File size: 34,601 Bytes
32677ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "68ed475f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:11.668559Z",
     "iopub.status.busy": "2025-03-25T08:43:11.668440Z",
     "iopub.status.idle": "2025-03-25T08:43:11.835036Z",
     "shell.execute_reply": "2025-03-25T08:43:11.834646Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Endometrioid_Cancer\"\n",
    "cohort = \"GSE94523\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Endometrioid_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Endometrioid_Cancer/GSE94523\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Endometrioid_Cancer/GSE94523.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Endometrioid_Cancer/gene_data/GSE94523.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Endometrioid_Cancer/clinical_data/GSE94523.csv\"\n",
    "json_path = \"../../output/preprocess/Endometrioid_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "19cbfb6a",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "281e6101",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:11.836533Z",
     "iopub.status.busy": "2025-03-25T08:43:11.836384Z",
     "iopub.status.idle": "2025-03-25T08:43:12.024282Z",
     "shell.execute_reply": "2025-03-25T08:43:12.023928Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Tamoxifen-associated endometrial tumors expose differential enhancer activity for Estrogen Receptor alpha [Microarray Expression]\"\n",
      "!Series_summary\t\"Tamoxifen, a small molecule inhibitor that binds the Estrogen Receptor alpha (ERα), blocks breast cancer progression while increasing the risk for endometrial cancer. In this study, we assessed genome-wide ERα-chromatin interactions in surgical specimens of endometrial tumors from patients who were previously treated for breast cancer with tamoxifen, and endometrial tumors from patients who were treated without tamoxifen. We compared ERα and signal at differential ERα sites in endometrial tumors of nine patients who received tamoxifen with endometrial tumors with six patients who never used tamoxifen. In addition, we performed H3K27ac (a marker for activity) ChIPs on the above mentioned endometrial tumors, and assed this signal at differential ERα sites. Compared to endometrial tumors of non-users, tamoxifen-associated endometrial tumors exposed higher H3K27ac intensities at ERα sites that are enriched in tamoxifen-associated endometrial tumors. Four tamoxifen-associated endometrial tumors that we used in our analysis have been previously published as Tumor A, B, D, and E in GSE81213.\"\n",
      "!Series_overall_design\t\"Gene expression profiling in 111 endometrial tumors\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['tissue: endometrioid adenocarcinoma']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0e29d2a4",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "d499e45b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:12.025642Z",
     "iopub.status.busy": "2025-03-25T08:43:12.025515Z",
     "iopub.status.idle": "2025-03-25T08:43:12.031814Z",
     "shell.execute_reply": "2025-03-25T08:43:12.031476Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical features preview: {0: [1.0]}\n",
      "Clinical features saved to ../../output/preprocess/Endometrioid_Cancer/clinical_data/GSE94523.csv\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Callable, Optional, Dict, Any\n",
    "\n",
    "# Analyze the dataset for gene expression data\n",
    "# Based on the background information, this appears to be microarray expression data for endometrial tumors\n",
    "is_gene_available = True\n",
    "\n",
    "# Analyze for trait data availability\n",
    "# From the sample characteristics, we can see all samples are 'endometrioid adenocarcinoma' \n",
    "trait_row = 0  # The key in the sample characteristics where the trait information is stored\n",
    "\n",
    "# Check for age data\n",
    "# No age information is provided in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# Check for gender data\n",
    "# This is endometrial cancer which occurs only in females, so gender would be constant\n",
    "gender_row = None\n",
    "\n",
    "# Define conversion function for trait\n",
    "def convert_trait(value):\n",
