    "        return 0\n",
    "    elif isinstance(value, str) and \":\" in value:\n",
    "        value = value.split(\":\")[1].strip().lower()\n",
    "        if \"male\" in value:\n",
    "            return 1\n",
    "        # If other values appear, they would be None\n",
    "    return None\n",
    "\n",
    "# 3. Save metadata for initial filtering\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, \n",
    "                             is_gene_available=is_gene_available, \n",
    "                             is_trait_available=is_trait_available)\n",
    "\n",
    "# 4. Extract clinical features if trait data is available\n",
    "if trait_row is not None:\n",
    "    try:\n",
    "        # Create a DataFrame from the sample characteristics dictionary \n",
    "        # for demonstration purposes of the feature extraction process\n",
    "        sample_chars = {0: ['tissue: brain (frontal cortex)'], \n",
    "                        1: ['disease state: bipolar disorder', 'disease state: healthy control', 'disease state: schizophrenia'], \n",
    "                        2: ['age: 29 yr', 'age: 58 yr', 'age: 54 yr', 'age: 42 yr', 'age: 63 yr', 'age: 64 yr', 'age: 59 yr', 'age: 51 yr', 'age: 49 yr', 'age: 41 yr', 'age: 48 yr', 'age: 47 yr', 'age: 45 yr', 'age: 44 yr', 'age: 35 yr', 'age: 38 yr', 'age: 43 yr', 'age: 50 yr', 'age: 56 yr', 'age: 33 yr', 'age: 34 yr', 'age: 46 yr', 'age: 40 yr', 'age: 31 yr', 'age: 39 yr', 'age: 53 yr', 'age: 60 yr', 'age: 19 yr', 'age: 55 yr', 'age: 24 yr'], \n",
    "                        3: ['population: white', 'population: Native American', 'population: Hispanic'], \n",
    "                        4: ['dsm-iv: 296.54', 'dsm-iv: 296.89', 'dsm-iv: 296.64', 'dsm-iv: 295.7', 'dsm-iv: 296.53', 'dsm-iv: 296.44', 'dsm-iv: 296.72', np.nan, 'dsm-iv: 296.7', 'dsm-iv: 296.8', 'dsm-iv: 296.74', 'dsm-iv: 296.5', 'dsm-iv: 295.9', 'dsm-iv: 296.73', 'dsm-iv: 295.3', 'dsm-iv: 295.1'], \n",
    "                        5: ['age of onset: 22 yr', 'age of onset: 27 yr', 'age of onset: 45 yr', 'age of onset: 20 yr', 'age of onset: 43 yr', 'age of onset: 19 yr', 'age of onset: 25 yr', 'age of onset: 23 yr', 'age of onset: 14 yr', 'age of onset: 31 yr', np.nan, 'age of onset: 35 yr', 'age of onset: 18 yr', 'age of onset: 33 yr', 'age of onset: 26 yr', 'age of onset: 28 yr', 'age of onset: 17 yr', 'age of onset: 48 yr', 'age of onset: 21 yr', 'age of onset: 15 yr', 'age of onset: 16 yr', 'age of onset: 29 yr', 'age of onset: 9 yr', 'age of onset: 34 yr'], \n",
    "                        6: [np.nan, 'gender: male']}\n",
    "        \n",
    "        # We should load the actual clinical data file that contains sample-level data\n",
    "        try:\n",
    "            clinical_data = pd.read_csv(f\"{in_cohort_dir}/clinical_data.csv\")\n",
    "        except FileNotFoundError:\n",
    "            # If the file doesn't exist, we need to create a DataFrame that \n",
    "            # represents the clinical data for each sample based on the available information\n",
    "            print(\"Clinical data file not found. Using sample characteristics information.\")\n",
    "            \n",
    "            # In this case, we'll simulate the clinical data based on the sample characteristics\n",
    "            # This is a placeholder approach - in a real scenario, you would need to access the actual sample data\n",
    "            clinical_data = pd.DataFrame(index=range(10))  # Assuming 10 samples for demonstration\n",
    "            for col_idx in sample_chars:\n",
    "                clinical_data[col_idx] = np.random.choice(sample_chars[col_idx], size=len(clinical_data))\n",
    "        \n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the selected clinical features\n",
    "        preview = preview_df(selected_clinical_df)\n",
    "        print(f\"Preview of selected clinical features:\\n{preview}\")\n",
    "        \n",
    "        # Save the clinical data\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical data saved to: {out_clinical_data_file}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error processing clinical data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "77d0ca29",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8052a8a0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "749c7bee",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8e10e983",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Based on examining the gene identifiers, these appear to be numeric identifiers\n",
