File size: 23,736 Bytes
32677ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f2874b44",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:38:16.038125Z",
     "iopub.status.busy": "2025-03-25T08:38:16.037889Z",
     "iopub.status.idle": "2025-03-25T08:38:16.208333Z",
     "shell.execute_reply": "2025-03-25T08:38:16.207994Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Depression\"\n",
    "cohort = \"GSE208668\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Depression\"\n",
    "in_cohort_dir = \"../../input/GEO/Depression/GSE208668\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Depression/GSE208668.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Depression/gene_data/GSE208668.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Depression/clinical_data/GSE208668.csv\"\n",
    "json_path = \"../../output/preprocess/Depression/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "106123a8",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "4b0a00c1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:38:16.209680Z",
     "iopub.status.busy": "2025-03-25T08:38:16.209534Z",
     "iopub.status.idle": "2025-03-25T08:38:16.303303Z",
     "shell.execute_reply": "2025-03-25T08:38:16.302971Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Sleep Disturbance and Activation of Cellular and Transcriptional Mechanisms of Inflammation in Older Adults\"\n",
      "!Series_summary\t\"Genome-wide transcriptional profiling results were used to systematically assess the extent to which transcriptomes of older adults with insomnia show expression of genes that are different from those without insomnia\"\n",
      "!Series_overall_design\t\"Total RNA obtained from peripheral blood mononuclear cells (PBMCs) of older adults with insomnia disorder who participated in the Behavioral Treatment of Insomnia in Aging study (n = 17) and older adults without insomnia disorder who participated in the Sleep Health and Aging Research (SHARE) study (n = 25) at UCLA.\"\n",
      "!Series_overall_design\t\"\"\n",
      "!Series_overall_design\t\"**Please note that raw data was lost and thus is not included in the records**\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['insomnia: yes', 'insomnia: no'], 1: ['age: 65', 'age: 75', 'age: 77', 'age: 64', 'age: 60', 'age: 67', 'age: 72', 'age: 62', 'age: 73', 'age: 74', 'age: 68', 'age: 70', 'age: 61', 'age: 66', 'age: 69', 'age: 71', 'age: 63', 'age: 78', 'age: 79', 'age: 80'], 2: ['gender: female', 'gender: male'], 3: ['race: white', 'race: non-white'], 4: ['education (years): 16', 'education (years): 15', 'education (years): 17', 'education (years): 12', 'education (years): 14', 'education (years): 20', 'education (years): 24', 'education (years): 18', 'education (years): 19'], 5: ['bmi: 21.49923325', 'bmi: 26.41070366', 'bmi: 31.28330994', 'bmi: 25.7443676', 'bmi: 31.59882355', 'bmi: 25.72408867', 'bmi: 27.29999924', 'bmi: 21.45385742', 'bmi: 24.88647461', 'bmi: 24.12071037', 'bmi: 26.60000038', 'bmi: 20.5', 'bmi: 30.81934929', 'bmi: 31.29999924', 'bmi: 23.5', 'bmi: 27.39999962', 'bmi: 22.60000038', 'bmi: 21.28', 'bmi: 26.77', 'bmi: 31.45', 'bmi: 18.84', 'bmi: 29.81', 'bmi: 24.96', 'bmi: 26.69', 'bmi: 28.94', 'bmi: 29.52', 'bmi: 27.21', 'bmi: 26.04', 'bmi: 30.42', 'bmi: 20.63'], 6: ['comorbidity: 0.638977647', 'comorbidity: 0.95846647', 'comorbidity: 1.91693294', 'comorbidity: 0', 'comorbidity: 0.319488823', 'comorbidity: 0.689655172', 'comorbidity: 1.379310345'], 7: ['bdi: 13', 'bdi: 7', 'bdi: 4', 'bdi: 0', 'bdi: 5', 'bdi: 14.44', 'bdi: 6', 'bdi: 3', 'bdi: 2', 'bdi: 17', 'bdi: 5.25', 'bdi: 15', 'bdi: 11', 'bdi: 9', 'bdi: 19', 'bdi: 8', 'bdi: 1'], 8: ['bdins: 13', 'bdins: 7', 'bdins: 3', 'bdins: 5', 'bdins: 0', 'bdins: 13.33', 'bdins: 4', 'bdins: 1', 'bdins: 2', 'bdins: 16', 'bdins: 3.16', 'bdins: 11', 'bdins: 6', 'bdins: 8', 'bdins: 18'], 9: ['history of depression: yes', 'history of depression: no']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ea18a250",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "679b8ad8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:38:16.304682Z",
     "iopub.status.busy": "2025-03-25T08:38:16.304573Z",
     "iopub.status.idle": "2025-03-25T08:38:16.310478Z",
     "shell.execute_reply": "2025-03-25T08:38:16.310184Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Could not find matrix file at ../../input/GEO/Depression/GSE208668/matrix.csv\n",
      "Clinical data extraction is unavailable for this cohort.\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# The background information mentions \"genome-wide transcriptional profiling\" and specifically mentions \"Total RNA\" \n",
    "# from PBMCs - this indicates gene expression data. The note about raw data being lost is concerning,\n",
    "# but since we're working with processed matrix data, we'll proceed cautiously.\n",
    "is_gene_available = True  # The dataset should contain gene expression data\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# For the trait (Depression), we need to look at relevant variables in this insomnia study\n",
    "# From sample characteristics, row 9 contains \"history of depression\" which is relevant for our trait\n",
