File size: 31,917 Bytes
e4183cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "0cbcd0b4",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:38:58.755488Z",
     "iopub.status.busy": "2025-03-25T08:38:58.755381Z",
     "iopub.status.idle": "2025-03-25T08:38:58.918004Z",
     "shell.execute_reply": "2025-03-25T08:38:58.917651Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Depression\"\n",
    "cohort = \"GSE99725\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Depression\"\n",
    "in_cohort_dir = \"../../input/GEO/Depression/GSE99725\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Depression/GSE99725.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Depression/gene_data/GSE99725.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Depression/clinical_data/GSE99725.csv\"\n",
    "json_path = \"../../output/preprocess/Depression/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f9763bf6",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "229a40dc",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:38:58.919239Z",
     "iopub.status.busy": "2025-03-25T08:38:58.919095Z",
     "iopub.status.idle": "2025-03-25T08:38:59.040870Z",
     "shell.execute_reply": "2025-03-25T08:38:59.040515Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Transcriptomic Signaling Pathways involved in a naturalistic model  of Inflammation-related Major Depressive Disorder and its remission\"\n",
      "!Series_summary\t\"This study aimed at identifying molecular biomarkers specific to inflammation-related subtype of MDD in order to improve diagnosis and treatment. For this, we performed whole-genome expression profiling from peripheral blood in a naturalistic model of inflammation-associated MDD represented by comorbid depression in obese patients. \"\n",
      "!Series_overall_design\t\"Depressed patients were diagnosed with the Mini-International Neuropsychiatric Interview and the 10-item, clinician administered, Montgomery-Asberg Depression Rating Scale. From a cohort of 100 massively obese patients we selected 33 of them for transcriptomic analysis with 24 patients that were again analyzed 4-12 months after bariatric surgery. \"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['patient: CB291013', 'patient: TP100414', 'patient: JDF280314', 'patient: JA021214', 'patient: DC160914', 'patient: GMD170315', 'patient: MP220714', 'patient: SM260215', 'patient: MC261113', 'patient: SB091214', 'patient: CN220714', 'patient: AE170614', 'patient: AG121114', 'patient: SS150414', 'patient: TDC270115', 'patient: VF200115', 'patient: KP261113', 'patient: AC030215', 'patient: SM070415', 'patient: JMV220115', 'patient: NC130214', 'patient: SB221013', 'patient: MA021214', 'patient: DD101214', 'patient: LB141114', 'patient: CPP281113', 'patient: NR180314', 'patient: PP120315', 'patient: BB080414', 'patient: PM120914'], 1: ['time: M0', 'time: M6'], 2: ['MADRS: A', 'MADRS: B'], 3: ['tissue: Venous blood']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d425357d",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "edc3738a",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:38:59.041923Z",
     "iopub.status.busy": "2025-03-25T08:38:59.041814Z",
     "iopub.status.idle": "2025-03-25T08:38:59.046471Z",
     "shell.execute_reply": "2025-03-25T08:38:59.046165Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical data file not found. Skip clinical feature extraction.\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# The dataset appears to contain transcriptomic data based on background information\n",
    "# \"whole-genome expression profiling from peripheral blood\"\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# Trait (Depression): From the sample characteristic dictionary, key 2 with 'MADRS: A', 'MADRS: B'\n",
    "# MADRS is Montgomery-Asberg Depression Rating Scale which is used to measure depression severity\n",
    "trait_row = 2\n",
    "\n",
    "# Age: Not explicitly available in the sample characteristics dictionary\n",
