File size: 27,049 Bytes
32677ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "92f789e9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:40:18.752457Z",
     "iopub.status.busy": "2025-03-25T08:40:18.752357Z",
     "iopub.status.idle": "2025-03-25T08:40:18.912903Z",
     "shell.execute_reply": "2025-03-25T08:40:18.912567Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Eczema\"\n",
    "cohort = \"GSE123086\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Eczema\"\n",
    "in_cohort_dir = \"../../input/GEO/Eczema/GSE123086\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Eczema/GSE123086.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Eczema/gene_data/GSE123086.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Eczema/clinical_data/GSE123086.csv\"\n",
    "json_path = \"../../output/preprocess/Eczema/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b4dd6f2f",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "5e01943d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:40:18.914324Z",
     "iopub.status.busy": "2025-03-25T08:40:18.914185Z",
     "iopub.status.idle": "2025-03-25T08:40:19.139742Z",
     "shell.execute_reply": "2025-03-25T08:40:19.139380Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases [study of 13 diseases]\"\n",
      "!Series_summary\t\"We conducted prospective clinical studies to validate the importance of CD4+ T cells in 13 diseases from the following ICD-10-CM chapters: Neoplasms (breast cancer, chronic lymphocytic leukemia); endocrine, nutritional and metabolic diseases (type I diabetes, obesity); diseases of the circulatory system (atherosclerosis); diseases of the respiratory system (acute tonsillitis, influenza, seasonal allergic rhinitis, asthma); diseases of the digestive system (Crohn’s disease [CD], ulcerative colitis [UC]); and diseases of the skin and subcutaneous tissue (atopic eczema, psoriatic diseases).\"\n",
      "!Series_summary\t\"Study participants were recruited by clinical specialists based on diagnostic criteria defined by organizations representing each specialist’s discipline. Age and gender matched healthy controls (n = 127 and 39, respectively) were recruited in the Southeast region of Sweden from outpatient clinics at the University Hospital, Linköping; Ryhov County Hospital, Jönköping, a primary health care center in Jönköping; and a medical specialist unit for children in Värnamo. Study participants represented both urban and rural populations with an age range of 8–94 years. Patients with type I diabetes and obesity had an age range of 8–18 years. 12 patients had more than one diagnosis.\"\n",
      "!Series_overall_design\t\"Total RNA was extracted using the AllPrep DNA/RNA Micro kit (Qiagen, Hilden, Germany; cat. no. 80284) according to the manufacturer’s instructions. RNA concentration and integrity were evaluated using the Agilent RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, California, USA; cat. no. 5067-1511) on an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, California, USA). Microarrays were then further computationally processed as described in One-Color Microarray-Based Gene Expression Analysis Low Input Quick Amp Labeling protocol (Agilent Technologies, Santa Clara, California, USA).\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['cell type: CD4+ T cells'], 1: ['primary diagnosis: ASTHMA', 'primary diagnosis: ATHEROSCLEROSIS', 'primary diagnosis: BREAST_CANCER', 'primary diagnosis: CHRONIC_LYMPHOCYTIC_LEUKEMIA', 'primary diagnosis: CROHN_DISEASE', 'primary diagnosis: ATOPIC_ECZEMA', 'primary diagnosis: HEALTHY_CONTROL', 'primary diagnosis: INFLUENZA', 'primary diagnosis: OBESITY', 'primary diagnosis: PSORIASIS', 'primary diagnosis: SEASONAL_ALLERGIC_RHINITIS', 'primary diagnosis: TYPE_1_DIABETES', 'primary diagnosis: ACUTE_TONSILLITIS', 'primary diagnosis: ULCERATIVE_COLITIS'], 2: ['Sex: Male', 'diagnosis2: ATOPIC_ECZEMA', 'Sex: Female', 'diagnosis2: ATHEROSCLEROSIS', 'diagnosis2: ASTHMA_OBESITY', 'diagnosis2: ASTHMA', 'diagnosis2: ASTMHA_SEASONAL_ALLERGIC_RHINITIS', 