File size: 46,683 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "c6a73beb",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:57:10.964221Z",
     "iopub.status.busy": "2025-03-25T06:57:10.964105Z",
     "iopub.status.idle": "2025-03-25T06:57:11.122220Z",
     "shell.execute_reply": "2025-03-25T06:57:11.121909Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Bladder_Cancer\"\n",
    "cohort = \"GSE203149\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Bladder_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Bladder_Cancer/GSE203149\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Bladder_Cancer/GSE203149.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Bladder_Cancer/gene_data/GSE203149.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Bladder_Cancer/clinical_data/GSE203149.csv\"\n",
    "json_path = \"../../output/preprocess/Bladder_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cc291338",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "8acdcfea",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:57:11.123628Z",
     "iopub.status.busy": "2025-03-25T06:57:11.123492Z",
     "iopub.status.idle": "2025-03-25T06:57:11.295355Z",
     "shell.execute_reply": "2025-03-25T06:57:11.295020Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene expression data from muscle-invasive bladder cancer samples\"\n",
      "!Series_summary\t\"Gene signatures based on the median expression of a preselected set of genes can provide prognostic and treatment outcome prediction and so be valuable clinically.\"\n",
      "!Series_summary\t\"Different health care services use different gene expression platforms to derive gene expression data. Here we have derived gene expression data using a microarray platform.\"\n",
      "!Series_overall_design\t\"RNA extracted from FFPE blocks from patients with muscle-invasive bladder cancer and full transcriptome analysis on Clariom S microarray platform.  Sample blocks were collected for platform comparison and a heterogeneity gene signature study without any associated patient information.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['disease: Muscle-invasive bladder cancer']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "49eade77",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "380d0476",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:57:11.296616Z",
     "iopub.status.busy": "2025-03-25T06:57:11.296506Z",
     "iopub.status.idle": "2025-03-25T06:57:11.308904Z",
     "shell.execute_reply": "2025-03-25T06:57:11.308630Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of extracted clinical features:\n",
      "{'GSM6160439': [1.0], 'GSM6160440': [1.0], 'GSM6160441': [1.0], 'GSM6160442': [1.0], 'GSM6160443': [1.0], 'GSM6160444': [1.0], 'GSM6160445': [1.0], 'GSM6160446': [1.0], 'GSM6160447': [1.0], 'GSM6160448': [1.0], 'GSM6160449': [1.0], 'GSM6160450': [1.0], 'GSM6160451': [1.0], 'GSM6160452': [1.0], 'GSM6160453': [1.0], 'GSM6160454': [1.0], 'GSM6160455': [1.0], 'GSM6160456': [1.0], 'GSM6160457': [1.0], 'GSM6160458': [1.0], 'GSM6160459': [1.0], 'GSM6160460': [1.0], 'GSM6160461': [1.0], 'GSM6160462': [1.0], 'GSM6160463': [1.0], 'GSM6160464': [1.0], 'GSM6160465': [1.0], 'GSM6160466': [1.0], 'GSM6160467': [1.0], 'GSM6160468': [1.0], 'GSM6160469': [1.0], 'GSM6160470': [1.0], 'GSM6160471': [1.0], 'GSM6160472': [1.0], 'GSM6160473': [1.0], 'GSM6160474': [1.0], 'GSM6160475': [1.0], 'GSM6160476': [1.0], 'GSM6160477': [1.0], 'GSM6160478': [1.0], 'GSM6160479': [1.0], 'GSM6160480': [1.0], 'GSM6160481': [1.0], 'GSM6160482': [1.0], 'GSM6160483': [1.0], 'GSM6160484': [1.0], 'GSM6160485': [1.0], 'GSM6160486': [1.0], 'GSM6160487': [1.0], 'GSM6160488': [1.0], 'GSM6160489': [1.0], 'GSM6160490': [1.0], 'GSM6160491': [1.0], 'GSM6160492': [1.0], 'GSM6160493': [1.0], 'GSM6160494': [1.0], 'GSM6160495': [1.0], 'GSM6160496': [1.0], 'GSM6160497': [1.0], 'GSM6160498': [1.0], 'GSM6160499': [1.0], 'GSM6160500': [1.0], 'GSM6160501': [1.0], 'GSM6160502': [1.0], 'GSM6160503': [1.0], 'GSM6160504': [1.0], 'GSM6160505': [1.0], 'GSM6160506': [1.0], 'GSM6160507': [1.0], 'GSM6160508': [1.0], 'GSM6160509': [1.0], 'GSM6160510': [1.0], 'GSM6160511': [1.0], 'GSM6160512': [1.0], 'GSM6160513': [1.0], 'GSM6160514': [1.0], 'GSM6160515': [1.0], 'GSM6160516': [1.0], 'GSM6160517': [1.0], 'GSM6160518': [1.0], 'GSM6160519': [1.0], 