File size: 40,370 Bytes
f88156f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "35a15ec2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:14:43.712650Z",
     "iopub.status.busy": "2025-03-25T08:14:43.712245Z",
     "iopub.status.idle": "2025-03-25T08:14:43.880452Z",
     "shell.execute_reply": "2025-03-25T08:14:43.880100Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Cervical_Cancer\"\n",
    "cohort = \"GSE75132\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Cervical_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Cervical_Cancer/GSE75132\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Cervical_Cancer/GSE75132.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Cervical_Cancer/gene_data/GSE75132.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Cervical_Cancer/clinical_data/GSE75132.csv\"\n",
    "json_path = \"../../output/preprocess/Cervical_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fbb97a89",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "173e46df",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:14:43.881857Z",
     "iopub.status.busy": "2025-03-25T08:14:43.881714Z",
     "iopub.status.idle": "2025-03-25T08:14:44.033563Z",
     "shell.execute_reply": "2025-03-25T08:14:44.033263Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"TMEM45A, SERPINB5 and p16INK4A transcript levels are predictive for development of high-grade cervical lesions\"\n",
      "!Series_summary\t\"Women persistently infected with human papillomavirus (HPV) type 16 are at high risk for development of cervical intraepithelial neoplasia grade 3 or cervical cancer (CIN3+). We aimed to identify biomarkers for progression to CIN3+ in women with persistent HPV16 infection. In this prospective study, 11,088 women aged 20–29 years were enrolled during 1991-1993, and re-invited for a second visit two years later. Cervical cytology samples obtained at both visits were tested for HPV DNA by Hybrid Capture 2 (HC2), and HC2-positive samples were genotyped by INNO-LiPA. The cohort was followed for up to 19 years via a national pathology register. To identify markers for progression to CIN3+, we performed microarray analysis on RNA extracted from cervical swabs of 30 women with persistent HPV16-infection and 11 HPV-negative women. After further validation, we found that high mRNA expression levels of TMEM45A, SERPINB5 and p16INK4a were associated with increased risk of CIN3+ in persistently HPV16-infected women.\"\n",
      "!Series_overall_design\t\"We aimed at identifying genes differentially expressed in women with persistent HPV16 infection that either progressed to CIN3+ or not. As a test of principle we first compared HPV16 persistently infected women with HPV-negative women.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['tissue: cervix'], 1: ['category (0 = normal, 1 = hpv without progression, 2 = hpv with progression): 0', 'category (0 = normal, 1 = hpv without progression, 2 = hpv with progression): 1', 'category (0 = normal, 1 = hpv without progression, 2 = hpv with progression): 2'], 2: ['hpv status: none', 'hpv status: HPV-16'], 3: ['disease state: none', 'disease state: moderate dysplasia', 'disease state: severe dysplasia', 'disease state: CIS', 'disease state: cancer']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "74909649",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "14d442aa",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:14:44.034580Z",
     "iopub.status.busy": "2025-03-25T08:14:44.034468Z",
     "iopub.status.idle": "2025-03-25T08:14:44.042074Z",
     "shell.execute_reply": "2025-03-25T08:14:44.041773Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of selected clinical data:\n",
      "{'GSM1943705': [0.0], 'GSM1943706': [0.0], 'GSM1943707': [0.0], 'GSM1943708': [0.0], 'GSM1943709': [0.0], 'GSM1943710': [0.0], 'GSM1943711': [0.0], 'GSM1943712': [1.0], 'GSM1943713': [1.0], 'GSM1943714': [1.0], 'GSM1943715': [0.0], 'GSM1943716': [0.0], 'GSM1943717': [0.0], 'GSM1943718': [0.0], 'GSM1943719': [0.0], 'GSM1943720': [0.0], 'GSM1943721': [0.0], 'GSM1943722': [0.0], 'GSM1943723': [1.0], 'GSM1943724': [0.0], 'GSM1943725': [0.0], 'GSM1943726': [1.0], 'GSM1943727': [1.0], 'GSM1943728': [0.0], 'GSM1943729': [0.0], 'GSM1943730': [1.0], 'GSM1943731': [1.0], 'GSM1943732': [1.0], 'GSM1943733': [1.0], 'GSM1943734': [0.0], 'GSM1943735': [1.0], 'GSM1943736': [0.0], 'GSM1943737': [1.0], 'GSM1943738': [1.0], 'GSM1943739': [1.0], 'GSM1943740': [1.0], 'GSM1943741': [1.0], 'GSM1943742': [1.0], 'GSM1943743': [1.0], 'GSM1943744': [1.0], 'GSM1943745': [1.0]}\n",
      "Clinical data saved to ../../output/preprocess/Cervical_Cancer/clinical_data/GSE75132.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the series summary, this dataset appears to contain gene expression data\n",