'diagnosis2: OBESITY'], 3: ['age: 56', 'Sex: Male', 'age: 20', 'age: 51', 'age: 37', 'age: 61', 'age: 31', 'age: 41', 'age: 80', 'age: 53', 'age: 73', 'age: 60', 'age: 76', 'age: 77', 'age: 74', 'age: 69', 'age: 81', 'age: 70', 'age: 82', 'age: 67', 'age: 78', 'age: 72', 'age: 66', 'age: 36', 'age: 45', 'age: 65', 'age: 48', 'age: 50', 'age: 24', 'age: 42'], 4: [nan, 'age: 63', 'age: 74', 'age: 49', 'age: 60', 'age: 68', 'age: 38', 'age: 16', 'age: 12', 'age: 27']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ca40a92c",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "69111922",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:40:19.141111Z",
     "iopub.status.busy": "2025-03-25T08:40:19.140996Z",
     "iopub.status.idle": "2025-03-25T08:40:19.153124Z",
     "shell.execute_reply": "2025-03-25T08:40:19.152850Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of selected clinical features:\n",
      "{0: [nan, 56.0, 1.0], 1: [nan, nan, nan], 2: [nan, 20.0, 0.0], 3: [nan, 51.0, nan], 4: [nan, 37.0, nan], 5: [1.0, 61.0, nan], 6: [0.0, 31.0, nan], 7: [nan, 41.0, nan], 8: [nan, 80.0, nan], 9: [nan, 53.0, nan], 10: [nan, 73.0, nan], 11: [nan, 60.0, nan], 12: [nan, 76.0, nan], 13: [nan, 77.0, nan], 14: [nan, 74.0, nan], 15: [nan, 69.0, nan], 16: [nan, 81.0, nan], 17: [nan, 70.0, nan], 18: [nan, 82.0, nan], 19: [nan, 67.0, nan], 20: [nan, 78.0, nan], 21: [nan, 72.0, nan], 22: [nan, 66.0, nan], 23: [nan, 36.0, nan], 24: [nan, 45.0, nan], 25: [nan, 65.0, nan], 26: [nan, 48.0, nan], 27: [nan, 50.0, nan], 28: [nan, 24.0, nan], 29: [nan, 42.0, nan]}\n",
      "Clinical data saved to ../../output/preprocess/Eczema/clinical_data/GSE123086.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this study used microarrays to analyze gene expression\n",
    "# from CD4+ T cells, so gene expression data should be available\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait (eczema):\n",
    "# Looking at the sample characteristics, primary diagnosis is at index 1\n",
    "# and includes \"ATOPIC_ECZEMA\" as one of the possible values\n",
    "trait_row = 1\n",
    "\n",
    "# For age:\n",
    "# Age information appears to be available at indices 3 and 4\n",
    "age_row = 3\n",
    "\n",
    "# For gender:\n",
    "# Gender information (Sex) appears to be at index 2\n",
    "gender_row = 2\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait value to binary (1 for Eczema, 0 for control)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Map values to binary\n",
    "    if 'ATOPIC_ECZEMA' in value:\n",
    "        return 1\n",
    "    elif 'HEALTHY_CONTROL' in value:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age value to continuous numeric value\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Try to convert to float\n",
    "    try:\n",
    "        return float(value)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary (0 for female, 1 for male)\"\"\"\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Map values to binary\n",
    "    if value.upper() == 'FEMALE':\n",
    "        return 0\n",
    "    elif value.upper() == 'MALE':\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Check if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(is_final=False, \n",
    "                             cohort=cohort, \n",
    "                             info_path=json_path, \n",
    "                             is_gene_available=is_gene_available,\n",
    "                             is_trait_available=is_trait_available)\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Use the sample characteristics dictionary to create a DataFrame\n",
    "    # This dictionary is assumed to be available from the previous step\n",
    "    sample_chars_dict = {0: ['cell type: CD4+ T cells'], \n",
    "                         1: ['primary diagnosis: ASTHMA', 'primary diagnosis: ATHEROSCLEROSIS', \n",
    "                             'primary diagnosis: BREAST_CANCER', 'primary diagnosis: CHRONIC_LYMPHOCYTIC_LEUKEMIA', \n",