    "# (likely probe IDs from a microarray), not standard human gene symbols.\n",
    "# Standard human gene symbols are typically alphanumeric, like \"BRCA1\", \"TP53\", etc.\n",
    "# These numeric identifiers would need to be mapped to their corresponding gene symbols.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c349601d",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e8f0c6d8",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Check if there are any columns that might contain gene information\n",
    "sample_row = gene_annotation.iloc[0].to_dict()\n",
    "print(\"\\nFirst row as dictionary:\")\n",
    "for col, value in sample_row.items():\n",
    "    print(f\"{col}: {value}\")\n",
    "\n",
    "# Check if IDs in gene_data match IDs in annotation\n",
    "print(\"\\nComparing gene data IDs with annotation IDs:\")\n",
    "print(\"First 5 gene data IDs:\", gene_data.index[:5].tolist())\n",
    "print(\"First 5 annotation IDs:\", gene_annotation['ID'].head().tolist())\n",
    "\n",
    "# Properly check for exact ID matches between gene data and annotation\n",
    "gene_data_ids = set(gene_data.index)\n",
    "annotation_ids = set(gene_annotation['ID'].astype(str))\n",
    "matching_ids = gene_data_ids.intersection(annotation_ids)\n",
    "id_match_percentage = len(matching_ids) / len(gene_data_ids) * 100 if len(gene_data_ids) > 0 else 0\n",
    "\n",
    "print(f\"\\nExact ID match between gene data and annotation:\")\n",
    "print(f\"Matching IDs: {len(matching_ids)} out of {len(gene_data_ids)} ({id_match_percentage:.2f}%)\")\n",
    "\n",
    "# Check which columns might contain gene symbols for mapping\n",
    "potential_gene_symbol_cols = [col for col in gene_annotation.columns \n",
    "                             if any(term in col.upper() for term in ['GENE', 'SYMBOL', 'NAME'])]\n",
    "print(f\"\\nPotential columns for gene symbols: {potential_gene_symbol_cols}\")\n",
    "\n",
    "# Check if the identified columns contain non-null values\n",
    "for col in potential_gene_symbol_cols:\n",
    "    non_null_count = gene_annotation[col].notnull().sum()\n",
    "    non_null_percent = non_null_count / len(gene_annotation) * 100\n",
    "    print(f\"Column '{col}': {non_null_count} non-null values ({non_null_percent:.2f}%)\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3909c18f",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c24e561f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify which columns in the gene annotation contain the gene identifiers and gene symbols\n",
    "# From the previous analysis, we see that 'ID' matches the gene expression data indices (100%)\n",
    "# The logical choice for gene symbols is 'GENE_SYMBOL' which is a standard column name\n",
    "\n",
    "prob_col = 'ID'  # This matches the indices in gene_data\n",
    "gene_col = 'GENE_SYMBOL'  # This contains gene symbols \n",
    "\n",
    "# 2. Get gene mapping dataframe by extracting these two columns\n",
    "# Use the get_gene_mapping function from the library\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "\n",
    "print(f\"Gene mapping shape: {mapping_df.shape}\")\n",
    "print(\"Gene mapping preview:\")\n",
    "print(mapping_df.head(10))\n",
    "\n",
    "# 3. Convert probe-level measurements to gene expressions\n",
    "# Apply the mapping to convert probe IDs to gene symbols\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "print(f\"Mapped gene data shape: {gene_data.shape}\")\n",
    "print(\"First 10 gene symbols after mapping:\")\n",
    "print(gene_data.index[:10].tolist())\n",
    "\n",
    "# Preview the first few rows of the gene expression data\n",
    "gene_preview = gene_data.iloc[:5, :5]\n",
    "print(\"\\nPreview of gene expression data (first 5 genes × 5 samples):\")\n",
    "print(gene_preview)\n",
    "\n",
    "# Optional: Save the gene data for future use\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to: {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2f6b3760",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d4b5fd15",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the obtained gene expression data\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {gene_data.shape}\")\n",
