File size: 22,013 Bytes
e4183cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "a02231ce",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:30:17.265262Z",
     "iopub.status.busy": "2025-03-25T08:30:17.265152Z",
     "iopub.status.idle": "2025-03-25T08:30:17.423688Z",
     "shell.execute_reply": "2025-03-25T08:30:17.423325Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"COVID-19\"\n",
    "cohort = \"GSE211378\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/COVID-19\"\n",
    "in_cohort_dir = \"../../input/GEO/COVID-19/GSE211378\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/COVID-19/GSE211378.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/COVID-19/gene_data/GSE211378.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/COVID-19/clinical_data/GSE211378.csv\"\n",
    "json_path = \"../../output/preprocess/COVID-19/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d7caed5d",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "c571c381",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:30:17.425142Z",
     "iopub.status.busy": "2025-03-25T08:30:17.424993Z",
     "iopub.status.idle": "2025-03-25T08:30:17.462470Z",
     "shell.execute_reply": "2025-03-25T08:30:17.462154Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Whole Blood profiling of COVID convalescent and Healthy donors with nCounter\"\n",
      "!Series_summary\t\"This study investigated the cellular immune response in people who had recovered from SARS-CoV2 infection (COVID-19).\"\n",
      "!Series_overall_design\t\"264 Whole Blood samples from 160 COVID convalescent donors, and 40 from Healthy donors.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['sample.id: host response panel  1 wb', 'sample.id: host response panel 2 wb', 'sample.id: host response panel 3 wb', 'sample.id: host response panel 4 wb', 'sample.id: host response panel plate 25 wb 11292020', 'sample.id: host response panel plate 5 wb 11 19 2020', 'sample.id: host response panel plate 6 wb 11192020', 'sample.id: host response panel plate 7 wb 11 20 2020', 'sample.id: host response panel plate 8 wb 11202020', 'sample.id: host response panel plate 26 wb 11302020', 'sample.id: host response panel plate 9 wb 11212020', 'sample.id: host response panel plate 10 wb 11212020', 'sample.id: host response panel plate 11 wb 11222020', 'sample.id: host response panel plate 12 wb 11222020', 'sample.id: host response panel plate 13 11232020', 'sample.id: host response panel plate 14 wb 11232020', 'sample.id: host response panel plate 15 wb 11242020', 'sample.id: host response panel plate 16 wb 11242020', 'sample.id: host response panel plate 17 wb 11252020', 'sample.id: host response panel plate 18 wb 11252020', 'sample.id: host response panel plate 19 wb 11262020', 'sample.id: host response panel plate 20 wb 11262020', 'sample.id: host response panel plate 21 wb 11272020', 'sample.id: host response panel plate 22 wb 11272020', 'sample.id: host response panel plate 23 11282020', 'sample.id: host response panel plate 24 wb 11292020'], 1: ['date: 20201018', 'date: 20201019', 'date: 20201129', 'date: 20201119', 'date: 20201120', 'date: 20201130', 'date: 20201121', 'date: 20201122', 'date: 20201123', 'date: 20201124', 'date: 20201125', 'date: 20201126', 'date: 20201127', 'date: 20201128'], 2: ['generlf: NS_Hs_HostResponse_v1.0'], 3: ['systemapf: n6_vDV1'], 4: ['lane.number: 1', 'lane.number: 2', 'lane.number: 3', 'lane.number: 4', 'lane.number: 5', 'lane.number: 6', 'lane.number: 7', 'lane.number: 8', 'lane.number: 9', 'lane.number: 10', 'lane.number: 11', 'lane.number: 12'], 5: ['fovcount: 555'], 6: ['fovcounted: 551', 'fovcounted: 549', 'fovcounted: 544', 'fovcounted: 535', 'fovcounted: 546', 'fovcounted: 541', 'fovcounted: 540', 'fovcounted: 538', 'fovcounted: 532', 'fovcounted: 543', 'fovcounted: 536', 'fovcounted: 537', 'fovcounted: 534', 'fovcounted: 542', 'fovcounted: 545', 'fovcounted: 528', 'fovcounted: 547', 'fovcounted: 526', 'fovcounted: 550', 'fovcounted: 554', 'fovcounted: 552', 'fovcounted: 539', 'fovcounted: 530', 'fovcounted: 548', 'fovcounted: 553', 'fovcounted: 555', 'fovcounted: 515', 'fovcounted: 522', 'fovcounted: 521', 'fovcounted: 533'], 7: ['scannerid: 1906C0614'], 8: ['stageposition: 1', 'stageposition: 2'], 9: ['bindingdensity: 0.92', 'bindingdensity: 1.1', 'bindingdensity: 1.52', 'bindingdensity: 1.75', 'bindingdensity: 1.94', 'bindingdensity: 2.49', 'bindingdensity: 1.98', 