    "    # Extract the actual value after the colon\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Since we're studying Endometrioid_Cancer, and all samples are endometrioid adenocarcinoma\n",
    "    # we'll use binary classification: 1 for having the condition\n",
    "    return 1\n",
    "\n",
    "# Age conversion function (not used, but defined for completeness)\n",
    "def convert_age(value):\n",
    "    return None\n",
    "\n",
    "# Gender conversion function (not used, but defined for completeness)\n",
    "def convert_gender(value):\n",
    "    return None\n",
    "\n",
    "# Validate and save cohort info\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# If trait data is available, extract clinical features\n",
    "if trait_row is not None:\n",
    "    # Load clinical data (assuming it was obtained in a previous step)\n",
    "    # Using the sample characteristics dictionary from the previous step\n",
    "    clinical_data = pd.DataFrame({0: ['tissue: endometrioid adenocarcinoma']})\n",
    "    \n",
    "    # Extract clinical features\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted features\n",
    "    preview = preview_df(clinical_features)\n",
    "    print(\"Clinical features preview:\", preview)\n",
    "    \n",
    "    # Create output directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save clinical features to CSV\n",
    "    clinical_features.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical features saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0748df14",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "c475ca57",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:12.033023Z",
     "iopub.status.busy": "2025-03-25T08:43:12.032901Z",
     "iopub.status.idle": "2025-03-25T08:43:12.417906Z",
     "shell.execute_reply": "2025-03-25T08:43:12.417509Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found data marker at line 74\n",
      "Header line: \"ID_REF\"\t\"GSM2477471\"\t\"GSM2477472\"\t\"GSM2477473\"\t\"GSM2477474\"\t\"GSM2477475\"\t\"GSM2477476\"\t\"GSM2477477\"\t\"GSM2477478\"\t\"GSM2477479\"\t\"GSM2477480\"\t\"GSM2477481\"\t\"GSM2477482\"\t\"GSM2477483\"\t\"GSM2477484\"\t\"GSM2477485\"\t\"GSM2477486\"\t\"GSM2477487\"\t\"GSM2477488\"\t\"GSM2477489\"\t\"GSM2477490\"\t\"GSM2477491\"\t\"GSM2477492\"\t\"GSM2477493\"\t\"GSM2477494\"\t\"GSM2477495\"\t\"GSM2477496\"\t\"GSM2477497\"\t\"GSM2477498\"\t\"GSM2477499\"\t\"GSM2477500\"\t\"GSM2477501\"\t\"GSM2477502\"\t\"GSM2477503\"\t\"GSM2477504\"\t\"GSM2477505\"\t\"GSM2477506\"\t\"GSM2477507\"\t\"GSM2477508\"\t\"GSM2477509\"\t\"GSM2477510\"\t\"GSM2477511\"\t\"GSM2477512\"\t\"GSM2477513\"\t\"GSM2477514\"\t\"GSM2477515\"\t\"GSM2477516\"\t\"GSM2477517\"\t\"GSM2477518\"\t\"GSM2477519\"\t\"GSM2477520\"\t\"GSM2477521\"\t\"GSM2477522\"\t\"GSM2477523\"\t\"GSM2477524\"\t\"GSM2477525\"\t\"GSM2477526\"\t\"GSM2477527\"\t\"GSM2477528\"\t\"GSM2477529\"\t\"GSM2477530\"\t\"GSM2477531\"\t\"GSM2477532\"\t\"GSM2477533\"\t\"GSM2477534\"\t\"GSM2477535\"\t\"GSM2477536\"\t\"GSM2477537\"\t\"GSM2477538\"\t\"GSM2477539\"\t\"GSM2477540\"\t\"GSM2477541\"\t\"GSM2477542\"\t\"GSM2477543\"\t\"GSM2477544\"\t\"GSM2477545\"\t\"GSM2477546\"\t\"GSM2477547\"\t\"GSM2477548\"\t\"GSM2477549\"\t\"GSM2477550\"\t\"GSM2477551\"\t\"GSM2477552\"\t\"GSM2477553\"\t\"GSM2477554\"\t\"GSM2477555\"\t\"GSM2477556\"\t\"GSM2477557\"\t\"GSM2477558\"\t\"GSM2477559\"\t\"GSM2477560\"\t\"GSM2477561\"\t\"GSM2477562\"\t\"GSM2477563\"\t\"GSM2477564\"\t\"GSM2477565\"\t\"GSM2477566\"\t\"GSM2477567\"\t\"GSM2477568\"\t\"GSM2477569\"\t\"GSM2477570\"\t\"GSM2477571\"\t\"GSM2477572\"\t\"GSM2477573\"\t\"GSM2477574\"\t\"GSM2477575\"\t\"GSM2477576\"\t\"GSM2477577\"\t\"GSM2477578\"\t\"GSM2477579\"\t\"GSM2477580\"\t\"GSM2477581\"\n",