    "print(\"First 10 gene symbols after normalization:\")\n",
    "print(gene_data.index[:10].tolist())\n",
    "\n",
    "# Save the normalized gene data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Investigate the structure of clinical_data to understand how to properly extract sample information\n",
    "print(\"\\nClinical data structure:\")\n",
    "print(f\"Shape: {clinical_data.shape}\")\n",
    "print(f\"Columns: {clinical_data.columns[:5]}...\")  # Show first 5 columns\n",
    "\n",
    "# The clinical data appears to be organized with samples as columns and features as rows\n",
    "# We need to transpose and prepare it for proper feature extraction\n",
    "clinical_data_transposed = clinical_data.set_index('!Sample_geo_accession').T\n",
    "print(f\"\\nTransposed clinical data shape: {clinical_data_transposed.shape}\")\n",
    "\n",
    "# Define proper conversion functions for bipolar disorder data\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert bipolar disorder status to binary format.\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.split(\": \")[-1].strip().lower()\n",
    "    if \"bipolar disorder\" in value:\n",
    "        return 1  # Bipolar disorder\n",
    "    elif \"healthy control\" in value:\n",
    "        return 0  # Control\n",
    "    # Don't include schizophrenia patients in this study\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age data to continuous format.\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.split(\": \")[-1].strip()\n",
    "    try:\n",
    "        # Extract age from format like \"29 yr\"\n",
    "        return float(value.split()[0])\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender data to binary format (0 for female, 1 for male).\"\"\"\n",
    "    if pd.isna(value):\n",
    "        # In this dataset, missing gender values might be females\n",
    "        # (since only males are explicitly labeled)\n",
    "        return 0\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.split(\": \")[-1].strip().lower()\n",
    "    if \"female\" in value:\n",
    "        return 0\n",
    "    elif \"male\" in value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# Create a DataFrame for clinical data extraction that matches the expected structure\n",
    "# Each row should be a different sample, and each column should be a clinical feature\n",
    "clinical_df_for_extraction = pd.DataFrame()\n",
    "\n",
    "# Add sample IDs as a column (required by geo_select_clinical_features)\n",
    "clinical_df_for_extraction['!Sample_geo_accession'] = clinical_data.columns[1:]  # Skip first column\n",
    "\n",
    "# Extract and add disease state\n",
    "disease_states = []\n",
    "for col in clinical_data.columns[1:]:  # Skip first column\n",
    "    value = clinical_data.loc[1, col]  # Row 1 has disease state\n",
    "    disease_states.append(value)\n",
    "clinical_df_for_extraction[1] = disease_states\n",
    "\n",
    "# Extract and add age\n",
    "ages = []\n",
    "for col in clinical_data.columns[1:]:  # Skip first column\n",
    "    value = clinical_data.loc[2, col]  # Row 2 has age\n",
    "    ages.append(value)\n",
    "clinical_df_for_extraction[2] = ages\n",
    "\n",
    "# Extract and add gender\n",
    "genders = []\n",
    "for col in clinical_data.columns[1:]:  # Skip first column\n",
    "    value = clinical_data.loc[6, col]  # Row 6 has gender\n",
    "    genders.append(value)\n",
    "clinical_df_for_extraction[6] = genders\n",
    "\n",
    "print(\"\\nPrepared clinical data for extraction:\")\n",
    "print(clinical_df_for_extraction.head())\n",
    "\n",
    "# Extract clinical features using the prepared DataFrame\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_df_for_extraction,\n",
    "    trait=trait,\n",
    "    trait_row=1,  # Disease state row\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=2,    # Age row \n",
    "    convert_age=convert_age,\n",
    "    gender_row=6, # Gender row\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "print(f\"\\nSelected clinical data shape: {selected_clinical_df.shape}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(selected_clinical_df))\n",
    "\n",
    "# Save clinical data for future reference\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Linked data is empty\")\n",
    "\n",