'bindingdensity: 1.69', 'bindingdensity: 1.44', 'bindingdensity: 2.91', 'bindingdensity: 1.81', 'bindingdensity: 2.18', 'bindingdensity: 1.82', 'bindingdensity: 1.72', 'bindingdensity: 2.09', 'bindingdensity: 1.66', 'bindingdensity: 1.87', 'bindingdensity: 1.51', 'bindingdensity: 2.27', 'bindingdensity: 2.51', 'bindingdensity: 1.88', 'bindingdensity: 2.15', 'bindingdensity: 2.1', 'bindingdensity: 1.54', 'bindingdensity: 1.33', 'bindingdensity: 1.04', 'bindingdensity: 1.45', 'bindingdensity: 1.63', 'bindingdensity: 1.7', 'bindingdensity: 3.1'], 10: ['cartridgeid: host response panel wb 1', 'cartridgeid: host response panel 2 wb', 'cartridgeid: host response panel 3 wb', 'cartridgeid: host response panel 4 wb', 'cartridgeid: host response panel plate 25 wb 11292020', 'cartridgeid: host response panel plate 5 wb 11 19 2020', 'cartridgeid: host response panel plate 6 wb 11 19 2020', 'cartridgeid: host response panel plate 7 wb 11 20 2020', 'cartridgeid: host response panel plate 8 wb 11202020', 'cartridgeid: host response panel plate 26 wb 11302020', 'cartridgeid: host response panel plate 9 wb 11212020', 'cartridgeid: host response panel plate 10 wb 11212020', 'cartridgeid: host response panel plate 11 wb 11222020', 'cartridgeid: host response panel plate 12 wb 11222020', 'cartridgeid: host response panel plate 13 wb 11232020', 'cartridgeid: host response panel plate 14 wb 11232020', 'cartridgeid: host response panel plate 15 wb 11242020', 'cartridgeid: host response panel plate 16 wb 11242020', 'cartridgeid: host response panel plate 17 wb 11252020', 'cartridgeid: host response panel plate 18 wb 11252020', 'cartridgeid: host response panel plate 19 wb 11262020', 'cartridgeid: host response panel plate 20 wb 11262020', 'cartridgeid: host response panel plate 21 wb 11272020', 'cartridgeid: host response panel plate 22 wb 11272020', 'cartridgeid: host response panel plate 23 wb 11282020', 'cartridgeid: host response panel plate 24 wb 11292020'], 11: ['cartridgebarcode: NA'], 12: ['nanostring_id: 12590', 'nanostring_id: 12591_51', 'nanostring_id: 12645_21', 'nanostring_id: 12650', 'nanostring_id: 12672', 'nanostring_id: 12688_41', 'nanostring_id: 12693_21', 'nanostring_id: 12694_21', 'nanostring_id: 12700_21', 'nanostring_id: 12707_31', 'nanostring_id: 12708 _51', 'nanostring_id: 12709_21', 'nanostring_id: 12721', 'nanostring_id: 12726_21', 'nanostring_id: 12727', 'nanostring_id: 12733', 'nanostring_id: 12736', 'nanostring_id: 12745', 'nanostring_id: 12751_41', 'nanostring_id: 12766', 'nanostring_id: 12772_31', 'nanostring_id: 12774', 'nanostring_id: 12781', 'nanostring_id: 12786_21', 'nanostring_id: 12792_21', 'nanostring_id: 12812_31', 'nanostring_id: 12830_51', 'nanostring_id: 12862_21', 'nanostring_id: 12889_31', 'nanostring_id: 12896_52']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b3bdde7f",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "56c3816e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:30:17.463571Z",
     "iopub.status.busy": "2025-03-25T08:30:17.463463Z",
     "iopub.status.idle": "2025-03-25T08:30:17.486520Z",
     "shell.execute_reply": "2025-03-25T08:30:17.486220Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "is_gene_available = True  # The background suggests this is gene expression profiling data\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# There are no clear clinical data columns in the sample characteristics\n",
    "# From the background information: \"264 Whole Blood samples from 160 COVID convalescent donors, \n",
    "# and 40 from Healthy donors.\" implies there is COVID-19 status information\n",
    "# However, it's not available in the sample characteristics dictionary\n",
    "trait_row = None  # No clear trait information in characteristics\n",
    "age_row = None    # No age information found\n",
    "gender_row = None # No gender information found\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    # Function to convert COVID-19 status, though not used in this dataset\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    value = value.lower().split(': ')[-1].strip()\n",
    "    if 'covid' in value or 'convalescent' in value or 'infected' in value or 'positive' in value:\n",
    "        return 1\n",
    "    elif 'healthy' in value or 'control' in value or 'negative' in value:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    # Function to convert age to continuous values, though not used in this dataset\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    try:\n",