    "                             'primary diagnosis: CROHN_DISEASE', 'primary diagnosis: ATOPIC_ECZEMA', \n",
    "                             'primary diagnosis: HEALTHY_CONTROL', 'primary diagnosis: INFLUENZA', \n",
    "                             'primary diagnosis: OBESITY', 'primary diagnosis: PSORIASIS', \n",
    "                             'primary diagnosis: SEASONAL_ALLERGIC_RHINITIS', 'primary diagnosis: TYPE_1_DIABETES', \n",
    "                             'primary diagnosis: ACUTE_TONSILLITIS', 'primary diagnosis: ULCERATIVE_COLITIS'], \n",
    "                         2: ['Sex: Male', 'diagnosis2: ATOPIC_ECZEMA', 'Sex: Female', 'diagnosis2: ATHEROSCLEROSIS', \n",
    "                             'diagnosis2: ASTHMA_OBESITY', 'diagnosis2: ASTHMA', \n",
    "                             'diagnosis2: ASTMHA_SEASONAL_ALLERGIC_RHINITIS', 'diagnosis2: OBESITY'], \n",
    "                         3: ['age: 56', 'Sex: Male', 'age: 20', 'age: 51', 'age: 37', 'age: 61', 'age: 31', \n",
    "                             'age: 41', 'age: 80', 'age: 53', 'age: 73', 'age: 60', 'age: 76', 'age: 77', \n",
    "                             'age: 74', 'age: 69', 'age: 81', 'age: 70', 'age: 82', 'age: 67', 'age: 78', \n",
    "                             'age: 72', 'age: 66', 'age: 36', 'age: 45', 'age: 65', 'age: 48', 'age: 50', \n",
    "                             'age: 24', 'age: 42'], \n",
    "                         4: [float('nan'), 'age: 63', 'age: 74', 'age: 49', 'age: 60', 'age: 68', 'age: 38', \n",
    "                             'age: 16', 'age: 12', 'age: 27']}\n",
    "    \n",
    "    clinical_data = pd.DataFrame.from_dict(sample_chars_dict, orient='index')\n",
    "    \n",
    "    try:\n",
    "        # Extract clinical features\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the data\n",
    "        preview = preview_df(selected_clinical_df)\n",
    "        print(\"Preview of selected clinical features:\")\n",
    "        print(preview)\n",
    "        \n",
    "        # Save to CSV\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    \n",
    "    except Exception as e:\n",
    "        print(f\"An error occurred during clinical feature extraction: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "17a943e2",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "bce8a868",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:40:19.154298Z",
     "iopub.status.busy": "2025-03-25T08:40:19.154198Z",
     "iopub.status.idle": "2025-03-25T08:40:19.541334Z",
     "shell.execute_reply": "2025-03-25T08:40:19.540962Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Eczema/GSE123086/GSE123086_series_matrix.txt.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (22881, 166)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['1', '2', '3', '9', '10', '12', '13', '14', '15', '16', '18', '19',\n",
      "       '20', '21', '22', '23', '24', '25', '26', '27'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6db78aec",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "2d13c964",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:40:19.542629Z",
     "iopub.status.busy": "2025-03-25T08:40:19.542517Z",
     "iopub.status.idle": "2025-03-25T08:40:19.544382Z",
     "shell.execute_reply": "2025-03-25T08:40:19.544113Z"
    }
   },
   "outputs": [],
   "source": [
    "# These identifiers are not human gene symbols. They appear to be numeric probe identifiers \n",
    "# from a microarray platform, which need to be mapped to actual gene symbols.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4358bcc5",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "60d55c42",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:40:19.545634Z",
     "iopub.status.busy": "2025-03-25T08:40:19.545535Z",
     "iopub.status.idle": "2025-03-25T08:40:25.189612Z",
     "shell.execute_reply": "2025-03-25T08:40:25.189279Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'ENTREZ_GENE_ID', 'SPOT_ID']\n",
      "{'ID': ['1', '2', '3', '9', '10'], 'ENTREZ_GENE_ID': ['1', '2', '3', '9', '10'], 'SPOT_ID': [1.0, 2.0, 3.0, 9.0, 10.0]}\n",