    "# (mentions microarray analysis and mRNA expression levels)\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# Analyzing sample characteristics dictionary\n",
    "\n",
    "# For trait (cervical cancer):\n",
    "# Key 1 contains category info: 0 = normal, 1 = hpv without progression, 2 = hpv with progression\n",
    "# Key 3 contains disease state: none, moderate dysplasia, severe dysplasia, CIS, cancer\n",
    "# We'll use Key 1 as it directly indicates progression\n",
    "trait_row = 1\n",
    "\n",
    "# For age:\n",
    "# There is no age information in the sample characteristics dictionary\n",
    "age_row = None\n",
    "\n",
    "# For gender:\n",
    "# This study focuses on women (from background information), but there's no explicit gender field\n",
    "# All participants are women, which makes gender a constant and not useful for our study\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"\n",
    "    Convert trait values to binary:\n",
    "    0 = normal, 1 = HPV without progression -> 0 (no cancer/high-grade lesion)\n",
    "    2 = HPV with progression -> 1 (has cancer/high-grade lesion)\n",
    "    \"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        category = int(value)\n",
    "        # 0, 1 = no progression to CIN3+, 2 = progression to CIN3+\n",
    "        return 1 if category == 2 else 0\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Placeholder function for age conversion\"\"\"\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Placeholder function for gender conversion\"\"\"\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Trait data is available (trait_row is not None)\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Get clinical data from the clinical_data DataFrame\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the selected clinical data\n",
    "    print(\"Preview of selected clinical data:\")\n",
    "    print(preview_df(selected_clinical_df))\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the clinical data to CSV\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8d3c38c1",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "059d35fb",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:14:44.043006Z",
     "iopub.status.busy": "2025-03-25T08:14:44.042892Z",
     "iopub.status.idle": "2025-03-25T08:14:44.243769Z",
     "shell.execute_reply": "2025-03-25T08:14:44.243382Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at', '1294_at',\n",
      "       '1316_at', '1320_at', '1405_i_at', '1431_at', '1438_at', '1487_at',\n",
      "       '1494_f_at', '1552256_a_at', '1552257_a_at', '1552258_at', '1552261_at',\n",
      "       '1552263_at', '1552264_a_at', '1552266_at'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "51ed277d",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "cd50af4e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:14:44.245156Z",
     "iopub.status.busy": "2025-03-25T08:14:44.245034Z",
     "iopub.status.idle": "2025-03-25T08:14:44.246964Z",
     "shell.execute_reply": "2025-03-25T08:14:44.246678Z"
    }
   },
   "outputs": [],
   "source": [
    "# The gene identifiers shown are Affymetrix probe IDs, not human gene symbols\n",
    "# These identifiers follow the Affymetrix format (e.g., \"1007_s_at\", \"1053_at\")\n",
    "# These will need to be mapped to standard gene symbols for proper analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4f8ffec6",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "5480d88c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:14:44.248289Z",
     "iopub.status.busy": "2025-03-25T08:14:44.248184Z",
     "iopub.status.idle": "2025-03-25T08:14:48.340074Z",
     "shell.execute_reply": "2025-03-25T08:14:48.339672Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\", 'X69699 /FEATURE= /DEFINITION=HSPAX8A H.sapiens Pax8 mRNA', 'L36861 /FEATURE=expanded_cds /DEFINITION=HUMGCAPB Homo sapiens guanylate cyclase activating protein (GCAP) gene exons 1-4, complete cds'], 'Representative Public ID': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1 /// microRNA 4640', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\", 'paired box 8', 'guanylate cyclase activator 1A (retina)'], 'Gene Symbol': ['DDR1 /// MIR4640', 'RFC2', 'HSPA6', 'PAX8', 'GUCA1A'], 'ENTREZ_GENE_ID': ['780 /// 100616237', '5982', '3310', '7849', '2978'], 'RefSeq Transcript ID': ['NM_001202521 /// NM_001202522 /// NM_001202523 /// NM_001954 /// NM_013993 /// NM_013994 /// NR_039783 /// XM_005249385 /// XM_005249386 /// XM_005249387 /// XM_005249389 /// XM_005272873 /// XM_005272874 /// XM_005272875 /// XM_005272877 /// XM_005275027 /// XM_005275028 /// XM_005275030 /// XM_005275031 /// XM_005275162 /// XM_005275163 /// XM_005275164 /// XM_005275166 /// XM_005275457 /// XM_005275458 /// XM_005275459 /// XM_005275461 /// XM_006715185 /// XM_006715186 /// XM_006715187 /// XM_006715188 /// XM_006715189 /// XM_006715190 /// XM_006725501 /// XM_006725502 /// XM_006725503 /// XM_006725504 /// XM_006725505 /// XM_006725506 /// XM_006725714 /// XM_006725715 /// XM_006725716 /// XM_006725717 /// XM_006725718 /// XM_006725719 /// XM_006725720 /// XM_006725721 /// XM_006725722 /// XM_006725827 /// XM_006725828 /// XM_006725829 /// XM_006725830 /// XM_006725831 /// XM_006725832 /// XM_006726017 /// XM_006726018 /// XM_006726019 /// XM_006726020 /// XM_006726021 /// XM_006726022 /// XR_427836 /// XR_430858 /// XR_430938 /// XR_430974 /// XR_431015', 'NM_001278791 /// NM_001278792 /// NM_001278793 /// NM_002914 /// NM_181471 /// XM_006716080', 'NM_002155', 'NM_003466 /// NM_013951 /// NM_013952 /// NM_013953 /// NM_013992', 'NM_000409 /// XM_006715073'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007565 // female pregnancy // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0007595 // lactation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0010715 // regulation of extracellular matrix disassembly // inferred from mutant phenotype /// 0014909 // smooth muscle cell migration // inferred from mutant phenotype /// 0016310 // phosphorylation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0030198 // extracellular matrix organization // traceable author statement /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from direct assay /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from mutant phenotype /// 0038083 // peptidyl-tyrosine autophosphorylation // inferred from direct assay /// 0043583 // ear development // inferred from electronic annotation /// 0044319 // wound healing, spreading of cells // inferred from mutant phenotype /// 0046777 // protein autophosphorylation // inferred from direct assay /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation /// 0061302 // smooth muscle cell-matrix adhesion // inferred from mutant phenotype', '0000278 // mitotic cell cycle // traceable author statement /// 0000722 // telomere maintenance via recombination // traceable author statement /// 0000723 // telomere maintenance // traceable author statement /// 0006260 // DNA replication // traceable author statement /// 0006271 // DNA strand elongation involved in DNA replication // traceable author statement /// 0006281 // DNA repair // traceable author statement /// 0006283 // transcription-coupled nucleotide-excision repair // traceable author statement /// 0006289 // nucleotide-excision repair // traceable author statement /// 0006297 // nucleotide-excision repair, DNA gap filling // traceable author statement /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation /// 0032201 // telomere maintenance via semi-conservative replication // traceable author statement', '0000902 // cell morphogenesis // inferred from electronic annotation /// 0006200 // ATP catabolic process // inferred from direct assay /// 0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement /// 0034605 // cellular response to heat // inferred from direct assay /// 0042026 // protein refolding // inferred from direct assay /// 0070370 // cellular heat acclimation // inferred from mutant phenotype', '0001655 // urogenital system development // inferred from sequence or structural similarity /// 0001656 // metanephros development // inferred from electronic annotation /// 0001658 // branching involved in ureteric bud morphogenesis // inferred from expression pattern /// 0001822 // kidney development // inferred from expression pattern /// 0001823 // mesonephros development // inferred from sequence or structural similarity /// 0003337 // mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from expression pattern /// 0006351 // transcription, DNA-templated // inferred from direct assay /// 0006355 // regulation of transcription, DNA-templated // inferred from electronic annotation /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0007417 // central nervous system development // inferred from expression pattern /// 0009653 // anatomical structure morphogenesis // traceable author statement /// 0030154 // cell differentiation // inferred from electronic annotation /// 0030878 // thyroid gland development // inferred from expression pattern /// 0030878 // thyroid gland development // inferred from mutant phenotype /// 0038194 // thyroid-stimulating hormone signaling pathway // traceable author statement /// 0039003 // pronephric field specification // inferred from sequence or structural similarity /// 0042472 // inner ear morphogenesis // inferred from sequence or structural similarity /// 0042981 // regulation of apoptotic process // inferred from sequence or structural similarity /// 0045893 // positive