File size: 30,607 Bytes
e4183cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "ac16a7e6",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Depression\"\n",
"cohort = \"GSE135524\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Depression\"\n",
"in_cohort_dir = \"../../input/GEO/Depression/GSE135524\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Depression/GSE135524.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Depression/gene_data/GSE135524.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Depression/clinical_data/GSE135524.csv\"\n",
"json_path = \"../../output/preprocess/Depression/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "7a644843",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c4a47f30",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "f3290c90",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "da652e54",
"metadata": {},
"outputs": [],
"source": [
"I'll write code for the current step that fixes the syntax issues and correctly processes the clinical data.\n",
"\n",
"```python\n",
"# 1. Gene Expression Data Availability\n",
"# Checking if gene expression data is available based on the background information\n",
"# The study seems to involve gene expression analysis in whole blood samples\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"\n",
"# 2.1 Data Availability\n",
"# For trait (Depression) - using psychomotor composite score as a proxy for depression severity\n",
"trait_row = 7 # psychomotor composite score\n",
"\n",
"# For age\n",
"age_row = 1 # age\n",
"\n",
"# For gender\n",
"gender_row = 2 # Sex\n",
"\n",
"# 2.2 Data Type Conversion functions\n",
"def convert_trait(value):\n",
" \"\"\"Convert psychomotor composite score to a continuous value.\"\"\"\n",
" if value is None or not isinstance(value, str):\n",
" return None\n",
" # Extract the value after the colon\n",
" parts = value.split(':', 1)\n",
" if len(parts) < 2:\n",
" return None\n",
" try:\n",
" # Convert to float as it's a continuous measure\n",
" return float(parts[1].strip())\n",
" except (ValueError, TypeError):\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age to a continuous value.\"\"\"\n",
" if value is None or not isinstance(value, str):\n",
" return None\n",
" # Extract the value after the colon\n",
" parts = value.split(':', 1)\n",
" if len(parts) < 2:\n",
" return None\n",
" try:\n",
" # Convert to int as age is typically a whole number\n",
" return int(parts[1].strip())\n",
" except (ValueError, TypeError):\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender to a binary value (0 for female, 1 for male).\"\"\"\n",
" if value is None or not isinstance(value, str):\n",
" return None\n",
" # Extract the value after the colon\n",
" parts = value.split(':', 1)\n",
" if len(parts) < 2:\n",
" return None\n",
" \n",
" gender_value = parts[1].strip().lower()\n",
" if 'female' in gender_value:\n",
" return 0\n",
" elif 'male' in gender_value:\n",
" return 1\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability based on trait_row\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save cohort info using the provided function\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Only proceed if trait_row is not None\n",
"if trait_row is not None:\n",
" # Create DataFrame from sample characteristics dictionary\n",
" # We'll use the sample characteristics dictionary from the previous step output\n",
" sample_characteristics_dict = {\n",
" 0: ['individual: Subject 71', 'individual: Subject 73', 'individual: Subject 74', 'individual: Subject 11', \n",
" 'individual: Subject 95', 'individual: Subject 41', 'individual: Subject 91', 'individual: Subject 108', \n",
" 'individual: Subject 109', 'individual: Subject 86', 'individual: Subject 66', 'individual: Subject 85', \n",
" 'individual: Subject 54', 'individual: Subject 20', 'individual: Subject 103', 'individual: Subject 15', \n",
" 'individual: Subject 13', 'individual: Subject 46', 'individual: Subject 30', 'individual: Subject 24', \n",
" 'individual: Subject 105', 'individual: Subject 48', 'individual: Subject 31', 'individual: Subject 37', \n",
" 'individual: Subject 104', 'individual: Subject 114', 'individual: Subject 61', 'individual: Subject 19', \n",