      "\n",
      "Exploring SOFT file more thoroughly for gene information:\n",
      "!Series_platform_id = GPL25864\n",
      "!Platform_title = Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray 039381 (Entrez Gene ID  version)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "No explicit gene info patterns found\n",
      "\n",
      "Analyzing ENTREZ_GENE_ID column:\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of entries where ENTREZ_GENE_ID differs from ID: 3798412\n",
      "Some ENTREZ_GENE_ID values differ from probe IDs - this could be useful for mapping\n",
      "           ID ENTREZ_GENE_ID  SPOT_ID\n",
      "24166  ID_REF          VALUE      NaN\n",
      "24167    3553    15.35998289      NaN\n",
      "24168    1609    10.05521694      NaN\n",
      "24169   10112     4.22140954      NaN\n",
      "24170   57827    8.437124629      NaN\n",
      "\n",
      "Looking for alternative annotation approaches:\n",
      "- Checking for platform ID or accession number in SOFT file\n",
      "\n",
      "Preparing provisional gene mapping using ENTREZ_GENE_ID:\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Provisional mapping data shape: (3822578, 2)\n",
      "{'ID': ['1', '2', '3', '9', '10'], 'Gene': ['1', '2', '3', '9', '10']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Let's explore the SOFT file more thoroughly to find gene symbols\n",
    "print(\"\\nExploring SOFT file more thoroughly for gene information:\")\n",
    "gene_info_patterns = []\n",
    "entrez_to_symbol = {}\n",
    "\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for i, line in enumerate(f):\n",
    "        if i < 1000:  # Check header section for platform info\n",
    "            if '!Series_platform_id' in line or '!Platform_title' in line:\n",
    "                print(line.strip())\n",
    "                \n",
    "        # Look for gene-related columns and patterns in the file\n",
    "        if 'GENE_SYMBOL' in line or 'gene_symbol' in line or 'Symbol' in line:\n",
    "            gene_info_patterns.append(line.strip())\n",
    "            \n",
    "        # Extract a mapping using ENTREZ_GENE_ID if available\n",
    "        if len(gene_info_patterns) < 2 and 'ENTREZ_GENE_ID' in line and '\\t' in line:\n",
    "            parts = line.strip().split('\\t')\n",
    "            if len(parts) >= 2:\n",
    "                try:\n",
    "                    # Attempt to add to mapping - assuming ENTREZ_GENE_ID could help with lookup\n",
    "                    entrez_id = parts[1]\n",
    "                    probe_id = parts[0]\n",
    "                    if entrez_id.isdigit() and entrez_id != probe_id:\n",
    "                        entrez_to_symbol[probe_id] = entrez_id\n",
    "                except:\n",
    "                    pass\n",
    "        \n",
    "        if i > 10000 and len(gene_info_patterns) > 0:  # Limit search but ensure we found something\n",
    "            break\n",
    "\n",
    "# Show some of the patterns found\n",
    "if gene_info_patterns:\n",
    "    print(\"\\nFound gene-related patterns:\")\n",
    "    for pattern in gene_info_patterns[:5]:\n",
    "        print(pattern)\n",
    "else:\n",
    "    print(\"\\nNo explicit gene info patterns found\")\n",
    "\n",
    "# Let's try to match the ENTREZ_GENE_ID to the probe IDs\n",
    "print(\"\\nAnalyzing ENTREZ_GENE_ID column:\")\n",
    "if 'ENTREZ_GENE_ID' in gene_annotation.columns:\n",
    "    # Check if ENTREZ_GENE_ID contains actual Entrez IDs (different from probe IDs)\n",
    "    gene_annotation['ENTREZ_GENE_ID'] = gene_annotation['ENTREZ_GENE_ID'].astype(str)\n",
    "    different_ids = (gene_annotation['ENTREZ_GENE_ID'] != gene_annotation['ID']).sum()\n",
    "    print(f\"Number of entries where ENTREZ_GENE_ID differs from ID: {different_ids}\")\n",
    "    \n",
    "    if different_ids > 0:\n",
    "        print(\"Some ENTREZ_GENE_ID values differ from probe IDs - this could be useful for mapping\")\n",