regulation of transcription, DNA-templated // inferred from direct assay /// 0045893 // positive regulation of transcription, DNA-templated // inferred from sequence or structural similarity /// 0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from direct assay /// 0048793 // pronephros development // inferred from sequence or structural similarity /// 0071371 // cellular response to gonadotropin stimulus // inferred from direct assay /// 0071599 // otic vesicle development // inferred from expression pattern /// 0072050 // S-shaped body morphogenesis // inferred from electronic annotation /// 0072073 // kidney epithelium development // inferred from electronic annotation /// 0072108 // positive regulation of mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from sequence or structural similarity /// 0072164 // mesonephric tubule development // inferred from electronic annotation /// 0072207 // metanephric epithelium development // inferred from expression pattern /// 0072221 // metanephric distal convoluted tubule development // inferred from sequence or structural similarity /// 0072278 // metanephric comma-shaped body morphogenesis // inferred from expression pattern /// 0072284 // metanephric S-shaped body morphogenesis // inferred from expression pattern /// 0072289 // metanephric nephron tubule formation // inferred from sequence or structural similarity /// 0072305 // negative regulation of mesenchymal cell apoptotic process involved in metanephric nephron morphogenesis // inferred from sequence or structural similarity /// 0072307 // regulation of metanephric nephron tubule epithelial cell differentiation // inferred from sequence or structural similarity /// 0090190 // positive regulation of branching involved in ureteric bud morphogenesis // inferred from sequence or structural similarity /// 1900212 // negative regulation of mesenchymal cell apoptotic process involved in metanephros development // inferred from sequence or structural similarity /// 1900215 // negative regulation of apoptotic process involved in metanephric collecting duct development // inferred from sequence or structural similarity /// 1900218 // negative regulation of apoptotic process involved in metanephric nephron tubule development // inferred from sequence or structural similarity /// 2000594 // positive regulation of metanephric DCT cell differentiation // inferred from sequence or structural similarity /// 2000611 // positive regulation of thyroid hormone generation // inferred from mutant phenotype /// 2000612 // regulation of thyroid-stimulating hormone secretion // inferred from mutant phenotype', '0007165 // signal transduction // non-traceable author statement /// 0007601 // visual perception // inferred from electronic annotation /// 0007602 // phototransduction // inferred from electronic annotation /// 0007603 // phototransduction, visible light // traceable author statement /// 0016056 // rhodopsin mediated signaling pathway // traceable author statement /// 0022400 // regulation of rhodopsin mediated signaling pathway // traceable author statement /// 0030828 // positive regulation of cGMP biosynthetic process // inferred from electronic annotation /// 0031282 // regulation of guanylate cyclase activity // inferred from electronic annotation /// 0031284 // positive regulation of guanylate cyclase activity // inferred from electronic annotation /// 0050896 // response to stimulus // inferred from electronic annotation'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from direct assay /// 0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0043235 // receptor complex // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // traceable author statement /// 0005663 // DNA replication factor C complex // inferred from direct assay', '0005737 // cytoplasm // inferred from direct assay /// 0005814 // centriole // inferred from direct assay /// 0005829 // cytosol // inferred from direct assay /// 0008180 // COP9 signalosome // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay /// 0072562 // blood microparticle // inferred from direct assay', '0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // inferred from sequence or structural similarity /// 0005730 // nucleolus // inferred from direct assay', '0001750 // photoreceptor outer segment // inferred from electronic annotation /// 0001917 // photoreceptor inner segment // inferred from electronic annotation /// 0005578 // proteinaceous extracellular matrix // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from direct assay /// 0016020 // membrane // inferred from electronic annotation /// 0097381 // photoreceptor disc membrane // traceable author statement'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0005518 // collagen binding // inferred from