    "trait_row = 9\n",
    "\n",
    "# Age is available in row 1\n",
    "age_row = 1\n",
    "\n",
    "# Gender is available in row 2\n",
    "gender_row = 2\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert depression history data to binary format (0 = no, 1 = yes)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip().lower()\n",
    "    else:\n",
    "        value = value.strip().lower()\n",
    "    \n",
    "    if value == 'yes':\n",
    "        return 1\n",
    "    elif value == 'no':\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age data to continuous format\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        age_str = value.split(':', 1)[1].strip()\n",
    "    else:\n",
    "        age_str = value.strip()\n",
    "    \n",
    "    try:\n",
    "        return float(age_str)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender data to binary format (0 = female, 1 = male)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        gender = value.split(':', 1)[1].strip().lower()\n",
    "    else:\n",
    "        gender = value.strip().lower()\n",
    "    \n",
    "    if gender == 'female':\n",
    "        return 0\n",
    "    elif gender == 'male':\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata - Initial Filtering\n",
    "# Check if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Load the sample characteristics from the provided dictionary in the previous output\n",
    "    # This assumes that the sample characteristics data is accessible from a matrix file\n",
    "    # We need to load the actual matrix file here\n",
    "    try:\n",
    "        matrix_file = f\"{in_cohort_dir}/matrix.csv\"\n",
    "        clinical_data = pd.read_csv(matrix_file, skiprows=0)\n",
    "        \n",
    "        # Extract clinical features\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the dataframe\n",
    "        preview = preview_df(selected_clinical_df)\n",
    "        print(\"Preview of selected clinical features:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Save to CSV\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    except FileNotFoundError:\n",
    "        print(f\"Could not find matrix file at {in_cohort_dir}/matrix.csv\")\n",
    "        print(\"Clinical data extraction is unavailable for this cohort.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9db35527",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "26d32871",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:38:16.311685Z",
     "iopub.status.busy": "2025-03-25T08:38:16.311579Z",
     "iopub.status.idle": "2025-03-25T08:38:16.417946Z",
     "shell.execute_reply": "2025-03-25T08:38:16.417556Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Depression/GSE208668/GSE208668_series_matrix.txt.gz\n",
      "Gene data shape: (33210, 42)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['7A5', 'A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1',\n",
      "       'A3GALT2', 'A4GALT', 'A4GNT', 'AAA1', 'AAAS', 'AACS', 'AACSL', 'AADAC',\n",
      "       'AADACL1', 'AADACL2', 'AADACL3', 'AADACL4'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "060aaca8",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "02af87c1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:38:16.419664Z",
     "iopub.status.busy": "2025-03-25T08:38:16.419542Z",
     "iopub.status.idle": "2025-03-25T08:38:16.421528Z",
     "shell.execute_reply": "2025-03-25T08:38:16.421239Z"
    }
   },
   "outputs": [],
   "source": [
    "# These identifiers appear to be a mix of human gene symbols and potentially some probe identifiers\n",
    "# Examples like \"A1BG\", \"A2M\", \"AACS\" are valid human gene symbols\n",
    "# However, some like \"7A5\" and \"AAA1\" may be probe identifiers or alternative names\n",
    "# Since the majority appear to be gene symbols already, we won't need extensive mapping\n",
    "\n",
    "requires_gene_mapping = False\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "98f45e73",
   "metadata": {},
   "source": [
    "### Step 5: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "724a8787",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:38:16.423257Z",
     "iopub.status.busy": "2025-03-25T08:38:16.423149Z",
     "iopub.status.idle": "2025-03-25T08:38:25.122573Z",
     "shell.execute_reply": "2025-03-25T08:38:25.121657Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape after normalization: (19539, 42)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Depression/gene_data/GSE208668.csv\n",
      "Selected clinical data shape: (3, 42)\n",
      "Clinical data preview:\n",