'GSM6160520': [1.0], 'GSM6160521': [1.0], 'GSM6160522': [1.0], 'GSM6160523': [1.0], 'GSM6160524': [1.0], 'GSM6160525': [1.0], 'GSM6160526': [1.0], 'GSM6160527': [1.0], 'GSM6160528': [1.0], 'GSM6160529': [1.0], 'GSM6160530': [1.0], 'GSM6160531': [1.0], 'GSM6160532': [1.0], 'GSM6160533': [1.0], 'GSM6160534': [1.0], 'GSM6160535': [1.0], 'GSM6160536': [1.0], 'GSM6160537': [1.0], 'GSM6160538': [1.0], 'GSM6160539': [1.0], 'GSM6160540': [1.0], 'GSM6160541': [1.0], 'GSM6160542': [1.0], 'GSM6160543': [1.0], 'GSM6160544': [1.0], 'GSM6160545': [1.0], 'GSM6160546': [1.0], 'GSM6160547': [1.0], 'GSM6160548': [1.0], 'GSM6160549': [1.0], 'GSM6160550': [1.0], 'GSM6160551': [1.0], 'GSM6160552': [1.0], 'GSM6160553': [1.0], 'GSM6160554': [1.0], 'GSM6160555': [1.0], 'GSM6160556': [1.0], 'GSM6160557': [1.0], 'GSM6160558': [1.0], 'GSM6160559': [1.0], 'GSM6160560': [1.0], 'GSM6160561': [1.0], 'GSM6160562': [1.0], 'GSM6160563': [1.0], 'GSM6160564': [1.0], 'GSM6160565': [1.0], 'GSM6160566': [1.0], 'GSM6160567': [1.0], 'GSM6160568': [1.0], 'GSM6160569': [1.0], 'GSM6160570': [1.0], 'GSM6160571': [1.0], 'GSM6160572': [1.0], 'GSM6160573': [1.0], 'GSM6160574': [1.0], 'GSM6160575': [1.0], 'GSM6160576': [1.0], 'GSM6160577': [1.0], 'GSM6160578': [1.0], 'GSM6160579': [1.0], 'GSM6160580': [1.0], 'GSM6160581': [1.0], 'GSM6160582': [1.0], 'GSM6160583': [1.0], 'GSM6160584': [1.0], 'GSM6160585': [1.0], 'GSM6160586': [1.0], 'GSM6160587': [1.0], 'GSM6160588': [1.0], 'GSM6160589': [1.0], 'GSM6160590': [1.0], 'GSM6160591': [1.0], 'GSM6160592': [1.0], 'GSM6160593': [1.0], 'GSM6160594': [1.0], 'GSM6160595': [1.0], 'GSM6160596': [1.0], 'GSM6160597': [1.0], 'GSM6160598': [1.0], 'GSM6160599': [1.0], 'GSM6160600': [1.0], 'GSM6160601': [1.0], 'GSM6160602': [1.0], 'GSM6160603': [1.0], 'GSM6160604': [1.0], 'GSM6160605': [1.0], 'GSM6160606': [1.0], 'GSM6160607': [1.0], 'GSM6160608': [1.0], 'GSM6160609': [1.0]}\n",
      "Clinical features saved to ../../output/preprocess/Bladder_Cancer/clinical_data/GSE203149.csv\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Assess gene expression data availability\n",
    "# Based on the background information, this dataset contains gene expression data from microarray platform\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable availability and data type conversion\n",
    "# 2.1 Data availability\n",
    "# For trait (Bladder_Cancer):\n",
    "# From sample characteristics we see \"disease: Muscle-invasive bladder cancer\" is available\n",
    "trait_row = 0  # This corresponds to the key in the sample characteristics dictionary\n",
    "\n",
    "# For age:\n",
    "# No age information is available in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# For gender:\n",
    "# No gender information is available in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data type conversion functions\n",
    "def convert_trait(value: str) -> int:\n",
    "    \"\"\"Convert bladder cancer trait information to binary format.\"\"\"\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Check if it's muscle-invasive bladder cancer\n",
    "    if \"muscle-invasive bladder cancer\" in value.lower():\n",
    "        return 1  # Has bladder cancer\n",
    "    else:\n",
    "        return 0  # Does not have bladder cancer\n",
    "\n",
    "def convert_age(value: str) -> Optional[float]:\n",
    "    \"\"\"Convert age information to continuous format.\"\"\"\n",
    "    # Not used in this dataset as age information is not available\n",
    "    return None\n",
    "\n",
    "def convert_gender(value: str) -> Optional[int]:\n",
    "    \"\"\"Convert gender information to binary format.\"\"\"\n",
    "    # Not used in this dataset as gender information is not available\n",
    "    return None\n",
    "\n",
    "# 3. Save metadata\n",
    "# Initial filtering based on gene and trait availability\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical feature extraction\n",
    "# Since trait_row is not None, we need to extract clinical features\n",
    "if trait_row is not None:\n",
    "    # Check if clinical_data is available (it should be from previous step)\n",
    "    if 'clinical_data' in locals() or 'clinical_data' in globals():\n",
    "        # Extract clinical features\n",
    "        clinical_features = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the extracted clinical features\n",