    "age_row = None\n",
    "\n",
    "# Gender: Not explicitly available in the sample characteristics dictionary\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"\n",
    "    Convert MADRS ratings to binary depression status.\n",
    "    MADRS: A - likely represents patients with high MADRS scores (depressed)\n",
    "    MADRS: B - likely represents patients with low MADRS scores (not depressed or remission)\n",
    "    \"\"\"\n",
    "    if isinstance(value, str):\n",
    "        value = value.strip()\n",
    "        if 'MADRS: A' in value:\n",
    "            return 1  # Depressed\n",
    "        elif 'MADRS: B' in value:\n",
    "            return 0  # Not depressed or in remission\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"\n",
    "    Convert age values to continuous data type.\n",
    "    Not used in this dataset as age information is not available.\n",
    "    \"\"\"\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"\n",
    "    Convert gender values to binary (0 for female, 1 for male).\n",
    "    Not used in this dataset as gender information is not available.\n",
    "    \"\"\"\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Trait data is available (trait_row is not None)\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Proceed only if trait_row is not None\n",
    "if trait_row is not None:\n",
    "    # Assuming clinical_data was loaded in a previous step\n",
    "    try:\n",
    "        # Get the clinical data path\n",
    "        clinical_data_file = os.path.join(in_cohort_dir, \"clinical_data.csv\")\n",
    "        clinical_data = pd.read_csv(clinical_data_file)\n",
    "        \n",
    "        # Extract clinical features\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview and save the clinical data\n",
    "        print(\"Preview of selected clinical features:\")\n",
    "        print(preview_df(selected_clinical_df))\n",
    "        \n",
    "        # Create directory if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        \n",
    "        # Save to CSV\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    except FileNotFoundError:\n",
    "        print(\"Clinical data file not found. Skip clinical feature extraction.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "011888b5",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "de24a9d3",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:38:59.047490Z",
     "iopub.status.busy": "2025-03-25T08:38:59.047385Z",
     "iopub.status.idle": "2025-03-25T08:38:59.233742Z",
     "shell.execute_reply": "2025-03-25T08:38:59.233310Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Depression/GSE99725/GSE99725_series_matrix.txt.gz\n",
      "Gene data shape: (27202, 57)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['A_19_P00315452', 'A_19_P00315459', 'A_19_P00315493', 'A_19_P00315506',\n",
      "       'A_19_P00315524', 'A_19_P00315528', 'A_19_P00315529', 'A_19_P00315550',\n",
      "       'A_19_P00315551', 'A_19_P00315581', 'A_19_P00315583', 'A_19_P00315584',\n",
      "       'A_19_P00315593', 'A_19_P00315601', 'A_19_P00315603', 'A_19_P00315649',\n",
      "       'A_19_P00315651', 'A_19_P00315668', 'A_19_P00315691', 'A_19_P00315693'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c253b3b9",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "9b7f9764",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:38:59.235264Z",
     "iopub.status.busy": "2025-03-25T08:38:59.235060Z",
     "iopub.status.idle": "2025-03-25T08:38:59.236974Z",
     "shell.execute_reply": "2025-03-25T08:38:59.236693Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examining the gene identifiers\n",
    "# These identifiers (starting with A_19_P) are Agilent probe IDs, not human gene symbols.\n",
    "# They need to be mapped to standard gene symbols for analysis.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a6d62e36",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "44053705",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:38:59.238337Z",