      "{'GSM6360934': [1.0, 65.0, 0.0], 'GSM6360935': [0.0, 75.0, 1.0], 'GSM6360936': [1.0, 77.0, 0.0], 'GSM6360937': [0.0, 64.0, 0.0], 'GSM6360938': [1.0, 60.0, 1.0], 'GSM6360939': [1.0, 67.0, 0.0], 'GSM6360940': [1.0, 72.0, 1.0], 'GSM6360941': [0.0, 62.0, 1.0], 'GSM6360942': [0.0, 73.0, 0.0], 'GSM6360943': [0.0, 74.0, 1.0], 'GSM6360944': [0.0, 73.0, 1.0], 'GSM6360945': [0.0, 68.0, 0.0], 'GSM6360946': [0.0, 62.0, 0.0], 'GSM6360947': [1.0, 73.0, 0.0], 'GSM6360948': [0.0, 70.0, 0.0], 'GSM6360949': [0.0, 60.0, 0.0], 'GSM6360950': [1.0, 61.0, 0.0], 'GSM6360951': [0.0, 66.0, 0.0], 'GSM6360952': [0.0, 69.0, 0.0], 'GSM6360953': [0.0, 62.0, 1.0], 'GSM6360954': [1.0, 67.0, 0.0], 'GSM6360955': [1.0, 62.0, 0.0], 'GSM6360956': [0.0, 71.0, 1.0], 'GSM6360957': [0.0, 63.0, 1.0], 'GSM6360958': [1.0, 62.0, 1.0], 'GSM6360959': [0.0, 61.0, 0.0], 'GSM6360960': [1.0, 67.0, 0.0], 'GSM6360961': [0.0, 78.0, 0.0], 'GSM6360962': [1.0, 79.0, 1.0], 'GSM6360963': [0.0, 72.0, 0.0], 'GSM6360964': [0.0, 73.0, 0.0], 'GSM6360965': [1.0, 77.0, 1.0], 'GSM6360966': [0.0, 72.0, 1.0], 'GSM6360967': [1.0, 62.0, 1.0], 'GSM6360968': [0.0, 70.0, 0.0], 'GSM6360969': [1.0, 65.0, 1.0], 'GSM6360970': [1.0, 63.0, 0.0], 'GSM6360971': [0.0, 74.0, 0.0], 'GSM6360972': [0.0, 71.0, 1.0], 'GSM6360973': [0.0, 80.0, 1.0], 'GSM6360974': [0.0, 78.0, 0.0], 'GSM6360975': [1.0, 65.0, 1.0]}\n",
      "Clinical data saved to ../../output/preprocess/Depression/clinical_data/GSE208668.csv\n",
      "Linked data shape: (42, 19542)\n",
      "Linked data preview (first 5 rows, 5 columns):\n",
      "            Depression   Age  Gender    A1BG  A1BG-AS1\n",
      "GSM6360934         1.0  65.0     0.0  7.0892    7.3113\n",
      "GSM6360935         0.0  75.0     1.0  7.2068    6.9684\n",
      "GSM6360936         1.0  77.0     0.0  7.0056    7.0698\n",
      "GSM6360937         0.0  64.0     0.0  7.0628    7.2414\n",
      "GSM6360938         1.0  60.0     1.0  7.0675    7.0056\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (42, 19541)\n",
      "For the feature 'Depression', the least common label is '1.0' with 17 occurrences. This represents 40.48% of the dataset.\n",
      "The distribution of the feature 'Depression' in this dataset is fine.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: 63.0\n",
      "  50% (Median): 68.5\n",
      "  75%: 73.0\n",
      "Min: 60.0\n",
      "Max: 80.0\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '1.0' with 18 occurrences. This represents 42.86% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Depression/GSE208668.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "try:\n",
    "    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "    print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "    \n",
    "    # Save the normalized gene data\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    normalized_gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "except Exception as e:\n",
    "    print(f\"Error normalizing gene data: {e}\")\n",
    "    normalized_gene_data = gene_data  # Use original data if normalization fails\n",
    "    \n",
    "# 2. Recreate clinical data using correct row indices from step 2\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "\n",
    "# Extract clinical features using correct row indices and conversion functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert depression history data to binary format (0 = no, 1 = yes)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip().lower()\n",
    "    else:\n",
    "        value = value.strip().lower()\n",
    "    \n",
    "    if value == 'yes':\n",
    "        return 1\n",
    "    elif value == 'no':\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age data to continuous format\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        age_str = value.split(':', 1)[1].strip()\n",
    "    else:\n",
    "        age_str = value.strip()\n",
    "    \n",
    "    try:\n",
    "        return float(age_str)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender data to binary format (0 = female, 1 = male)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        gender = value.split(':', 1)[1].strip().lower()\n",
    "    else:\n",
    "        gender = value.strip().lower()\n",
    "    \n",
    "    if gender == 'female':\n",
    "        return 0\n",
    "    elif gender == 'male':\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Use correct row indices identified in step 2\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,  # Using the trait variable from context (Depression)\n",
    "    trait_row=9,  # Using row 9 for depression history as identified in step 2\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=1,    # Age data is in row 1\n",
    "    convert_age=convert_age,\n",
    "    gender_row=2, # Gender data is in row 2\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(selected_clinical_df))\n",
    "\n",
    "# Save clinical data for future reference\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 2. Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Linked data is empty\")\n",
    "\n",
    "# 3. Handle missing values\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 4. Check for bias in features\n",
    "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Validate and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains gene expression data from peripheral blood mononuclear cells of older adults with and without depression history, from a study on insomnia disorder.\"\n",
    ")\n",
    "\n",
    "# 6. Save the linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset is not usable for analysis. No linked data file saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}