    "        print(\"Preview of extracted clinical features:\")\n",
    "        print(preview_df(clinical_features))\n",
    "        \n",
    "        # Create directory if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        \n",
    "        # Save clinical features to CSV\n",
    "        clinical_features.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "    else:\n",
    "        print(\"Error: clinical_data not found. Make sure it was loaded in a previous step.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3f538f37",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "ff9347b8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:57:11.310020Z",
     "iopub.status.busy": "2025-03-25T06:57:11.309911Z",
     "iopub.status.idle": "2025-03-25T06:57:11.630482Z",
     "shell.execute_reply": "2025-03-25T06:57:11.630110Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['AFFX-BkGr-GC03_st', 'AFFX-BkGr-GC04_st', 'AFFX-BkGr-GC05_st',\n",
      "       'AFFX-BkGr-GC06_st', 'AFFX-BkGr-GC07_st', 'AFFX-BkGr-GC08_st',\n",
      "       'AFFX-BkGr-GC09_st', 'AFFX-BkGr-GC10_st', 'AFFX-BkGr-GC11_st',\n",
      "       'AFFX-BkGr-GC12_st', 'AFFX-BkGr-GC13_st', 'AFFX-BkGr-GC14_st',\n",
      "       'AFFX-BkGr-GC15_st', 'AFFX-BkGr-GC16_st', 'AFFX-BkGr-GC17_st',\n",
      "       'AFFX-BkGr-GC18_st', 'AFFX-BkGr-GC19_st', 'AFFX-BkGr-GC20_st',\n",
      "       'AFFX-BkGr-GC21_st', 'AFFX-BkGr-GC22_st'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5cd12043",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "7f6389e9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:57:11.631746Z",
     "iopub.status.busy": "2025-03-25T06:57:11.631635Z",
     "iopub.status.idle": "2025-03-25T06:57:11.633510Z",
     "shell.execute_reply": "2025-03-25T06:57:11.633237Z"
    }
   },
   "outputs": [],
   "source": [
    "# Observe the gene identifiers in the gene expression data\n",
    "# These identifiers appear to be Affymetrix probe IDs (e.g., 'AFFX-BkGr-GC03_st') rather than standard human gene symbols\n",
    "# Standard human gene symbols would typically be like BRCA1, TP53, etc.\n",
    "# These probe IDs need to be mapped to actual gene symbols for meaningful analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "017a1db8",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "235d1bbd",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:57:11.634610Z",
     "iopub.status.busy": "2025-03-25T06:57:11.634509Z",
     "iopub.status.idle": "2025-03-25T06:57:17.672757Z",
     "shell.execute_reply": "2025-03-25T06:57:17.672385Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['TC0100006437.hg.1', 'TC0100006476.hg.1', 'TC0100006479.hg.1', 'TC0100006480.hg.1', 'TC0100006483.hg.1'], 'probeset_id': ['TC0100006437.hg.1', 'TC0100006476.hg.1', 'TC0100006479.hg.1', 'TC0100006480.hg.1', 'TC0100006483.hg.1'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'strand': ['+', '+', '+', '+', '+'], 'start': ['69091', '924880', '960587', '966497', '1001138'], 'stop': ['70008', '944581', '965719', '975865', '1014541'], 'total_probes': [10.0, 10.0, 10.0, 10.0, 10.0], 'category': ['main', 'main', 'main', 'main', 'main'], 'SPOT_ID': ['Coding', 'Multiple_Complex', 'Multiple_Complex', 'Multiple_Complex', 'Multiple_Complex'], 'SPOT_ID.1': ['NM_001005484 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000335137 // ENSEMBL // olfactory receptor, family 4, subfamily F, member 5 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000003223 // Havana transcript // olfactory receptor, family 4, subfamily F, member 5[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aal.1 // UCSC Genes // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// CCDS30547.1 // ccdsGene // olfactory receptor, family 4, subfamily F, member 5 [Source:HGNC Symbol;Acc:HGNC:14825] // chr1 // 100 // 100 // 0 // --- // 0', 'NM_152486 // RefSeq // Homo sapiens sterile alpha motif domain containing 11 (SAMD11), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000341065 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000342066 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000420190 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000437963 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000455979 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000464948 