" 'individual: Subject 113', 'individual: Subject 110'],\n",
" 1: ['age: 55', 'age: 56', 'age: 24', 'age: 61', 'age: 40', 'age: 35', 'age: 41', 'age: 26', 'age: 64', \n",
" 'age: 43', 'age: 29', 'age: 34', 'age: 25', 'age: 28', 'age: 27', 'age: 33', 'age: 51', 'age: 52', \n",
" 'age: 45', 'age: 42', 'age: 46', 'age: 49', 'age: 38', 'age: 39', 'age: 30', 'age: 32', 'age: 36', \n",
" 'age: 22', 'age: 37', 'age: 44'],\n",
" 2: ['Sex: Male', 'Sex: Female'],\n",
" 3: ['bmi: 24.079', 'bmi: 28.313', 'bmi: 26.549', 'bmi: 25.833', 'bmi: 40.436', 'bmi: 21.658', 'bmi: 52.288', \n",
" 'bmi: 43.208', 'bmi: 34.132', 'bmi: 32.029', 'bmi: 32.058', 'bmi: 31.462', 'bmi: 27.924', 'bmi: 44.688', \n",
" 'bmi: 38.714', 'bmi: 47.837', 'bmi: 37.67', 'bmi: 27.179', 'bmi: 29.966', 'bmi: 35.833', 'bmi: 24.355', \n",
" 'bmi: 48.598', 'bmi: 30.613', 'bmi: 27.653', 'bmi: 28.954', 'bmi: 33.489', 'bmi: 27.836', 'bmi: 39.585', \n",
" 'bmi: 30.08', 'bmi: 21.696'],\n",
" 4: ['race: White', 'race: Black'],\n",
" 5: ['hamd score excluding item 8: 25', 'hamd score excluding item 8: 23', 'hamd score excluding item 8: 21', \n",
" 'hamd score excluding item 8: 28', 'hamd score excluding item 8: 24', 'hamd score excluding item 8: 29', \n",
" 'hamd score excluding item 8: 22', 'hamd score excluding item 8: 19', 'hamd score excluding item 8: 30', \n",
" 'hamd score excluding item 8: 20', 'hamd score excluding item 8: 26', 'hamd score excluding item 8: 27', \n",
" 'hamd score excluding item 8: 17', 'hamd score excluding item 8: 18'],\n",
" 6: ['college (yes/no): 1', 'college (yes/no): 0'],\n",
" 7: ['psychomotor composite score: -0.06308', 'psychomotor composite score: 1.30018', \n",
" 'psychomotor composite score: -0.41699', 'psychomotor composite score: -0.17858', \n",
" 'psychomotor composite score: -0.64284', 'psychomotor composite score: -0.32956', \n",
" 'psychomotor composite score: 0.00218', 'psychomotor composite score: 2.51701', \n",
" 'psychomotor composite score: 1.2821', 'psychomotor composite score: 0.18995', \n",
" 'psychomotor composite score: -0.40531', 'psychomotor composite score: 0.57381', \n",
" 'psychomotor composite score: 0.8438', 'psychomotor composite score: 0.15064', \n",
" 'psychomotor composite score: 1.89099', 'psychomotor composite score: 1.03181', \n",
" 'psychomotor composite score: -1.73217', 'psychomotor composite score: -0.65832', \n",
" 'psychomotor composite score: 0.78252', 'psychomotor composite score: -1.36392', \n",
" 'psych\n"
]
},
{
"cell_type": "markdown",
"id": "6b997882",
"metadata": {},
"source": [
"### Step 3: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "046d9daf",
"metadata": {},
"outputs": [],
"source": [
"I'll provide a properly formatted Python code solution for this step:\n",
"\n",
"```python\n",
"# Let's analyze the dataset by looking at the results of the previous step\n",
"import os\n",
"import pandas as pd\n",
"import numpy as np\n",
"import json\n",
"import gzip\n",
"from typing import Callable, Optional, Dict, Any\n",
"import re\n",
"\n",
"# Let's look for the required files in the cohort directory\n",
"files = os.listdir(in_cohort_dir)\n",
"print(f\"Files in {in_cohort_dir}:\")\n",
"for file in files:\n",
" print(file)\n",
"\n",
"# First, let's check if there's a series matrix file which would contain the gene expression data\n",
"series_matrix_files = [f for f in files if \"series_matrix\" in f.lower()]\n",
"sample_characteristics = {}\n",
"\n",
"if series_matrix_files:\n",
" print(f\"Found series matrix file: {series_matrix_files[0]}\")\n",
" matrix_file = os.path.join(in_cohort_dir, series_matrix_files[0])\n",
" \n",
" # Use gzip to open the compressed file\n",
" with gzip.open(matrix_file, 'rt') as f:\n",
" # Read header lines to analyze the dataset\n",
" header_lines = []\n",
" line = f.readline()\n",
" while line and not line.startswith('!series_matrix_table_begin'):\n",
" header_lines.append(line.strip())\n",
" line = f.readline()\n",
" \n",
" # Extract sample characteristics\n",
" sample_chars_lines = [line for line in header_lines if \"!Sample_characteristics_ch1\" in line]\n",
" \n",
" if sample_chars_lines:\n",
" print(\"Sample characteristics found in series matrix file (first 10):\")\n",
" for i, line in enumerate(sample_chars_lines[:10]):\n",
" print(line.strip())\n",
" \n",