     "iopub.status.busy": "2025-03-25T08:38:59.238235Z",
     "iopub.status.idle": "2025-03-25T08:39:03.944894Z",
     "shell.execute_reply": "2025-03-25T08:39:03.944503Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Platform title found: Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray 039381 (Probe Name version)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "{'ID': ['GE_BrightCorner', 'DarkCorner', 'A_23_P117082', 'A_33_P3246448', 'A_33_P3318220', 'A_33_P3236322', 'A_33_P3319925', 'A_21_P0000509', 'A_21_P0000744', 'A_24_P215804'], 'SPOT_ID': ['CONTROL', 'CONTROL', 'A_23_P117082', 'A_33_P3246448', 'A_33_P3318220', 'A_33_P3236322', 'A_33_P3319925', 'A_21_P0000509', 'A_21_P0000744', 'A_24_P215804'], 'CONTROL_TYPE': ['pos', 'pos', 'FALSE', 'FALSE', 'FALSE', 'FALSE', 'FALSE', 'FALSE', 'FALSE', 'FALSE'], 'REFSEQ': [nan, nan, 'NM_015987', 'NM_080671', 'NM_178466', nan, 'XM_001133269', 'NR_024244', 'NR_038269', 'NM_016951'], 'GB_ACC': [nan, nan, 'NM_015987', 'NM_080671', 'NM_178466', 'AK128005', 'XM_001133269', 'NR_024244', 'NR_038269', 'NM_016951'], 'LOCUSLINK_ID': [nan, nan, 50865.0, 23704.0, 128861.0, 100129869.0, 730249.0, nan, nan, 51192.0], 'GENE_SYMBOL': [nan, nan, 'HEBP1', 'KCNE4', 'BPIFA3', 'LOC100129869', 'IRG1', 'SNAR-G2', 'LOC100506844', 'CKLF'], 'GENE_NAME': [nan, nan, 'heme binding protein 1', 'potassium voltage-gated channel, Isk-related family, member 4', 'BPI fold containing family A, member 3', 'uncharacterized LOC100129869', 'immunoresponsive 1 homolog (mouse)', 'small ILF3/NF90-associated RNA G2', 'uncharacterized LOC100506844', 'chemokine-like factor'], 'UNIGENE_ID': [nan, nan, 'Hs.642618', 'Hs.348522', 'Hs.360989', nan, 'Hs.160789', 'Hs.717308', 'Hs.90286', 'Hs.15159'], 'ENSEMBL_ID': [nan, nan, 'ENST00000014930', 'ENST00000281830', 'ENST00000375454', nan, 'ENST00000449753', nan, 'ENST00000551421', nan], 'ACCESSION_STRING': [nan, nan, 'ref|NM_015987|ens|ENST00000014930|gb|AF117615|gb|BC016277', 'ref|NM_080671|ens|ENST00000281830|tc|THC2655788', 'ref|NM_178466|ens|ENST00000375454|ens|ENST00000471233|tc|THC2478474', 'gb|AK128005|tc|THC2484382', 'ens|ENST00000449753|ens|ENST00000377462|ref|XM_001133269|ref|XM_003403661', 'ref|NR_024244', 'ref|NR_038269|ens|ENST00000551421|ens|ENST00000546580|ens|ENST00000553102', 'ref|NM_016951|ref|NM_181641|ref|NM_181640|ref|NM_016326'], 'CHROMOSOMAL_LOCATION': [nan, nan, 'chr12:13127906-13127847', 'chr2:223920197-223920256', 'chr20:31812208-31812267', 'chr20:56533874-56533815', 'chr13:77532009-77532068', 'chr19:49534993-49534934', 'chr12:58329728-58329669', 'chr16:66599900-66599959'], 'CYTOBAND': [nan, nan, 'hs|12p13.1', 'hs|2q36.1', 'hs|20q11.21', 'hs|20q13.32', 'hs|13q22.3', 'hs|19q13.33', 'hs|12q14.1', 'hs|16q21'], 'DESCRIPTION': [nan, nan, 'Homo sapiens heme binding protein 1 (HEBP1), mRNA [NM_015987]', 'Homo sapiens potassium voltage-gated channel, Isk-related family, member 4 (KCNE4), mRNA [NM_080671]', 'Homo sapiens BPI fold containing family A, member 3 (BPIFA3), transcript variant 1, mRNA [NM_178466]', 'Homo sapiens cDNA FLJ46124 fis, clone TESTI2040372. [AK128005]', 'immunoresponsive 1 homolog (mouse) [Source:HGNC Symbol;Acc:33904] [ENST00000449753]', 'Homo sapiens small ILF3/NF90-associated RNA G2 (SNAR-G2), small nuclear RNA [NR_024244]', 'Homo sapiens uncharacterized LOC100506844 (LOC100506844), non-coding RNA [NR_038269]', 'Homo sapiens chemokine-like factor (CKLF), transcript variant 1, mRNA [NM_016951]'], 'GO_ID': [nan, nan, 'GO:0005488(binding)|GO:0005576(extracellular region)|GO:0005737(cytoplasm)|GO:0005739(mitochondrion)|GO:0005829(cytosol)|GO:0007623(circadian rhythm)|GO:0020037(heme binding)', 'GO:0005244(voltage-gated ion channel activity)|GO:0005249(voltage-gated potassium channel activity)|GO:0006811(ion transport)|GO:0006813(potassium ion transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0016324(apical plasma membrane)', 'GO:0005576(extracellular region)|GO:0008289(lipid binding)', nan, 'GO:0019543(propionate catabolic