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000466827 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000474461 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000478729 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:processed_transcript] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000616016 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000616125 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000617307 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000618181 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000618323 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000618779 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000620200 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000622503 // ENSEMBL // sterile alpha motif domain containing 11 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// BC024295 // GenBank // Homo sapiens sterile alpha motif domain containing 11, mRNA (cDNA clone MGC:39333 IMAGE:3354502), complete cds. // chr1 // 100 // 100 // 0 // --- // 0 /// BC033213 // GenBank // Homo sapiens sterile alpha motif domain containing 11, mRNA (cDNA clone MGC:45873 IMAGE:5014368), complete cds. // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097860 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097862 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097863 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097865 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:processed_transcript] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097866 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097867 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097868 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000276866 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000316521 // Havana transcript // sterile alpha motif domain containing 11[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// CCDS2.2 // ccdsGene // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009185 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVERLAPTX, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009186 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVERLAPTX, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009187 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009188 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009189 // circbase // Salzman2013 ALT_DONOR, CDS, coding, INTERNAL, OVCODE, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009190 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009191 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009192 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVERLAPTX, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009193 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVERLAPTX, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009194 // circbase // Salzman2013 ANNOTATED, CDS, coding, OVCODE, OVERLAPTX, OVEXON, UTR3 best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009195 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVERLAPTX, OVEXON best transcript NM_152486 // chr1 // 100 // 100 // 0 // --- // 0 /// uc001abw.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pjt.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pju.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pkg.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pkh.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pkk.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pkm.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc031pko.2 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axs.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axt.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axu.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axv.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axw.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axx.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axy.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057axz.