direct assay /// 0005518 // collagen binding // inferred from mutant phenotype /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation /// 0016772 // transferase activity, transferring phosphorus-containing groups // inferred from electronic annotation /// 0038062 // protein tyrosine kinase collagen receptor activity // inferred from direct assay /// 0046872 // metal ion binding // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0019899 // enzyme binding // inferred from physical interaction /// 0031072 // heat shock protein binding // inferred from physical interaction /// 0042623 // ATPase activity, coupled // inferred from direct assay /// 0051082 // unfolded protein binding // inferred from direct assay', '0000979 // RNA polymerase II core promoter sequence-specific DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from mutant phenotype /// 0003700 // sequence-specific DNA binding transcription factor activity // inferred from direct assay /// 0004996 // thyroid-stimulating hormone receptor activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0044212 // transcription regulatory region DNA binding // inferred from direct assay', '0005509 // calcium ion binding // inferred from electronic annotation /// 0008048 // calcium sensitive guanylate cyclase activator activity // inferred from electronic annotation /// 0030249 // guanylate cyclase regulator activity // inferred from electronic annotation /// 0046872 // metal ion binding // inferred from electronic annotation']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "25e490ff",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "4bf31d86",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:14:48.341906Z",
     "iopub.status.busy": "2025-03-25T08:14:48.341753Z",
     "iopub.status.idle": "2025-03-25T08:14:48.575943Z",
     "shell.execute_reply": "2025-03-25T08:14:48.575607Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of gene expression data after mapping to gene symbols:\n",
      "          GSM1943705  GSM1943706  GSM1943707  GSM1943708  GSM1943709  \\\n",
      "Gene                                                                   \n",
      "A1BG        1.032389    0.986202    0.936563    1.013798    0.965226   \n",
      "A1BG-AS1    1.076463    1.023866    0.976135    0.767677    1.106595   \n",
      "A1CF        2.353623    2.309421    2.039288    1.753579    2.287533   \n",
      "A2M         1.072777    1.911737    2.092174    4.958586    1.907385   \n",
      "A2M-AS1     0.918707    1.081293    0.888401    1.709019    1.016094   \n",
      "\n",
      "          GSM1943710  GSM1943711  GSM1943712  GSM1943713  GSM1943714  ...  \\\n",
      "Gene                                                                  ...   \n",
      "A1BG        0.811767    1.080926    1.102330    1.068037    0.972866  ...   \n",
      "A1BG-AS1    0.924322    0.739589    0.594443    0.710322    0.855746  ...   \n",
      "A1CF        2.433992    1.931220    2.282252    2.156752    2.383711  ...   \n",
      "A2M         2.698037    1.543511    6.906710    7.613314    6.972384  ...   \n",
      "A2M-AS1     1.043235    0.699383    1.585462    1.391174    1.334602  ...   \n",
      "\n",
      "          GSM1943736  GSM1943737  GSM1943738  GSM1943739  GSM1943740  \\\n",
      "Gene                                                                   \n",
      "A1BG        0.846730    0.704898    0.866517    0.722030    0.811113   \n",
      "A1BG-AS1    0.808535    1.377336    0.839350    1.604427    1.426464   \n",
      "A1CF        2.391118    2.360402    1.976881    2.322690    2.299839   \n",
      "A2M        16.743799    2.066519    1.257927    2.310633    2.415756   \n",
      "A2M-AS1     1.288826    0.844866    0.758321    1.186909    0.843312   \n",
      "\n",
      "          GSM1943741  GSM1943742  GSM1943743  GSM1943744  GSM1943745  \n",
      "Gene                                                                  \n",
      "A1BG        1.030468    0.824696    1.102732    0.781911    0.595599  \n",
      "A1BG-AS1    0.775930    0.955580    0.823132    0.650883    0.973279  \n",
      "A1CF        1.768942    2.043908    1.923226    2.117629    2.023336  \n",
      "A2M         8.587512    9.828966    1.719649    1.040886    2.497739  \n",
      "A2M-AS1     1.265806    2.261954    1.442125    1.028159    1.003458  \n",
      "\n",
      "[5 rows x 41 columns]\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the columns in gene_annotation that contain probe IDs and gene symbols\n",
    "# From the preview, we can see that 'ID' contains probe IDs (matching the expression data index)\n",
    "# and 'Gene Symbol' contains gene symbols\n",
    "prob_col = 'ID'\n",
    "gene_col = 'Gene Symbol'\n",
    "\n",
