File size: 26,550 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "626ca0b1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:29:27.437881Z",
     "iopub.status.busy": "2025-03-25T06:29:27.437660Z",
     "iopub.status.idle": "2025-03-25T06:29:27.607136Z",
     "shell.execute_reply": "2025-03-25T06:29:27.606778Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Angelman_Syndrome\"\n",
    "cohort = \"GSE43900\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Angelman_Syndrome\"\n",
    "in_cohort_dir = \"../../input/GEO/Angelman_Syndrome/GSE43900\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Angelman_Syndrome/GSE43900.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Angelman_Syndrome/gene_data/GSE43900.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Angelman_Syndrome/clinical_data/GSE43900.csv\"\n",
    "json_path = \"../../output/preprocess/Angelman_Syndrome/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c782edfb",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "5fdfc90d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:29:27.608622Z",
     "iopub.status.busy": "2025-03-25T06:29:27.608470Z",
     "iopub.status.idle": "2025-03-25T06:29:27.676197Z",
     "shell.execute_reply": "2025-03-25T06:29:27.675888Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Co-ordinate inhibition of autism candidate genes by topoisomerase inhibitors\"\n",
      "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
      "!Series_overall_design\t\"Refer to individual Series\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['treatment: 1000nM_Topotecan', 'treatment: 150nM_Topotecan', 'treatment: 300nM_Topotecan', 'treatment: 30nM_Topotecan', 'treatment: 3nM_Topotecan', 'treatment: 500nM_Topotecan', 'treatment: Topotecan_dose_response_vehicle'], 1: ['cell type: cultured cortical neurons'], 2: ['strain: C57BL6']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8027ecc4",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "436e2862",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:29:27.677278Z",
     "iopub.status.busy": "2025-03-25T06:29:27.677164Z",
     "iopub.status.idle": "2025-03-25T06:29:27.682738Z",
     "shell.execute_reply": "2025-03-25T06:29:27.682452Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "A new JSON file was created at: ../../output/preprocess/Angelman_Syndrome/cohort_info.json\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Callable, Dict, Any, Optional\n",
    "\n",
    "# Analysis of gene expression data availability\n",
    "# Based on the background information, this is a study on gene expression in cultured neurons\n",
    "# with various treatments. This suggests it likely contains gene expression data.\n",
    "is_gene_available = True\n",
    "\n",
    "# Analysis of trait data availability\n",
    "# From the characteristics, we don't see any Angelman Syndrome trait information.\n",
    "# The data shows only treatment types, cell type, and strain with no human subjects.\n",
    "trait_row = None  # No trait data available\n",
    "\n",
    "# Since there's no human data, age and gender are not available\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# Define conversion functions\n",
    "def convert_trait(value):\n",
    "    # This function would extract and convert trait values if they were available\n",
    "    # Since there's no trait data, this is a placeholder function\n",
    "    if value is None:\n",
    "        return None\n",
    "    if ':' in str(value):\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    # Binary conversion would go here if data were available\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    # Placeholder function since age data is not available\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    # Placeholder function since gender data is not available\n",
    "    return None\n",
    "\n",
    "# Save metadata about dataset usability\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Skip clinical feature extraction since trait_row is None\n",
    "# If trait_row were not None, we would extract clinical features here\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e5dcd2b3",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a2a8d4fd",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:29:27.683730Z",
     "iopub.status.busy": "2025-03-25T06:29:27.683623Z",
     "iopub.status.idle": "2025-03-25T06:29:27.731903Z",
     "shell.execute_reply": "2025-03-25T06:29:27.731594Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['10338001', '10338002', '10338003', '10338004', '10338005', '10338006',\n",
      "       '10338007', '10338008', '10338009', '10338010', '10338011', '10338012',\n",
      "       '10338013', '10338014', '10338015', '10338016', '10338017', '10338018',\n",
      "       '10338019', '10338020'],\n",
      "      dtype='object', name='ID')\n",
      "\n",
      "Gene data dimensions: 35556 genes × 10 samples\n"
     ]
    }
   ],
   "source": [