" # Build a dictionary to store unique values for each characteristic row\n",
" for i, line in enumerate(sample_chars_lines):\n",
" # Get sample characteristic values\n",
" values = re.findall(r'\"([^\"]*)\"', line)\n",
" if i not in sample_characteristics:\n",
" sample_characteristics[i] = []\n",
" sample_characteristics[i].extend(values)\n",
" \n",
" # Print unique values for each characteristic row to help identify relevant rows\n",
" print(\"\\nUnique values for each characteristic row:\")\n",
" for row, values in sample_characteristics.items():\n",
" unique_values = set(values)\n",
" print(f\"Row {row}: {unique_values}\")\n",
" \n",
" # Check if platform description indicates gene expression data\n",
" platform_lines = [line for line in header_lines if \"!Platform_\" in line]\n",
" platform_tech_lines = [line for line in platform_lines if \"_technology\" in line.lower() or \"_type\" in line.lower()]\n",
" \n",
" print(\"\\nPlatform information:\")\n",
" for line in platform_tech_lines:\n",
" print(line)\n",
"\n",
"# Based on our analysis of the characteristics rows, let's determine:\n",
"# 1. Gene expression data availability\n",
"# Assuming it's gene expression data based on platform information\n",
"is_gene_available = True # Update this based on actual platform information\n",
"\n",
"# 2. Trait, age, and gender data availability and row identification\n",
"# For now using None as placeholders, we'll update these after analyzing the data\n",
"trait_row = None # Row containing depression status\n",
"age_row = None # Row containing age information\n",
"gender_row = None # Row containing gender information\n",
"\n",
"# Let's analyze the sample characteristics to determine the correct rows\n",
"for row, values in sample_characteristics.items():\n",
" unique_values = set(values)\n",
" lower_values = [v.lower() if isinstance(v, str) else v for v in unique_values]\n",
" \n",
" # Check for trait information (depression)\n",
" if any((\"depress\" in v or \"mdd\" in v or \"control\" in v or \"patient\" in v or \"case\" in v or \n",
" \"healthy\" in v or \"disorder\" in v or \"illness\" in v) for v in lower_values if isinstance(v, str)):\n",
" if len(unique_values) > 1: # Ensure it's not a constant feature\n",
" trait_row = row\n",
" print(f\"Found Depression trait information at row {row}: {unique_values}\")\n",
" \n",
" # Check for age information\n",
" if any((\"age\" in v.lower() or \"years\" in v.lower()) for v in lower_values if isinstance(v, str)):\n",
" if len(unique_values) > 1: # Ensure it's not a constant feature\n",
" age_row = row\n",
" print(f\"Found age information at row {row}: {unique_values}\")\n",
" \n",
" # Check for gender information\n",
" if any((\"gender\" in v.lower() or \"sex\" in v.lower() or \"female\" in v.lower() or \"male\" in v.lower()) \n",
" for v in lower_values if isinstance(v, str)):\n",
" if len(unique_values) > 1: # Ensure it's not a constant feature\n",
" gender_row = row\n",
" print(f\"Found gender information at row {row}: {unique_values}\")\n",
"\n",
"# Define conversion functions based on the actual data patterns\n",
"def convert_trait(value):\n",
" \"\"\"Convert depression trait value to binary (0: control, 1: case).\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" value = value.lower().strip()\n",
" \n",
" # Extract value after colon if present\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" if any(term in value for term in [\"control\", \"healthy\", \"non-depressed\", \"normal\", \"nd\"]):\n",
" return 0\n",
" elif any(term in value for term in [\"depressed\", \"mdd\", \"depression\", \"patient\", \"case\"]):\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age value to continuous numeric value.\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract numeric part after colon if present\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Try to extract numbers from the string\n",
" matches = re.findall(r'\\d+(?:\\.\\d+)?', value)\n",
" if matches:\n",
" try:\n",
" age = float(matches[0])\n",
" return age\n",
" except ValueError:\n",
" return None\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender value to binary (0: female, 1: male).\"\"\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" value = value.lower().strip()\n",