    "        # Show examples of differing values\n",
    "        diff_examples = gene_annotation[gene_annotation['ENTREZ_GENE_ID'] != gene_annotation['ID']].head(5)\n",
    "        print(diff_examples)\n",
    "    else:\n",
    "        print(\"ENTREZ_GENE_ID appears to be identical to probe ID - not useful for mapping\")\n",
    "\n",
    "# Search for additional annotation information in the dataset\n",
    "print(\"\\nLooking for alternative annotation approaches:\")\n",
    "print(\"- Checking for platform ID or accession number in SOFT file\")\n",
    "\n",
    "platform_id = None\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for i, line in enumerate(f):\n",
    "        if '!Platform_geo_accession' in line:\n",
    "            platform_id = line.split('=')[1].strip().strip('\"')\n",
    "            print(f\"Found platform GEO accession: {platform_id}\")\n",
    "            break\n",
    "        if i > 200:\n",
    "            break\n",
    "\n",
    "# If we don't find proper gene symbol mappings, prepare to use the ENTREZ_GENE_ID as is\n",
    "if 'ENTREZ_GENE_ID' in gene_annotation.columns:\n",
    "    print(\"\\nPreparing provisional gene mapping using ENTREZ_GENE_ID:\")\n",
    "    mapping_data = gene_annotation[['ID', 'ENTREZ_GENE_ID']].copy()\n",
    "    mapping_data.rename(columns={'ENTREZ_GENE_ID': 'Gene'}, inplace=True)\n",
    "    print(f\"Provisional mapping data shape: {mapping_data.shape}\")\n",
    "    print(preview_df(mapping_data, n=5))\n",
    "else:\n",
    "    print(\"\\nWarning: No suitable mapping column found for gene symbols\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3487c987",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "fed35a2e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:40:25.191261Z",
     "iopub.status.busy": "2025-03-25T08:40:25.191142Z",
     "iopub.status.idle": "2025-03-25T08:40:32.374731Z",
     "shell.execute_reply": "2025-03-25T08:40:32.374207Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mapping dataframe shape: (3822578, 2)\n",
      "First few rows of mapping data:\n",
      "   ID Gene\n",
      "0   1    1\n",
      "1   2    2\n",
      "2   3    3\n",
      "3   9    9\n",
      "4  10   10\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Number of unique probe IDs: 24167\n",
      "Number of unique gene symbols: 1275651\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene-level data shape: (0, 166)\n",
      "First few gene symbols:\n",
      "Index([], dtype='object', name='Gene')\n",
      "Gene data saved to ../../output/preprocess/Eczema/gene_data/GSE123086.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the column names for gene identifiers and gene symbols\n",
    "# From the preview, we saw that ID is the probe identifier and ENTREZ_GENE_ID contains the gene IDs\n",
    "id_column = 'ID'  # Column with probe identifiers that match gene_data index\n",
    "gene_column = 'ENTREZ_GENE_ID'  # Column with gene identifiers (Entrez IDs in this case)\n",
    "\n",
    "# 2. Get gene mapping dataframe\n",
    "mapping_df = get_gene_mapping(gene_annotation, id_column, gene_column)\n",
    "print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"First few rows of mapping data:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# Check how many unique probe IDs and gene symbols are in the mapping\n",
    "unique_probes = mapping_df['ID'].nunique()\n",
    "unique_genes = mapping_df['Gene'].nunique()\n",
    "print(f\"Number of unique probe IDs: {unique_probes}\")\n",
    "print(f\"Number of unique gene symbols: {unique_genes}\")\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level data to gene-level data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"Gene-level data shape: {gene_data.shape}\")\n",
    "print(\"First few gene symbols:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# Save the processed gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene data saved to {out_gene_data_file}\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}