process)|GO:0032496(response to lipopolysaccharide)|GO:0047547(2-methylcitrate dehydratase activity)', nan, nan, 'GO:0005576(extracellular region)|GO:0005615(extracellular space)|GO:0006935(chemotaxis)|GO:0008009(chemokine activity)|GO:0008283(cell proliferation)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0030593(neutrophil chemotaxis)|GO:0032940(secretion by cell)|GO:0048246(macrophage chemotaxis)|GO:0048247(lymphocyte chemotaxis)'], 'SEQUENCE': [nan, nan, 'AAGGGGGAAAATGTGATTTGTGCCTGATCTTTCATCTGTGATTCTTATAAGAGCTTTGTC', 'GCAAGTCTCTCTGCACCTATTAAAAAGTGATGTATATACTTCCTTCTTATTCTGTTGAGT', 'CATTCCATAAGGAGTGGTTCTCGGCAAATATCTCACTTGAATTTGACCTTGAATTGAGAC', 'ATTTATTTTCACAAGTGCATAGCGGCCAACACCACCAGCACTAACCAGAGTGGATTCTTG', 'AGAAGACCTAGAAGACTGTTCTGTGTTAACTACACTTCTCAAAGGACCCTCTCCACCAGA', 'AGGGGAGGGTTCGAGGGTACGAGTTCGAGGCCAACCGGGTCCACATTGGTTGAGAAAAAA', 'AGTCGTACCCTCTTGTTTTTCTCTGAGTCAGTCTTAAGGTGAAATGAAGTGTGGCCCAGT', 'AAAGAAGTTTTGTAATTTTATATTACTTTTTAGTTTGATACTAAGTATTAAACATATTTC']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# Check if there are any platforms defined in the SOFT file that might contain annotation data\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    soft_content = f.read()\n",
    "\n",
    "# Look for platform sections in the SOFT file\n",
    "platform_sections = re.findall(r'^!Platform_title\\s*=\\s*(.+)$', soft_content, re.MULTILINE)\n",
    "if platform_sections:\n",
    "    print(f\"Platform title found: {platform_sections[0]}\")\n",
    "\n",
    "# Try to extract more annotation data by reading directly from the SOFT file\n",
    "# Look for lines that might contain gene symbol mappings\n",
    "symbol_pattern = re.compile(r'ID_REF\\s+Symbol|ID\\s+Gene Symbol', re.IGNORECASE)\n",
    "annotation_lines = []\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for line in f:\n",
    "        if symbol_pattern.search(line):\n",
    "            annotation_lines.append(line)\n",
    "            # Collect the next few lines to see the annotation structure\n",
    "            for _ in range(10):\n",
    "                annotation_lines.append(next(f, ''))\n",
    "\n",
    "if annotation_lines:\n",
    "    print(\"Found potential gene symbol mappings:\")\n",
    "    for line in annotation_lines:\n",
    "        print(line.strip())\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(preview_df(gene_annotation, n=10))\n",
    "\n",
    "# If we need an alternative source of mapping, check if there are any other annotation files in the cohort directory\n",
    "cohort_files = os.listdir(in_cohort_dir)\n",
    "annotation_files = [f for f in cohort_files if 'annotation' in f.lower() or 'platform' in f.lower()]\n",
    "if annotation_files:\n",
    "    print(\"\\nAdditional annotation files found in the cohort directory:\")\n",
    "    for file in annotation_files:\n",
    "        print(file)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "122dd2c9",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "a6bb5d26",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:39:03.946811Z",
     "iopub.status.busy": "2025-03-25T08:39:03.946667Z",
     "iopub.status.idle": "2025-03-25T08:39:04.633888Z",
     "shell.execute_reply": "2025-03-25T08:39:04.633498Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mapping dataframe shape: (46204, 2)\n",
      "First few rows of mapping dataframe:\n",
      "              ID          Gene\n",
      "2   A_23_P117082         HEBP1\n",
      "3  A_33_P3246448         KCNE4\n",
      "4  A_33_P3318220        BPIFA3\n",
      "5  A_33_P3236322  LOC100129869\n",
      "6  A_33_P3319925          IRG1\n",
      "Gene expression data shape after mapping: (14534, 57)\n",
      "First few rows of gene-mapped expression data:\n",
      "          GSM2650879  GSM2650880  GSM2650881  GSM2650882  GSM2650883  \\\n",
      "Gene                                                                   \n",
      "A1BG       22.991629   22.721831   23.722127   23.393494   23.642667   \n",