" \n",
" # Extract value after colon if present\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" if any(term in value for term in [\"female\", \"f\", \"woman\", \"women\"]):\n",
" return 0\n",
" elif any(term in value for term in [\"male\", \"m\", \"man\", \"men\"]):\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# Save metadata with initial filtering\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# If clinical data is available, extract and save it\n",
"if trait_row is not None:\n",
" # Create a DataFrame from the sample characteristics\n",
" sample_ids = []\n",
" \n",
" with gzip.open(os.path.join(in_cohort_dir, series_matrix_files[0]), 'rt') as f:\n",
" for line in f:\n",
" if line.startswith('!Sample_geo_accession'):\n",
" sample_ids = re.findall(r'\"([^\"]*)\"', line)\n",
" break\n",
" \n",
" # Create a DataFrame with the correct structure for geo_select_clinical_features\n",
" clinical_data = pd.DataFrame(index=range(len(sample_characteristics)), columns=sample_ids)\n",
" \n",
" for row, values in sample_characteristics.items():\n",
" for i, value in enumerate(values):\n",
" if i < len(sample_ids):\n",
" clinical_data.iloc[row, i] = value\n",
" \n",
" # Extract clinical features\n",
" selected_clinical = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row\n"
]
},
{
"cell_type": "markdown",
"id": "7618eb97",
"metadata": {},
"source": [
"### Step 4: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "21a4847d",
"metadata": {},
"outputs": [],
"source": [
"# 1. Get the SOFT and matrix file paths again \n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"Matrix file found: {matrix_file}\")\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" \n",
" # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "a80ce1f5",
"metadata": {},
"source": [
"### Step 5: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5fa23c4f",
"metadata": {},
"outputs": [],
"source": [
"# Analyzing the gene identifiers\n",
"\n",
"# Based on the observed identifiers (ILMN_XXXXXXX), these are Illumina probe IDs,\n",
"# not standard human gene symbols. Illumina probe IDs are platform-specific identifiers\n",
"# used in Illumina microarray platforms.\n",
"\n",
"# These identifiers need to be mapped to standard human gene symbols\n",
"# for consistent cross-study analysis and biological interpretation.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "7df4da38",
"metadata": {},
"source": [
"### Step 6: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ca1967bd",
"metadata": {},
"outputs": [],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# Check if there are any platforms defined in the SOFT file that might contain annotation data\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" soft_content = f.read()\n",
"\n",
"# Look for platform sections in the SOFT file\n",
"platform_sections = re.findall(r'^!Platform_title\\s*=\\s*(.+)$', soft_content, re.MULTILINE)\n",
"if platform_sections:\n",
" print(f\"Platform title found: {platform_sections[0]}\")\n",
"\n",
"# Try to extract more annotation data by reading directly from the SOFT file\n",
"# Look for lines that might contain gene symbol mappings\n",
"symbol_pattern = re.compile(r'ID_REF\\s+Symbol|ID\\s+Gene Symbol', re.IGNORECASE)\n",
"annotation_lines = []\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" for line in f:\n",
" if symbol_pattern.search(line):\n",
" annotation_lines.append(line)\n",
" # Collect the next few lines to see the annotation structure\n",
" for _ in range(10):\n",
" annotation_lines.append(next(f, ''))\n",
"\n",
"if annotation_lines:\n",
" print(\"Found potential gene symbol mappings:\")\n",
" for line in annotation_lines:\n",
" print(line.strip())\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"\\nGene annotation preview:\")\n",
"print(preview_df(gene_annotation, n=10))\n",
"\n",
"# If we need an alternative source of mapping, check if there are any other annotation files in the cohort directory\n",
"cohort_files = os.listdir(in_cohort_dir)\n",
"annotation_files = [f for f in cohort_files if 'annotation' in f.lower() or 'platform' in f.lower()]\n",
"if annotation_files:\n",
" print(\"\\nAdditional annotation files found in the cohort directory:\")\n",
" for file in annotation_files:\n",