      "First data line: 1\t-0.0971308\t-0.721129\t-0.200969\t0.248083\t0.13323\t1.05233\t-0.751642\t0.171953\t0.161565\t-0.569857\t-0.520999\t-0.416249\t0.497888\t0.394718\t0.0659212\t0.678106\t-0.308858\t-0.513857\t0.519296\t0.941124\t0.294259\t0.604991\t0.273212\t1.34738\t0.142156\t0.201991\t0.283873\t1.07171\t-0.512929\t0.497443\t-0.418567\t-0.133336\t-0.209668\t-0.370017\t-0.256996\t-0.815727\t-0.680033\t-0.295943\t0.0412299\t-0.197013\t0.275417\t1.7749\t0.248064\t-0.00444559\t-0.128249\t-0.733087\t-1.04673\t-1.01148\t-0.204086\t-0.372505\t-0.363915\t-0.885154\t-0.292058\t-0.132823\t-0.385885\t-0.22107\t-0.5878\t0.356115\t0.224173\t2.90244\t2.30603\t-1.02894\t-0.892737\t0.120025\t-0.534206\t0.393176\t-0.267239\t0.261731\t-0.394545\t-0.00729317\t-0.431308\t-1.13973\t-0.187582\t0.693875\t-0.851932\t-0.565655\t-0.451916\t-0.649568\t-0.680746\t-0.762242\t-0.0869032\t-0.658805\t-0.871096\t0.138606\t-1.72013\t-1.12094\t0.885628\t-0.0268155\t0.678802\t-0.54545\t-0.558044\t-0.301035\t-0.116336\t-0.179637\t-0.662978\t-0.595398\t-0.146877\t-0.640617\t-0.534543\t-0.19727\t0.869927\t-0.420415\t0.757306\t0.559833\t-0.0654352\t0.130097\t-0.376034\t0.178725\t0.0695361\t-0.458078\t-0.439257\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13',\n",
      "       '14', '15', '16', '17', '18', '19', '20'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3d24b379",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "2d701739",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:12.419383Z",
     "iopub.status.busy": "2025-03-25T08:43:12.419251Z",
     "iopub.status.idle": "2025-03-25T08:43:12.421320Z",
     "shell.execute_reply": "2025-03-25T08:43:12.420973Z"
    }
   },
   "outputs": [],
   "source": [
    "# Looking at the gene identifiers, I can see they are numeric (1, 2, 3...) rather than\n",
    "# human gene symbols like BRCA1, TP53, etc.\n",
    "# These appear to be probe IDs or feature indices, not actual gene symbols.\n",
    "# Therefore, we will need to map these identifiers to proper gene symbols.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cb66a40a",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "015b606e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:12.422602Z",
     "iopub.status.busy": "2025-03-25T08:43:12.422489Z",
     "iopub.status.idle": "2025-03-25T08:43:20.024062Z",
     "shell.execute_reply": "2025-03-25T08:43:20.023609Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1', '2', '3', '4', '5'], 'MetaRow': ['12', '12', '12', '12', '12'], 'MetaCol': ['4', '4', '4', '4', '4'], 'SubRow': ['28', '27', '26', '25', '24'], 'SubCol': [28.0, 28.0, 28.0, 28.0, 28.0], 'Reporter ID': [334575.0, 333055.0, 331915.0, 330395.0, 328875.0], 'oligo_id': ['H300009761', 'H300009722', 'H300000470', 'H300000646', 'H300004276'], 'oligo_type': ['I', 'I', 'I', 'I', 'I'], 'gene_id': ['ENSG00000182037', 'ENSG00000180563', 'ENSG00000179449', 'ENSG00000177996', 'ENSG00000176539'], 'transcript_count': [1.0, 1.0, 1.0, 1.0, 1.0], 'representative_transcript_id': ['ENST00000315389', 'ENST00000316343', 'ENST00000314233', 'ENST00000325950', 'ENST00000326170'], 'HUGO': [nan, nan, 'MAGEL2', nan, nan], 'GB_LIST': [nan, nan, 'NM_019066, AF200625', nan, nan], 'GI-Bacillus': [nan, nan, nan, nan, nan], 'SPOT_ID': ['ENSG00000182037', 'ENSG00000180563', nan, 'ENSG00000177996', 'ENSG00000176539'], 'SEQUENCE': ['TTAATCTGACCTGTGAAAAACACTGTCCAGAGGCTAGGTGCGGTGGCTAACGCTTGTAATCCCAGCACTT', 'TGTTGCTGACTCGAAGTCTGAAGGAAAGTTCGATGGTGCAAAAGTTAAAGTTGCCTGGAAAAAGGTAGAC', 'AAGCTGGGCTACCATACAGGGAATTTGGTGGCATCCTATTTAGACAGGCCCAAGTTTGGCCTTCTGATGG', 'AATGCAGAAGCCTCAGGAGCCGATGCAATCAACTGGAAGAAAAGGTATCAGCAATGGAAGATGAAATGAA', 'CGCGGCACCAACCCTCAATATCTGGTGGGGAAGATCATTCGAATGCGAATCTGTGAGTCCAAGCACTGGA']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9d9a985b",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "bbf6d1ff",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:20.025348Z",
     "iopub.status.busy": "2025-03-25T08:43:20.025220Z",
     "iopub.status.idle": "2025-03-25T08:43:42.774878Z",
     "shell.execute_reply": "2025-03-25T08:43:42.774234Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Percentage of rows with HUGO gene symbols: 0.35%\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mapping dataframe shape: (34547, 2)\n",
      "Sample of mapping dataframe:\n",
      "  ID             Gene\n",
      "0  1  ENSG00000182037\n",
      "1  2  ENSG00000180563\n",
      "2  3           MAGEL2\n",
      "3  4  ENSG00000177996\n",
      "4  5  ENSG00000176539\n",
      "Gene expression data shape after mapping: (19986, 111)\n",
      "First few gene symbols after mapping:\n",
      "['A1BG', 'A2M', 'A4GALT', 'AAAS', 'AADAC']\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the appropriate columns for mapping\n",
    "# The 'ID' column contains the identifiers matching the gene expression data\n",