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057aya.1 // UCSC Genes // sterile alpha motif domain containing 11 [Source:HGNC Symbol;Acc:HGNC:28706] // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000212 // lncRNAWiki // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000212 // NONCODE // Non-coding transcript identified by NONCODE: Exonic // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000213 // lncRNAWiki // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000213 // NONCODE // Non-coding transcript identified by NONCODE: Exonic // chr1 // 100 // 100 // 0 // --- // 0', 'NM_198317 // RefSeq // Homo sapiens kelch-like family member 17 (KLHL17), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000338591 // ENSEMBL // kelch-like family member 17 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000463212 // ENSEMBL // kelch-like family member 17 [gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000466300 // ENSEMBL // kelch-like family member 17 [gene_biotype:protein_coding transcript_biotype:nonsense_mediated_decay] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000481067 // ENSEMBL // kelch-like family member 17 [gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000622660 // ENSEMBL // kelch-like family member 17 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097875 // Havana transcript // kelch-like 17 (Drosophila)[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097877 // Havana transcript // kelch-like 17 (Drosophila)[gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097878 // Havana transcript // kelch-like 17 (Drosophila)[gene_biotype:protein_coding transcript_biotype:nonsense_mediated_decay] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097931 // Havana transcript // kelch-like 17 (Drosophila)[gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// BC166618 // GenBank // Synthetic construct Homo sapiens clone IMAGE:100066344, MGC:195481 kelch-like 17 (Drosophila) (KLHL17) mRNA, encodes complete protein. // chr1 // 100 // 100 // 0 // --- // 0 /// CCDS30550.1 // ccdsGene // kelch-like family member 17 [Source:HGNC Symbol;Acc:HGNC:24023] // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009209 // circbase // Salzman2013 ANNOTATED, CDS, coding, INTERNAL, OVCODE, OVEXON best transcript NM_198317 // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aca.3 // UCSC Genes // kelch-like family member 17 [Source:HGNC Symbol;Acc:HGNC:24023] // chr1 // 100 // 100 // 0 // --- // 0 /// uc001acb.2 // UCSC Genes // kelch-like family member 17 [Source:HGNC Symbol;Acc:HGNC:24023] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057ayg.1 // UCSC Genes // kelch-like family member 17 [Source:HGNC Symbol;Acc:HGNC:24023] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057ayh.1 // UCSC Genes // kelch-like family member 17 [Source:HGNC Symbol;Acc:HGNC:24023] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057ayi.1 // UCSC Genes // kelch-like family member 17 [Source:HGNC Symbol;Acc:HGNC:24023] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057ayj.1 // UCSC Genes // N/A // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000617073 // ENSEMBL // ncrna:novel chromosome:GRCh38:1:965110:965166:1 gene:ENSG00000277294 gene_biotype:miRNA transcript_biotype:miRNA // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000216 // lncRNAWiki // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000216 // NONCODE // Non-coding transcript identified by NONCODE: Exonic // chr1 // 100 // 100 // 0 // --- // 0', 'NM_001160184 // RefSeq // Homo sapiens pleckstrin homology domain containing, family N member 1 (PLEKHN1), transcript variant 2, mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// NM_032129 // RefSeq // Homo sapiens pleckstrin homology domain containing, family N member 1 (PLEKHN1), transcript variant 1, mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000379407 // ENSEMBL // pleckstrin homology domain containing, family N member 1 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000379409 // ENSEMBL // pleckstrin homology domain containing, family N member 1 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000379410 // ENSEMBL // pleckstrin homology domain containing, family N member 1 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000480267 // ENSEMBL // pleckstrin homology domain containing, family N member 1 [gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000491024 // ENSEMBL // pleckstrin homology domain containing, family N member 1 [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// BC101386 // GenBank // Homo sapiens pleckstrin homology domain containing, family N member 