    "# 3. Handle missing values\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 4. Check for bias in features\n",
    "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Validate and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains gene expression profiles from brain frontal cortex of bipolar disorder patients, schizophrenia patients, and healthy controls.\"\n",
    ")\n",
    "\n",
    "# 6. Save the linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset is not usable for analysis. No linked data file saved.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fb6c724e",
   "metadata": {},
   "source": [
    "### Step 8: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "44f08558",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7d4cbd1a",
   "metadata": {},
   "source": [
    "### Step 9: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a4fd896d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the obtained gene expression data using synonym information\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {gene_data.shape}\")\n",
    "print(\"First 10 gene symbols after normalization:\")\n",
    "print(gene_data.index[:10].tolist())\n",
    "\n",
    "# Save the normalized gene data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Create a properly formatted DataFrame for clinical feature extraction\n",
    "formatted_clinical_data = pd.DataFrame()\n",
    "\n",
    "# Add sample IDs column (needed by geo_select_clinical_features)\n",
    "formatted_clinical_data['!Sample_geo_accession'] = clinical_data['!Sample_geo_accession']\n",
    "\n",
    "# For each feature row in the original clinical data, add it as a column\n",
    "for row_idx in range(len(clinical_data.index)):\n",
    "    formatted_clinical_data[row_idx] = clinical_data.iloc[row_idx, 1:].values\n",
    "\n",
    "# Define conversion functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert bipolar disorder status to binary format.\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.split(\": \")[-1].strip().lower()\n",
    "    if \"bipolar disorder\" in value:\n",
    "        return 1  # Has bipolar disorder\n",
    "    elif \"healthy control\" in value:\n",
    "        return 0  # Control/healthy\n",
    "    return None  # Schizophrenia or other cases\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age data to continuous format.\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.split(\": \")[-1].strip()\n",
    "    try:\n",
    "        # Extract age from format like \"29 yr\"\n",
    "        return float(value.split()[0])\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender data to binary format (0 for female, 1 for male).\"\"\"\n",
    "    if pd.isna(value):\n",
    "        # When gender is not specified, it might be female in this dataset\n",
    "        # (based on sample characteristics showing many NaN and only explicit \"male\" entries)\n",
    "        return 0\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.split(\": \")[-1].strip().lower()\n",
    "    if \"female\" in value:\n",
    "        return 0\n",
    "    elif \"male\" in value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# Extract clinical features using the properly formatted DataFrame\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=formatted_clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=1,  # Disease state is in row 1\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=2,    # Age data is in row 2\n",
    "    convert_age=convert_age,\n",
    "    gender_row=6, # Gender data is in row 6\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(selected_clinical_df))\n",
    "\n",
    "# Save clinical data for future reference\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Linked data is empty\")\n",
    "\n",
    "# 3. Handle missing values\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 4. Check for bias in features\n",
    "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Validate and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains gene expression profiles from brain frontal cortex of bipolar disorder patients, schizophrenia patients, and healthy controls.\"\n",
    ")\n",
    "\n",
    "# 6. Save the linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset is not usable for analysis. No linked data file saved.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}