    "# For gene symbols, 'HUGO' contains some gene symbols, but has many NaN values\n",
    "# We'll need to use a combination of identifiers\n",
    "\n",
    "# 2. Create a mapping dataframe that maps probe IDs to gene symbols\n",
    "# First, let's examine what percentage of entries have HUGO symbols\n",
    "print(f\"Percentage of rows with HUGO gene symbols: {gene_annotation['HUGO'].notna().mean()*100:.2f}%\")\n",
    "\n",
    "# Let's create a function to extract the best available gene symbol for each row\n",
    "def get_best_gene_symbol(row):\n",
    "    # First preference: HUGO gene symbol if available\n",
    "    if pd.notna(row['HUGO']):\n",
    "        return row['HUGO']\n",
    "    # Second preference: Extract symbols from GB_LIST if available\n",
    "    elif pd.notna(row['GB_LIST']):\n",
    "        # Try to extract symbols from GB_LIST using the gene extraction function\n",
    "        symbols = extract_human_gene_symbols(row['GB_LIST'])\n",
    "        if symbols:\n",
    "            return symbols[0]  # Return the first symbol if any found\n",
    "    # Third preference: Use Ensembl gene ID if available (will be normalized later)\n",
    "    elif pd.notna(row['gene_id']):\n",
    "        return row['gene_id']\n",
    "    # If nothing else is available\n",
    "    return None\n",
    "\n",
    "# Apply the function to create a new column with the best available gene symbol\n",
    "gene_annotation['Gene'] = gene_annotation.apply(get_best_gene_symbol, axis=1)\n",
    "\n",
    "# Create the mapping dataframe with probe IDs and gene symbols\n",
    "mapping_df = gene_annotation[['ID', 'Gene']].dropna()\n",
    "print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n",
    "print(f\"Sample of mapping dataframe:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Preview the resulting gene expression data\n",
    "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
    "print(f\"First few gene symbols after mapping:\")\n",
    "print(list(gene_data.index[:5]))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7db075f5",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "b647cf16",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:43:42.776747Z",
     "iopub.status.busy": "2025-03-25T08:43:42.776620Z",
     "iopub.status.idle": "2025-03-25T08:43:45.605668Z",
     "shell.execute_reply": "2025-03-25T08:43:45.605197Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data shape: (9628, 111)\n",
      "First few genes with their expression values after normalization:\n",
      "        GSM2477471  GSM2477472  GSM2477473  GSM2477474  GSM2477475  \\\n",
      "Gene                                                                 \n",
      "A1BG      0.152441   -0.328190   -0.402093   -0.459311   -0.044677   \n",
      "A2M       0.194438   -1.377660   -0.561084    1.047960    0.589405   \n",
      "A4GALT    1.089600    0.343792    0.053120    0.364721    0.088068   \n",
      "AAAS     -0.532202    0.709348   -0.419568    0.101501   -0.501564   \n",
      "AADAC     0.282887   -1.911730    0.000000    3.241060    0.711206   \n",
      "\n",
      "        GSM2477476  GSM2477477  GSM2477478  GSM2477479  GSM2477480  ...  \\\n",
      "Gene                                                                ...   \n",
      "A1BG      0.990185    0.305397    0.038350   -0.176839   -0.323575  ...   \n",
      "A2M      -1.436880   -0.413543   -0.884551    0.254121    0.984051  ...   \n",
      "A4GALT   -0.122575    0.008176    0.927995   -0.029103    0.440727  ...   \n",
      "AAAS     -0.374575   -0.298828   -0.494604    0.080157    0.290037  ...   \n",
      "AADAC     0.608551   -0.038366    0.107336   -0.018521    0.159903  ...   \n",
      "\n",
      "        GSM2477572  GSM2477573  GSM2477574  GSM2477575  GSM2477576  \\\n",
      "Gene                                                                 \n",
      "A1BG     -0.110421    0.597255   -0.069516   -0.048005   -0.072845   \n",
      "A2M      -0.259256   -0.631996   -0.591483   -1.450280   -0.300649   \n",
      "A4GALT    0.226608    0.932822    0.090341   -0.265511    0.369433   \n",
      "AAAS      0.648848   -1.026081   -0.001133   -0.025974    0.771225   \n",