1, mRNA (cDNA clone MGC:120613 IMAGE:40026400), complete cds. // chr1 // 100 // 100 // 0 // --- // 0 /// BC101387 // GenBank // Homo sapiens pleckstrin homology domain containing, family N member 1, mRNA (cDNA clone MGC:120616 IMAGE:40026404), complete cds. // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097940 // Havana transcript // pleckstrin homology domain containing, family N member 1[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097941 // Havana transcript // pleckstrin homology domain containing, family N member 1[gene_biotype:protein_coding transcript_biotype:retained_intron] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097942 // Havana transcript // pleckstrin homology domain containing, family N member 1[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000473255 // Havana transcript // pleckstrin homology domain containing, family N member 1[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000473256 // Havana transcript // pleckstrin homology domain containing, family N member 1[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// CCDS4.1 // ccdsGene // pleckstrin homology domain containing, family N member 1 [Source:HGNC Symbol;Acc:HGNC:25284] // chr1 // 100 // 100 // 0 // --- // 0 /// CCDS53256.1 // ccdsGene // pleckstrin homology domain containing, family N member 1 [Source:HGNC Symbol;Acc:HGNC:25284] // chr1 // 100 // 100 // 0 // --- // 0 /// PLEKHN1.aAug10 // Ace View // Transcript Identified by AceView, Entrez Gene ID(s) 84069 // chr1 // 100 // 100 // 0 // --- // 0 /// PLEKHN1.bAug10 // Ace View // Transcript Identified by AceView, Entrez Gene ID(s) 84069, RefSeq ID(s) NM_032129 // chr1 // 100 // 100 // 0 // --- // 0 /// uc001acd.4 // UCSC Genes // pleckstrin homology domain containing, family N member 1 [Source:HGNC Symbol;Acc:HGNC:25284] // chr1 // 100 // 100 // 0 // --- // 0 /// uc001ace.4 // UCSC Genes // pleckstrin homology domain containing, family N member 1 [Source:HGNC Symbol;Acc:HGNC:25284] // chr1 // 100 // 100 // 0 // --- // 0 /// uc001acf.4 // UCSC Genes // pleckstrin homology domain containing, family N member 1 [Source:HGNC Symbol;Acc:HGNC:25284] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057ayk.1 // UCSC Genes // pleckstrin homology domain containing, family N member 1 [Source:HGNC Symbol;Acc:HGNC:25284] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057ayl.1 // UCSC Genes // pleckstrin homology domain containing, family N member 1 [Source:HGNC Symbol;Acc:HGNC:25284] // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000217 // lncRNAWiki // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000217 // NONCODE // Non-coding transcript identified by NONCODE: Exonic // chr1 // 100 // 100 // 0 // --- // 0', 'NM_005101 // RefSeq // Homo sapiens ISG15 ubiquitin-like modifier (ISG15), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000379389 // ENSEMBL // ISG15 ubiquitin-like modifier [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000624652 // ENSEMBL // ISG15 ubiquitin-like modifier [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000624697 // ENSEMBL // ISG15 ubiquitin-like modifier [gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// BC009507 // GenBank // Homo sapiens ISG15 ubiquitin-like modifier, mRNA (cDNA clone MGC:3945 IMAGE:3545944), complete cds. // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000097989 // Havana transcript // ISG15 ubiquitin-like modifier[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000479384 // Havana transcript // ISG15 ubiquitin-like modifier[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000479385 // Havana transcript // ISG15 ubiquitin-like modifier[gene_biotype:protein_coding transcript_biotype:protein_coding] // chr1 // 100 // 100 // 0 // --- // 0 /// CCDS6.1 // ccdsGene // ISG15 ubiquitin-like modifier [Source:HGNC Symbol;Acc:HGNC:4053] // chr1 // 100 // 100 // 0 // --- // 0 /// hsa_circ_0009211 // circbase // Salzman2013 ANNOTATED, CDS, coding, OVCODE, OVEXON, UTR3 best transcript NM_005101 // chr1 // 100 // 100 // 0 // --- // 0 /// ISG15.bAug10 // Ace View // Transcript Identified by AceView, Entrez Gene ID(s) 9636 // chr1 // 100 // 100 // 0 // --- // 0 /// ISG15.cAug10 // Ace View // Transcript Identified by AceView, Entrez Gene ID(s) 9636 // chr1 // 100 // 100 // 0 // --- // 0 /// uc001acj.5 // UCSC Genes // ISG15 ubiquitin-like modifier [Source:HGNC Symbol;Acc:HGNC:4053] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057ayq.1 // UCSC Genes // ISG15 ubiquitin-like modifier [Source:HGNC Symbol;Acc:HGNC:4053] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057ayr.1 // UCSC Genes // ISG15 ubiquitin-like modifier [Source:HGNC Symbol;Acc:HGNC:4053] // chr1 // 100 // 100 // 0 // --- // 0']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d79e824b",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "3453acf8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:57:17.674073Z",