    "# 2. Use the get_gene_mapping function to extract the mapping between probe IDs and gene symbols\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Preview the first few rows of the mapped gene expression data\n",
    "print(\"Preview of gene expression data after mapping to gene symbols:\")\n",
    "print(gene_data.head())\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a4b16f27",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "dd414c02",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:14:48.577669Z",
     "iopub.status.busy": "2025-03-25T08:14:48.577555Z",
     "iopub.status.idle": "2025-03-25T08:14:55.771699Z",
     "shell.execute_reply": "2025-03-25T08:14:55.771278Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Cervical_Cancer/gene_data/GSE75132.csv\n",
      "Clinical data shape: (1, 40)\n",
      "Clinical data preview:\n",
      "            GSM1943706  GSM1943707  GSM1943708  GSM1943709  GSM1943710  \\\n",
      "GSM1943705                                                               \n",
      "0.0                0.0         0.0         0.0         0.0         0.0   \n",
      "\n",
      "            GSM1943711  GSM1943712  GSM1943713  GSM1943714  GSM1943715  ...  \\\n",
      "GSM1943705                                                              ...   \n",
      "0.0                0.0         1.0         1.0         1.0         0.0  ...   \n",
      "\n",
      "            GSM1943736  GSM1943737  GSM1943738  GSM1943739  GSM1943740  \\\n",
      "GSM1943705                                                               \n",
      "0.0                0.0         1.0         1.0         1.0         1.0   \n",
      "\n",
      "            GSM1943741  GSM1943742  GSM1943743  GSM1943744  GSM1943745  \n",
      "GSM1943705                                                              \n",
      "0.0                1.0         1.0         1.0         1.0         1.0  \n",
      "\n",
      "[1 rows x 40 columns]\n",
      "Clinical data columns: ['GSM1943706', 'GSM1943707', 'GSM1943708', 'GSM1943709', 'GSM1943710', 'GSM1943711', 'GSM1943712', 'GSM1943713', 'GSM1943714', 'GSM1943715', 'GSM1943716', 'GSM1943717', 'GSM1943718', 'GSM1943719', 'GSM1943720', 'GSM1943721', 'GSM1943722', 'GSM1943723', 'GSM1943724', 'GSM1943725', 'GSM1943726', 'GSM1943727', 'GSM1943728', 'GSM1943729', 'GSM1943730', 'GSM1943731', 'GSM1943732', 'GSM1943733', 'GSM1943734', 'GSM1943735', 'GSM1943736', 'GSM1943737', 'GSM1943738', 'GSM1943739', 'GSM1943740', 'GSM1943741', 'GSM1943742', 'GSM1943743', 'GSM1943744', 'GSM1943745']\n",
      "Actual trait column: 0.0\n",
      "Linked data shape: (41, 19846)\n",
      "Linked data columns preview: [0.0, 'A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "For the feature 'Cervical_Cancer', the least common label is '0.0' with 20 occurrences. This represents 50.00% of the dataset.\n",
      "The distribution of the feature 'Cervical_Cancer' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Cervical_Cancer/GSE75132.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Load the clinical data that was processed earlier\n",
    "clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "# Set index for proper linking\n",
    "clinical_df = clinical_df.set_index(clinical_df.columns[0])\n",
    "print(\"Clinical data shape:\", clinical_df.shape)\n",
    "print(\"Clinical data preview:\")\n",
    "print(clinical_df.head())\n",
    "print(\"Clinical data columns:\", clinical_df.columns.tolist())\n",
    "\n",
    "# Get the actual trait column name from the clinical data\n",
    "# Based on previous steps, we know we converted trait_row (row 1 of the original matrix) \n",
    "# to a binary value representing cervical cancer progression\n",
    "actual_trait_col = clinical_df.index[0]  # This gets the name of the binary trait we created\n",
    "print(f\"Actual trait column: {actual_trait_col}\")\n",
    "\n",
    "# 2. Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)\n",
    "print(\"Linked data shape:\", linked_data.shape)\n",
    "print(\"Linked data columns preview:\", linked_data.columns[:10].tolist())\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "# Use the actual trait column instead of the variable name\n",
    "linked_data = handle_missing_values(linked_data, actual_trait_col)\n",
    "\n",
    "# Rename the trait column to match the expected trait name\n",
    "linked_data = linked_data.rename(columns={actual_trait_col: trait})\n",
    "\n",
    "# 4. Determine whether the trait and demographic features are severely biased, and remove biased features\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains cervical samples with HPV-16 infection, some with progression to high-grade lesions (CIN3+)\"\n",
    ")\n",
    "\n",
    "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}