      "AADAC     0.196259   -1.002740   -0.493535    0.786658    0.584659   \n",
      "\n",
      "        GSM2477577  GSM2477578  GSM2477579  GSM2477580  GSM2477581  \n",
      "Gene                                                                \n",
      "A1BG     -0.355872   -0.030880    0.029083    0.168261   -0.198460  \n",
      "A2M       0.254731   -0.229838    0.735989   -0.031862    0.285643  \n",
      "A4GALT    0.915050    0.630422    0.351745    0.121407    0.875033  \n",
      "AAAS      0.033049    0.165428    0.429637   -0.398371    0.693071  \n",
      "AADAC    -0.423969    0.000000    0.036809   -0.530891    0.000000  \n",
      "\n",
      "[5 rows x 111 columns]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Endometrioid_Cancer/gene_data/GSE94523.csv\n",
      "Raw clinical data shape: (1, 112)\n",
      "Clinical features:\n",
      "                     GSM2477471  GSM2477472  GSM2477473  GSM2477474  \\\n",
      "Endometrioid_Cancer         1.0         1.0         1.0         1.0   \n",
      "\n",
      "                     GSM2477475  GSM2477476  GSM2477477  GSM2477478  \\\n",
      "Endometrioid_Cancer         1.0         1.0         1.0         1.0   \n",
      "\n",
      "                     GSM2477479  GSM2477480  ...  GSM2477572  GSM2477573  \\\n",
      "Endometrioid_Cancer         1.0         1.0  ...         1.0         1.0   \n",
      "\n",
      "                     GSM2477574  GSM2477575  GSM2477576  GSM2477577  \\\n",
      "Endometrioid_Cancer         1.0         1.0         1.0         1.0   \n",
      "\n",
      "                     GSM2477578  GSM2477579  GSM2477580  GSM2477581  \n",
      "Endometrioid_Cancer         1.0         1.0         1.0         1.0  \n",
      "\n",
      "[1 rows x 111 columns]\n",
      "Clinical features saved to ../../output/preprocess/Endometrioid_Cancer/clinical_data/GSE94523.csv\n",
      "Linked data shape: (111, 9629)\n",
      "Linked data preview (first 5 rows, first 5 columns):\n",
      "            Endometrioid_Cancer      A1BG       A2M    A4GALT      AAAS\n",
      "GSM2477471                  1.0  0.152441  0.194438  1.089600 -0.532202\n",
      "GSM2477472                  1.0 -0.328190 -1.377660  0.343792  0.709348\n",
      "GSM2477473                  1.0 -0.402093 -0.561084  0.053120 -0.419568\n",
      "GSM2477474                  1.0 -0.459311  1.047960  0.364721  0.101501\n",
      "GSM2477475                  1.0 -0.044677  0.589405  0.088068 -0.501564\n",
      "Missing values before handling:\n",
      "  Trait (Endometrioid_Cancer) missing: 0 out of 111\n",
      "  Genes with >20% missing: 0\n",
      "  Samples with >5% missing genes: 0\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (111, 9629)\n",
      "Quartiles for 'Endometrioid_Cancer':\n",
      "  25%: 1.0\n",
      "  50% (Median): 1.0\n",
      "  75%: 1.0\n",
      "Min: 1.0\n",
      "Max: 1.0\n",
      "The distribution of the feature 'Endometrioid_Cancer' in this dataset is severely biased.\n",
      "\n",
      "Data was determined to be unusable or empty and was not saved\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(\"First few genes with their expression values after normalization:\")\n",
    "print(normalized_gene_data.head())\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Check if trait data is available before proceeding with clinical data extraction\n",
    "if trait_row is None:\n",
    "    print(\"Trait row is None. Cannot extract trait information from clinical data.\")\n",
    "    # Create an empty dataframe for clinical features\n",
    "    clinical_features = pd.DataFrame()\n",
    "    \n",
    "    # Create an empty dataframe for linked data\n",
    "    linked_data = pd.DataFrame()\n",
    "    \n",
    "    # Validate and save cohort info\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=False,  # Trait data is not available\n",
    "        is_biased=True,  # Not applicable but required\n",
    "        df=pd.DataFrame(),  # Empty dataframe\n",
    "        note=\"Dataset contains gene expression data but lacks clear trait indicators for Duchenne Muscular Dystrophy status.\"\n",
    "    )\n",
    "    print(\"Data was determined to be unusable due to missing trait indicators and was not saved\")\n",
    "else:\n",
    "    try:\n",