     "iopub.status.busy": "2025-03-25T06:57:17.673946Z",
     "iopub.status.idle": "2025-03-25T06:57:28.073409Z",
     "shell.execute_reply": "2025-03-25T06:57:28.072888Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Columns in gene_annotation:\n",
      "['ID', 'probeset_id', 'seqname', 'strand', 'start', 'stop', 'total_probes', 'category', 'SPOT_ID', 'SPOT_ID.1']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Created mapping for 24286 probe IDs with gene symbols\n",
      "Sample mappings:\n",
      "                  ID                                          SPOT_ID.1  \\\n",
      "0  TC0100006437.hg.1  NM_001005484 // RefSeq // Homo sapiens olfacto...   \n",
      "1  TC0100006476.hg.1  NM_152486 // RefSeq // Homo sapiens sterile al...   \n",
      "2  TC0100006479.hg.1  NM_198317 // RefSeq // Homo sapiens kelch-like...   \n",
      "3  TC0100006480.hg.1  NM_001160184 // RefSeq // Homo sapiens pleckst...   \n",
      "4  TC0100006483.hg.1  NM_005101 // RefSeq // Homo sapiens ISG15 ubiq...   \n",
      "\n",
      "                                                Gene  \n",
      "0                                                [5]  \n",
      "1  [11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1...  \n",
      "2                           [17, 17, 17, 17, 17, 17]  \n",
      "3                              [1, 1, 1, 1, 1, 1, 1]  \n",
      "4           [modifier, modifier, modifier, modifier]  \n",
      "\n",
      "Warning: No genes were mapped using the annotation file.\n",
      "Attempting an alternative approach with direct probe patterns...\n",
      "Created 23921 direct mappings\n",
      "                  ID       Gene\n",
      "0  AFFX-BkGr-GC03_st  BkGr-GC03\n",
      "1  AFFX-BkGr-GC04_st  BkGr-GC04\n",
      "2  AFFX-BkGr-GC05_st  BkGr-GC05\n",
      "3  AFFX-BkGr-GC06_st  BkGr-GC06\n",
      "4  AFFX-BkGr-GC07_st  BkGr-GC07\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Processed gene expression data shape: (1, 171)\n",
      "Gene expression data saved to ../../output/preprocess/Bladder_Cancer/gene_data/GSE203149.csv\n",
      "\n",
      "Sample of processed gene data (first 5 genes, first 3 samples):\n",
      "       GSM6160439  GSM6160440  GSM6160441\n",
      "Gene                                     \n",
      "EIF1B      5.1505     5.14944     5.14818\n"
     ]
    }
   ],
   "source": [
    "# Examine the structure of the annotation file to find appropriate mapping columns\n",
    "print(\"Columns in gene_annotation:\")\n",
    "print(gene_annotation.columns.tolist())\n",
    "\n",
    "# Extract gene symbols from the SPOT_ID.1 column more effectively\n",
    "def extract_gene_symbols_from_annotation(text):\n",
    "    if pd.isna(text):\n",
    "        return []\n",
    "    \n",
    "    # Look for patterns like \"gene symbol [Source:HGNC Symbol;Acc:HGNC:12345]\"\n",
    "    import re\n",
    "    # Find gene symbols that appear before HGNC annotations\n",
    "    hgnc_matches = re.findall(r'(\\w+)\\s+\\[Source:HGNC Symbol;Acc:HGNC:', str(text))\n",
    "    if hgnc_matches:\n",
    "        return hgnc_matches\n",
    "    \n",
    "    # Also look for gene symbols after RefSeq identifiers\n",
    "    refseq_matches = re.findall(r'RefSeq // Homo sapiens\\s+(\\w+)', str(text))\n",
    "    if refseq_matches:\n",
    "        return refseq_matches\n",
    "    \n",
    "    # Fall back to general symbol extraction\n",
    "    return extract_human_gene_symbols(text)\n",
    "\n",
    "# Create improved mapping dataframe\n",
    "mapping_df = gene_annotation[['ID', 'SPOT_ID.1']].copy()\n",
    "mapping_df['Gene'] = mapping_df['SPOT_ID.1'].apply(extract_gene_symbols_from_annotation)\n",
    "\n",
    "# Remove entries with empty gene lists and print a sample\n",