    "        # Extract the value after the colon and convert to float\n",
    "        age_value = value.split(': ')[-1].strip()\n",
    "        return float(age_value)\n",
    "    except (ValueError, AttributeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    # Function to convert gender to binary, though not used in this dataset\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    value = value.lower().split(': ')[-1].strip()\n",
    "    if value in ['female', 'f', 'woman']:\n",
    "        return 0\n",
    "    elif value in ['male', 'm', 'man']:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Initial validation - check if the dataset has both gene and trait data\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=(trait_row is not None)\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is None, we skip the clinical feature extraction step\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b7805f8e",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "d21ce447",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:30:17.487587Z",
     "iopub.status.busy": "2025-03-25T08:30:17.487482Z",
     "iopub.status.idle": "2025-03-25T08:30:17.538074Z",
     "shell.execute_reply": "2025-03-25T08:30:17.537762Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "SOFT file: ../../input/GEO/COVID-19/GSE211378/GSE211378_family.soft.gz\n",
      "Matrix file: ../../input/GEO/COVID-19/GSE211378/GSE211378_series_matrix.txt.gz\n",
      "Found the matrix table marker at line 84\n",
      "Gene data shape: (773, 304)\n",
      "First 20 gene/probe identifiers:\n",
      "['ACE', 'ACKR2', 'ACKR3', 'ACKR4', 'ACOX1', 'ACSL1', 'ACSL3', 'ACSL4', 'ACVR1', 'ADAR', 'ADGRE5', 'ADGRG3', 'ADORA2A', 'AGT', 'AHR', 'AIF1', 'AIM2', 'AKT1', 'AKT2', 'AKT3']\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"SOFT file: {soft_file}\")\n",
    "print(f\"Matrix file: {matrix_file}\")\n",
    "\n",
    "# Set gene availability flag\n",
    "is_gene_available = True  # Initially assume gene data is available\n",
    "\n",
    "# First check if the matrix file contains the expected marker\n",
    "found_marker = False\n",
    "marker_row = None\n",
    "try:\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        for i, line in enumerate(file):\n",
    "            if \"!series_matrix_table_begin\" in line:\n",
    "                found_marker = True\n",
    "                marker_row = i\n",
    "                print(f\"Found the matrix table marker at line {i}\")\n",
    "                break\n",
    "    \n",
    "    if not found_marker:\n",
    "        print(\"Warning: Could not find '!series_matrix_table_begin' marker in the file.\")\n",
    "        is_gene_available = False\n",
    "        \n",
    "    # If marker was found, try to extract gene data\n",
    "    if is_gene_available:\n",
    "        try:\n",
    "            # Try using the library function\n",
    "            gene_data = get_genetic_data(matrix_file)\n",
    "            \n",
    "            if gene_data.shape[0] == 0:\n",
    "                print(\"Warning: Extracted gene data has 0 rows.\")\n",
    "                is_gene_available = False\n",
    "            else:\n",
    "                print(f\"Gene data shape: {gene_data.shape}\")\n",
    "                # Print the first 20 gene/probe identifiers\n",
    "                print(\"First 20 gene/probe identifiers:\")\n",
    "                print(gene_data.index[:20].tolist())\n",
    "        except Exception as e:\n",
    "            print(f\"Error extracting gene data with get_genetic_data(): {e}\")\n",
    "            is_gene_available = False\n",
    "    \n",
    "    # If gene data extraction failed, examine file content to diagnose\n",
    "    if not is_gene_available:\n",
    "        print(\"Examining file content to diagnose the issue:\")\n",
    "        try:\n",
    "            with gzip.open(matrix_file, 'rt') as file:\n",
    "                # Print lines around the marker if found\n",
    "                if marker_row is not None:\n",
    "                    for i, line in enumerate(file):\n",
    "                        if i >= marker_row - 2 and i <= marker_row + 10:\n",
    "                            print(f\"Line {i}: {line.strip()[:100]}...\")\n",
    "                        if i > marker_row + 10:\n",