" print(file)\n"
]
},
{
"cell_type": "markdown",
"id": "779a83fd",
"metadata": {},
"source": [
"### Step 7: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ba655e58",
"metadata": {},
"outputs": [],
"source": [
"# 1. Determine which columns in the gene annotation DataFrame contain probe IDs and gene symbols\n",
"# Based on the preview, 'ID' column contains probe IDs like ILMN_XXXXXXX, matching the gene_data index\n",
"# 'Symbol' column contains gene symbols\n",
"\n",
"# 2. Extract the probe-to-gene mapping columns\n",
"mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
"print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n",
"print(\"First few rows of the mapping dataframe:\")\n",
"print(mapping_df.head())\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene-level expression data\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
"print(\"First few gene symbols:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# 4. Normalize gene symbols to ensure consistency\n",
"gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene expression data shape after normalization: {gene_data.shape}\")\n",
"print(\"First few normalized gene symbols:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Save the gene expression data to a CSV file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "b11f479a",
"metadata": {},
"source": [
"### Step 8: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "57ff1fdf",
"metadata": {},
"outputs": [],
"source": [
"# 1. We'll normalize gene symbols in the gene expression data\n",
"# Note: We've already done this in step 7, so we can skip this part\n",
"\n",
"# 2. Link the clinical and genetic data\n",
"# First, let's re-acquire the clinical data from the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# Load the normalized gene expression data saved in the previous step\n",
"gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n",
"print(f\"Loaded gene expression data shape: {gene_data.shape}\")\n",
"\n",
"# Define conversion functions for clinical features\n",
"def convert_trait(value):\n",
" \"\"\"Convert psychomotor composite score to continuous value.\"\"\"\n",
" if isinstance(value, str) and \":\" in value:\n",
" parts = value.split(\":\", 1)\n",
" if len(parts) == 2:\n",
" try:\n",
" return float(parts[1].strip())\n",
" except ValueError:\n",
" return None\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age to a continuous value.\"\"\"\n",
" if isinstance(value, str) and \":\" in value:\n",
" parts = value.split(\":\", 1)\n",
" if len(parts) == 2:\n",
" try:\n",
" return int(parts[1].strip())\n",
" except ValueError:\n",
" return None\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender to a binary value (0 for female, 1 for male).\"\"\"\n",
" if isinstance(value, str) and \":\" in value:\n",
" parts = value.split(\":\", 1)\n",
" if len(parts) == 2:\n",
" gender_str = parts[1].strip().lower()\n",
" if \"female\" in gender_str:\n",
" return 0\n",
" elif \"male\" in gender_str:\n",
" return 1\n",
" return None\n",
"\n",
"# Extract clinical features using the correct rows from the sample characteristics\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=7, # Psychomotor composite score (row 7)\n",
" convert_trait=convert_trait,\n",
" age_row=1, # Age (row 1)\n",
" convert_age=convert_age,\n",
" gender_row=2, # Sex (row 2)\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_df))\n",
"\n",
"# Save clinical data for future reference\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# Link clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
"print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Linked data is empty\")\n",
"\n",
"# 3. Handle missing values\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 4. Check for bias in features\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 5. Validate and save cohort information\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=\"Dataset contains gene expression data from whole blood samples of depressed patients with psychomotor slowing traits.\"\n",
")\n",
"\n",
"# 6. Save the linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset is not usable for analysis. No linked data file saved.\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|