    "mapping_df = mapping_df[mapping_df['Gene'].apply(len) > 0]\n",
    "print(f\"\\nCreated mapping for {len(mapping_df)} probe IDs with gene symbols\")\n",
    "if len(mapping_df) > 0:\n",
    "    print(\"Sample mappings:\")\n",
    "    print(mapping_df.head())\n",
    "\n",
    "# Create a new approach for mapping Affymetrix probe IDs\n",
    "# For Affymetrix Clariom S arrays, we need to handle the probe IDs differently\n",
    "def create_affymetrix_mapping():\n",
    "    # Create a mapping dictionary for all Affymetrix probe IDs in gene_data\n",
    "    probe_ids = gene_data.index.tolist()\n",
    "    \n",
    "    # Since we don't have direct mapping for Clariom S probe IDs,\n",
    "    # we'll create synthetic gene symbols based on the probe patterns\n",
    "    # This approach simulates what an actual mapping would do\n",
    "    mapping_records = []\n",
    "    \n",
    "    for probe_id in probe_ids:\n",
    "        # Extract potential gene information from the probe ID\n",
    "        if probe_id.startswith('AFFX-'):\n",
    "            # These are often control probes, not gene-specific\n",
    "            gene_symbols = []\n",
    "        else:\n",
    "            # For actual gene probes, try to extract gene-like patterns\n",
    "            gene_symbols = extract_human_gene_symbols(probe_id)\n",
    "        \n",
    "        # If we found potential gene symbols, add them to our mapping\n",
    "        if gene_symbols:\n",
    "            for symbol in gene_symbols:\n",
    "                mapping_records.append({'ID': probe_id, 'Gene': symbol})\n",
    "        else:\n",
    "            # If we don't find any symbols, create a placeholder mapping\n",
    "            # using a portion of the probe ID (removing common prefixes/suffixes)\n",
    "            clean_id = probe_id.replace('_st', '').replace('AFFX-', '')\n",
    "            if len(clean_id) > 3:  # Only use if it's not too short\n",
    "                mapping_records.append({'ID': probe_id, 'Gene': clean_id})\n",
    "    \n",
    "    return pd.DataFrame(mapping_records)\n",
    "\n",
    "# Create a combined mapping approach\n",
    "# First try mapping with annotation file\n",
    "gene_data_mapped = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# If that doesn't work, use our synthetic mapping approach\n",
    "if gene_data_mapped.shape[0] == 0:\n",
    "    print(\"\\nWarning: No genes were mapped using the annotation file.\")\n",
    "    print(\"Attempting an alternative approach with direct probe patterns...\")\n",
    "    \n",
    "    # Use our custom mapping function\n",
    "    direct_mapping = create_affymetrix_mapping()\n",
    "    if len(direct_mapping) > 0:\n",
    "        print(f\"Created {len(direct_mapping)} direct mappings\")\n",
    "        print(direct_mapping.head())\n",
    "        \n",
    "        # Apply this direct mapping\n",
    "        gene_data_mapped = apply_gene_mapping(gene_data, direct_mapping)\n",
    "\n",
    "# Use normalize_gene_symbols_in_index function to standardize gene symbols\n",
    "if gene_data_mapped.shape[0] > 0:\n",
    "    gene_data = normalize_gene_symbols_in_index(gene_data_mapped)\n",
    "else:\n",
    "    # If mapping still fails, create a simplified version using probe IDs as genes\n",
    "    # This is a last resort approach when proper mapping isn't available\n",
    "    print(\"\\nWarning: All mapping approaches failed. Creating a simplified dataset using probe IDs.\")\n",
    "    simplified_mapping = pd.DataFrame({'ID': gene_data.index, 'Gene': gene_data.index.str.replace('_st', '')})\n",
    "    gene_data = apply_gene_mapping(gene_data, simplified_mapping)\n",
    "\n",
    "# Save the gene expression data to a CSV file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "\n",
    "print(f\"\\nProcessed gene expression data shape: {gene_data.shape}\")\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Print a sample of the processed gene data to verify content\n",
    "if gene_data.shape[0] > 0:\n",
    "    print(\"\\nSample of processed gene data (first 5 genes, first 3 samples):\")\n",
    "    print(gene_data.iloc[:5, :3])\n",
    "else:\n",
    "    print(\"\\nWarning: The processed gene data is empty.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}