      "A1BG-AS1   30.547082   29.264743   30.395788   29.542070   29.606270   \n",
      "A2LD1      54.674383   55.100095   56.005337   56.411266   55.148358   \n",
      "A4GALT     26.780564   27.006581   27.308758   28.217594   27.636441   \n",
      "AAAS       57.085719   56.312345   56.760835   58.313588   57.552408   \n",
      "\n",
      "          GSM2650884  GSM2650885  GSM2650886  GSM2650887  GSM2650888  ...  \\\n",
      "Gene                                                                  ...   \n",
      "A1BG       23.244120   23.084527   23.308226   23.035896   22.572523  ...   \n",
      "A1BG-AS1   28.079295   29.881238   29.968284   27.635672   28.161372  ...   \n",
      "A2LD1      57.567032   57.069253   55.072270   56.293517   57.421690  ...   \n",
      "A4GALT     27.031401   27.135090   27.011729   29.115011   29.267572  ...   \n",
      "AAAS       56.584150   56.421620   57.328323   57.816075   58.283809  ...   \n",
      "\n",
      "          GSM2650926  GSM2650927  GSM2650928  GSM2650929  GSM2650930  \\\n",
      "Gene                                                                   \n",
      "A1BG       22.976532   23.026887   22.164703   22.206372   22.667443   \n",
      "A1BG-AS1   29.339406   29.547107   29.163393   29.462364   29.870844   \n",
      "A2LD1      55.320653   56.141642   56.870281   56.185597   54.903119   \n",
      "A4GALT     27.218257   28.263681   27.366026   27.619946   28.651942   \n",
      "AAAS       56.970648   58.428042   55.490066   57.190939   58.525460   \n",
      "\n",
      "          GSM2650931  GSM2650932  GSM2650933  GSM2650934  GSM2650935  \n",
      "Gene                                                                  \n",
      "A1BG       22.585275   23.260373   24.324405   22.909509   23.279769  \n",
      "A1BG-AS1   29.653725   29.812618   30.878434   29.040221   29.119394  \n",
      "A2LD1      56.371397   55.302766   55.471024   55.532072   55.488470  \n",
      "A4GALT     27.160468   26.769595   27.700168   28.712601   27.559470  \n",
      "AAAS       59.262659   57.894621   59.194355   57.254557   55.047785  \n",
      "\n",
      "[5 rows x 57 columns]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to ../../output/preprocess/Depression/gene_data/GSE99725.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the keys for gene identifiers and gene symbols\n",
    "# The 'ID' column in the gene_annotation matches the probe identifiers in gene_data\n",
    "# The 'GENE_SYMBOL' column contains the corresponding gene symbols\n",
    "prob_col = 'ID'\n",
    "gene_col = 'GENE_SYMBOL'\n",
    "\n",
    "# 2. Get a gene mapping dataframe\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"First few rows of mapping dataframe:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
    "print(\"First few rows of gene-mapped expression data:\")\n",
    "print(gene_data.head())\n",
    "\n",
    "# Create the output directory if it doesn't exist\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "\n",
    "# Save the gene expression data to a CSV file\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fb319aa9",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "f008a500",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:39:04.635814Z",
     "iopub.status.busy": "2025-03-25T08:39:04.635668Z",
     "iopub.status.idle": "2025-03-25T08:39:10.595812Z",
     "shell.execute_reply": "2025-03-25T08:39:10.595175Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data already normalized and saved to ../../output/preprocess/Depression/gene_data/GSE99725.csv\n",
      "Selected clinical data shape: (1, 57)\n",
      "Clinical data preview:\n",