    "                            break\n",
    "                else:\n",
    "                    # If marker not found, print first 10 lines\n",
    "                    for i, line in enumerate(file):\n",
    "                        if i < 10:\n",
    "                            print(f\"Line {i}: {line.strip()[:100]}...\")\n",
    "                        else:\n",
    "                            break\n",
    "        except Exception as e2:\n",
    "            print(f\"Error examining file: {e2}\")\n",
    "        \n",
    "except Exception as e:\n",
    "    print(f\"Error processing file: {e}\")\n",
    "    is_gene_available = False\n",
    "\n",
    "# Update validation information if gene data extraction failed\n",
    "if not is_gene_available:\n",
    "    print(\"Gene expression data could not be successfully extracted from this dataset.\")\n",
    "    # Update the validation record since gene data isn't available\n",
    "    is_trait_available = False  # We already determined trait data isn't available in step 2\n",
    "    validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,\n",
    "                                 is_gene_available=is_gene_available, is_trait_available=is_trait_available)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e6399076",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "c3f4cf66",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:30:17.539166Z",
     "iopub.status.busy": "2025-03-25T08:30:17.539060Z",
     "iopub.status.idle": "2025-03-25T08:30:17.540809Z",
     "shell.execute_reply": "2025-03-25T08:30:17.540516Z"
    }
   },
   "outputs": [],
   "source": [
    "# Review the gene identifiers based on biomedical knowledge\n",
    "# The identifiers appear to be standard human gene symbols (ACE, ACKR2, AKT1, etc.)\n",
    "# These are official HGNC gene symbols and do not need to be mapped\n",
    "\n",
    "requires_gene_mapping = False\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b167cfa2",
   "metadata": {},
   "source": [
    "### Step 5: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "8759dfa4",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:30:17.541818Z",
     "iopub.status.busy": "2025-03-25T08:30:17.541714Z",
     "iopub.status.idle": "2025-03-25T08:30:17.772820Z",
     "shell.execute_reply": "2025-03-25T08:30:17.772451Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape after normalization: (758, 304)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/COVID-19/gene_data/GSE211378.csv\n",
      "Empty clinical features saved to ../../output/preprocess/COVID-19/clinical_data/GSE211378.csv\n",
      "Abnormality detected in the cohort: GSE211378. Preprocessing failed.\n",
      "Linked data not created or saved due to missing trait information.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Create output directory if it doesn't exist\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "\n",
    "# Save the normalized gene data\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Create empty clinical data for record-keeping purposes\n",
    "empty_clinical_df = pd.DataFrame()\n",
    "\n",
    "# Create directory for clinical data output\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "\n",
    "# Save the empty clinical features\n",
    "empty_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Empty clinical features saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Since we don't have trait data, we can't perform:\n",
    "# - linking with gene data\n",
    "# - handling missing values\n",
    "# - determining trait bias\n",
    "# - creating usable linked data\n",
    "\n",
    "# For validation purposes, mark the dataset as unusable due to lack of trait data\n",
    "is_trait_available = False  # No trait data available as determined in Step 2\n",
    "is_biased = True  # Mark as biased (unusable) since we can't analyze trait-related bias\n",
    "\n",
    "# Validate and save cohort info - mark as unusable due to missing trait data\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,\n",
    "    df=empty_clinical_df,  # Use empty DataFrame as placeholder\n",
    "    note=\"Dataset contains gene expression data but lacks necessary trait information for COVID-19 analysis.\"\n",
    ")\n",
    "\n",
    "print(\"Linked data not created or saved due to missing trait information.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}