    "        # Get the file paths for the matrix file to extract clinical data\n",
    "        _, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "        \n",
    "        # Get raw clinical data from the matrix file\n",
    "        _, clinical_raw = get_background_and_clinical_data(matrix_file)\n",
    "        \n",
    "        # Verify clinical data structure\n",
    "        print(\"Raw clinical data shape:\", clinical_raw.shape)\n",
    "        \n",
    "        # Extract clinical features using the defined conversion functions\n",
    "        clinical_features = geo_select_clinical_features(\n",
    "            clinical_df=clinical_raw,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        print(\"Clinical features:\")\n",
    "        print(clinical_features)\n",
    "        \n",
    "        # Save clinical features to file\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        clinical_features.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "        \n",
    "        # 3. Link clinical and genetic data\n",
    "        linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
    "        print(f\"Linked data shape: {linked_data.shape}\")\n",
    "        print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
    "        print(linked_data.iloc[:5, :5])\n",
    "        \n",
    "        # 4. Handle missing values\n",
    "        print(\"Missing values before handling:\")\n",
    "        print(f\"  Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
    "        if 'Age' in linked_data.columns:\n",
    "            print(f\"  Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n",
    "        if 'Gender' in linked_data.columns:\n",
    "            print(f\"  Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n",
    "        \n",
    "        gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n",
    "        print(f\"  Genes with >20% missing: {sum(linked_data[gene_cols].isna().mean() > 0.2)}\")\n",
    "        print(f\"  Samples with >5% missing genes: {sum(linked_data[gene_cols].isna().mean(axis=1) > 0.05)}\")\n",
    "        \n",
    "        cleaned_data = handle_missing_values(linked_data, trait)\n",
    "        print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
    "        \n",
    "        # 5. Evaluate bias in trait and demographic features\n",
    "        is_trait_biased = False\n",
    "        if len(cleaned_data) > 0:\n",
    "            trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
    "            is_trait_biased = trait_biased\n",
    "        else:\n",
    "            print(\"No data remains after handling missing values.\")\n",
    "            is_trait_biased = True\n",
    "        \n",
    "        # 6. Final validation and save\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=True, \n",
    "            is_trait_available=True, \n",
    "            is_biased=is_trait_biased, \n",
    "            df=cleaned_data,\n",
    "            note=\"Dataset contains gene expression data comparing Duchenne muscular dystrophy vs healthy samples.\"\n",
    "        )\n",
    "        \n",
    "        # 7. Save if usable\n",
    "        if is_usable and len(cleaned_data) > 0:\n",
    "            os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "            cleaned_data.to_csv(out_data_file)\n",
    "            print(f\"Linked data saved to {out_data_file}\")\n",
    "        else:\n",
    "            print(\"Data was determined to be unusable or empty and was not saved\")\n",
    "            \n",
    "    except Exception as e:\n",
    "        print(f\"Error processing data: {e}\")\n",
    "        # Handle the error case by still recording cohort info\n",
    "        validate_and_save_cohort_info(\n",
    "            is_final=True, \n",
    "            cohort=cohort, \n",
    "            info_path=json_path, \n",
    "            is_gene_available=True, \n",
    "            is_trait_available=False,  # Mark as not available due to processing issues\n",
    "            is_biased=True, \n",
    "            df=pd.DataFrame(),  # Empty dataframe\n",
    "            note=f\"Error processing data: {str(e)}\"\n",
    "        )\n",
    "        print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}