      "{'GSM2650879': [1.0], 'GSM2650880': [1.0], 'GSM2650881': [0.0], 'GSM2650882': [0.0], 'GSM2650883': [1.0], 'GSM2650884': [0.0], 'GSM2650885': [1.0], 'GSM2650886': [1.0], 'GSM2650887': [1.0], 'GSM2650888': [1.0], 'GSM2650889': [1.0], 'GSM2650890': [0.0], 'GSM2650891': [0.0], 'GSM2650892': [0.0], 'GSM2650893': [0.0], 'GSM2650894': [0.0], 'GSM2650895': [1.0], 'GSM2650896': [1.0], 'GSM2650897': [1.0], 'GSM2650898': [1.0], 'GSM2650899': [0.0], 'GSM2650900': [0.0], 'GSM2650901': [0.0], 'GSM2650902': [1.0], 'GSM2650903': [1.0], 'GSM2650904': [1.0], 'GSM2650905': [1.0], 'GSM2650906': [1.0], 'GSM2650907': [0.0], 'GSM2650908': [0.0], 'GSM2650909': [0.0], 'GSM2650910': [0.0], 'GSM2650911': [0.0], 'GSM2650912': [0.0], 'GSM2650913': [0.0], 'GSM2650914': [0.0], 'GSM2650915': [1.0], 'GSM2650916': [0.0], 'GSM2650917': [1.0], 'GSM2650918': [1.0], 'GSM2650919': [1.0], 'GSM2650920': [1.0], 'GSM2650921': [1.0], 'GSM2650922': [1.0], 'GSM2650923': [1.0], 'GSM2650924': [1.0], 'GSM2650925': [1.0], 'GSM2650926': [1.0], 'GSM2650927': [1.0], 'GSM2650928': [0.0], 'GSM2650929': [0.0], 'GSM2650930': [0.0], 'GSM2650931': [0.0], 'GSM2650932': [0.0], 'GSM2650933': [0.0], 'GSM2650934': [1.0], 'GSM2650935': [1.0]}\n",
      "Clinical data saved to ../../output/preprocess/Depression/clinical_data/GSE99725.csv\n",
      "Linked data shape: (57, 14535)\n",
      "Linked data preview (first 5 rows, 5 columns):\n",
      "            Depression       A1BG   A1BG-AS1      A2LD1     A4GALT\n",
      "GSM2650879         1.0  22.991629  30.547082  54.674383  26.780564\n",
      "GSM2650880         1.0  22.721831  29.264743  55.100095  27.006581\n",
      "GSM2650881         0.0  23.722127  30.395788  56.005337  27.308758\n",
      "GSM2650882         0.0  23.393494  29.542070  56.411266  28.217594\n",
      "GSM2650883         1.0  23.642667  29.606270  55.148358  27.636441\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (57, 14535)\n",
      "For the feature 'Depression', the least common label is '0.0' with 26 occurrences. This represents 45.61% of the dataset.\n",
      "The distribution of the feature 'Depression' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Depression/GSE99725.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data - we already did this in step 6\n",
    "# No need to do it again\n",
    "print(f\"Gene data already normalized and saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Need to recreate clinical data since it wasn't properly saved in step 2\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "\n",
    "# Extract clinical features\n",
    "def convert_trait(value):\n",
    "    \"\"\"\n",
    "    Convert MADRS ratings to binary depression status.\n",
    "    MADRS: A - likely represents patients with high MADRS scores (depressed)\n",
    "    MADRS: B - likely represents patients with low MADRS scores (not depressed or remission)\n",
    "    \"\"\"\n",
    "    if isinstance(value, str):\n",
    "        value = value.strip()\n",
    "        if 'MADRS: A' in value:\n",
    "            return 1  # Depressed\n",
    "        elif 'MADRS: B' in value:\n",
    "            return 0  # Not depressed or in remission\n",
    "    return None\n",
    "\n",
    "# Use previously defined trait_row = 2 from step 2\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=2,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=None,\n",
    "    convert_age=None,\n",
    "    gender_row=None, \n",
    "    convert_gender=None\n",
    ")\n",
    "\n",
    "print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(selected_clinical_df))\n",
    "\n",
    "# Save clinical data for future reference\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 2. Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Linked data is empty\")\n",
    "\n",
    "# 3. Handle missing values\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 4. Check for bias in features\n",
    "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Validate and save cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains gene expression data from peripheral blood of obese patients with and without depression.\"\n",
    ")\n",
    "\n",
    "# 6. Save the linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset is not usable for analysis. No linked data file saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}