    "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract the gene expression data from the matrix file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "print(\"\\nFirst 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n",
    "\n",
    "# 4. Print the dimensions of the gene expression data\n",
    "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "\n",
    "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
    "is_gene_available = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5bfeca4c",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "9e7f3015",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:29:27.733099Z",
     "iopub.status.busy": "2025-03-25T06:29:27.732981Z",
     "iopub.status.idle": "2025-03-25T06:29:27.734774Z",
     "shell.execute_reply": "2025-03-25T06:29:27.734489Z"
    }
   },
   "outputs": [],
   "source": [
    "# Looking at the gene identifiers, these are numerical identifiers that appear to be probe IDs, \n",
    "# not standard human gene symbols. Human gene symbols would typically be alphabetical (like BRCA1, TP53, etc.)\n",
    "# or alphanumeric identifiers. These numerical identifiers likely need to be mapped to gene symbols.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8541a68d",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "06bf0824",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:29:27.735878Z",
     "iopub.status.busy": "2025-03-25T06:29:27.735773Z",
     "iopub.status.idle": "2025-03-25T06:29:32.714301Z",
     "shell.execute_reply": "2025-03-25T06:29:32.713945Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1415670_at', '1415671_at', '1415672_at', '1415673_at', '1415674_a_at'], 'GB_ACC': ['BC024686', 'NM_013477', 'NM_020585', 'NM_133900', 'NM_021789'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Mus musculus', 'Mus musculus', 'Mus musculus', 'Mus musculus', 'Mus musculus'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Consensus sequence', 'Consensus sequence', 'Consensus sequence', 'Consensus sequence', 'Consensus sequence'], 'Sequence Source': ['GenBank', 'GenBank', 'GenBank', 'GenBank', 'GenBank'], 'Target Description': ['gb:BC024686.1 /DB_XREF=gi:19354080 /FEA=FLmRNA /CNT=416 /TID=Mm.26422.1 /TIER=FL+Stack /STK=110 /UG=Mm.26422 /LL=54161 /UG_GENE=Copg1 /DEF=Mus musculus, coatomer protein complex, subunit gamma 1, clone MGC:30335 IMAGE:3992144, mRNA, complete cds. /PROD=coatomer protein complex, subunit gamma 1 /FL=gb:AF187079.1 gb:BC024686.1 gb:NM_017477.1 gb:BC024896.1', 'gb:NM_013477.1 /DB_XREF=gi:7304908 /GEN=Atp6v0d1 /FEA=FLmRNA /CNT=197 /TID=Mm.1081.1 /TIER=FL+Stack /STK=114 /UG=Mm.1081 /LL=11972 /DEF=Mus musculus ATPase, H+ transporting, lysosomal 38kDa, V0 subunit D isoform 1 (Atp6v0d1), mRNA. /PROD=ATPase, H+ transporting, lysosomal 38kDa, V0subunit D isoform 1 /FL=gb:U21549.1 gb:U13840.1 gb:BC011075.1 gb:NM_013477.1', 'gb:NM_020585.1 /DB_XREF=gi:10181207 /GEN=AB041568 /FEA=FLmRNA /CNT=213 /TID=Mm.17035.1 /TIER=FL+Stack /STK=102 /UG=Mm.17035 /LL=57437 /DEF=Mus musculus hypothetical protein, MNCb-1213 (AB041568), mRNA. /PROD=hypothetical protein, MNCb-1213 /FL=gb:BC016894.1 gb:NM_020585.1', 'gb:NM_133900.1 /DB_XREF=gi:19527115 /GEN=AI480570 /FEA=FLmRNA /CNT=139 /TID=Mm.10623.1 /TIER=FL+Stack /STK=96 /UG=Mm.10623 /LL=100678 /DEF=Mus musculus expressed sequence AI480570 (AI480570), mRNA. /PROD=expressed sequence AI480570 /FL=gb:BC002251.1 gb:NM_133900.1', 'gb:NM_021789.1 /DB_XREF=gi:11140824 /GEN=Sbdn /FEA=FLmRNA /CNT=163 /TID=Mm.29814.1 /TIER=FL+Stack /STK=95 /UG=Mm.29814 /LL=60409 /DEF=Mus musculus synbindin (Sbdn), mRNA. /PROD=synbindin /FL=gb:NM_021789.1 gb:AF233340.1'], 'Representative Public ID': ['BC024686', 'NM_013477', 'NM_020585', 'NM_133900', 'NM_021789'], 'Gene Title': ['coatomer protein complex, subunit gamma 1', 'ATPase, H+ transporting, lysosomal V0 subunit D1', 'golgi autoantigen, golgin subfamily a, 7', 'phosphoserine phosphatase', 'trafficking protein particle complex 4'], 'Gene Symbol': ['Copg1', 'Atp6v0d1', 'Golga7', 'Psph', 'Trappc4'], 'ENTREZ_GENE_ID': ['54161', '11972', '57437', '100678', '60409'], 'RefSeq Transcript ID': ['NM_017477 /// NM_201244 /// XM_006506386', 'NM_013477', 'NM_001042484 /// NM_020585 /// XM_006509179', 'NM_133900 /// XM_006504274 /// XM_006504275', 'NM_021789 /// XM_006510523'], 'Gene Ontology Biological Process': ['0006810 // transport // inferred from electronic annotation /// 0006886 // intracellular protein transport // inferred from electronic annotation /// 0015031 // protein transport // inferred from electronic annotation /// 0016192 // vesicle-mediated transport // inferred from electronic annotation /// 0051683 // establishment of Golgi localization // not recorded /// 0072384 // organelle transport along microtubule // not recorded', '0006200 // ATP catabolic process // inferred from direct assay /// 0006810 // transport // inferred from electronic annotation /// 0006811 // ion transport // inferred from electronic annotation /// 0007420 // brain development // inferred from electronic annotation /// 0015991 // ATP hydrolysis coupled proton transport // inferred from electronic annotation /// 0015992 // proton transport // inferred from electronic annotation /// 0030030 // cell projection organization // inferred from electronic annotation /// 0042384 // cilium assembly // inferred from sequence or structural similarity /// 1902600 // hydrogen ion transmembrane transport // inferred from direct assay', '0006893 // Golgi to plasma membrane transport // not recorded /// 0018230 // peptidyl-L-cysteine S-palmitoylation // not recorded /// 0043001 // Golgi to plasma membrane protein transport // not recorded /// 0050821 // protein stabilization // not recorded', '0006563 // L-serine metabolic process // not recorded /// 0006564 // L-serine biosynthetic process // not recorded /// 0008152 // metabolic process // inferred from electronic annotation /// 0008652 // cellular amino acid biosynthetic process // inferred from electronic annotation /// 0009612 // response to mechanical stimulus // inferred from electronic annotation /// 0016311 // dephosphorylation // not recorded /// 0031667 // response to nutrient levels // inferred from electronic annotation /// 0033574 // response to testosterone // inferred from electronic annotation', '0006810 // transport // inferred from electronic annotation /// 0006888 // ER to Golgi vesicle-mediated transport // inferred from electronic annotation /// 0016192 // vesicle-mediated transport // traceable author statement /// 0016358 // dendrite development // inferred from direct assay /// 0045212 // neurotransmitter receptor biosynthetic process // traceable author statement'], 'Gene Ontology Cellular Component': ['0000139 // Golgi membrane // not recorded /// 0005634 // nucleus // inferred from electronic annotation /// 0005737 // cytoplasm // inferred from electronic annotation /// 0005794 // Golgi apparatus // inferred from electronic annotation /// 0005829 // cytosol // inferred from electronic annotation /// 0016020 // membrane // inferred from electronic annotation /// 0030117 // membrane coat // inferred from electronic annotation /// 0030126 // COPI vesicle coat // inferred from electronic annotation /// 0030663 // COPI-coated vesicle membrane // inferred from electronic annotation /// 0031410 // cytoplasmic vesicle // inferred from electronic annotation', '0005765 // lysosomal membrane // not recorded /// 0005769 // early endosome // inferred from direct assay /// 0005813 // centrosome // not recorded /// 0008021 // synaptic vesicle // not recorded /// 0016020 // membrane // not recorded /// 0016324 // apical plasma membrane // not recorded /// 0016471 // vacuolar proton-transporting V-type ATPase complex // not recorded /// 0033179 // proton-transporting V-type ATPase, V0 domain // inferred from electronic annotation /// 0043005 // neuron projection // not recorded /// 0043234 // protein complex // not recorded /// 0043679 // axon terminus // not recorded /// 0070062 // extracellular vesicular exosome // not recorded', '0000139 // Golgi membrane // not recorded /// 0002178 // palmitoyltransferase complex // not recorded /// 0005794 // Golgi apparatus // inferred from electronic annotation /// 0005795 // Golgi stack // not recorded /// 0016020 // membrane // inferred from electronic annotation /// 0031228 // intrinsic component of Golgi membrane // not recorded /// 0070062 // extracellular vesicular exosome // not recorded', '0005737 // cytoplasm // not recorded /// 0043005 // neuron projection // not recorded', '0005622 // intracellular // inferred from electronic annotation /// 0005783 // endoplasmic reticulum // inferred from electronic annotation /// 0005794 // Golgi apparatus // inferred from electronic annotation /// 0005795 // Golgi stack // inferred from direct assay /// 0005801 // cis-Golgi network // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from electronic annotation /// 0008021 // synaptic vesicle // inferred from direct assay /// 0016020 // membrane // inferred from electronic annotation /// 0030008 // TRAPP complex // inferred from direct assay /// 0030054 // cell junction // inferred from electronic annotation /// 0030425 // dendrite // inferred from direct assay /// 0045202 // synapse // inferred from direct assay /// 0045211 // postsynaptic membrane // inferred from electronic annotation'], 'Gene Ontology Molecular Function': ['0005198 // structural molecule activity // inferred from electronic annotation /// 0005488 // binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from electronic annotation', '0005515 // protein binding // inferred from electronic annotation /// 0008553 // hydrogen-exporting ATPase activity, phosphorylative mechanism // inferred from direct assay /// 0015078 // hydrogen ion transmembrane transporter activity // inferred from electronic annotation /// 0032403 // protein complex binding // not recorded', nan, \"0000287 // magnesium ion binding // not recorded /// 0004647 // phosphoserine phosphatase activity // not recorded /// 0005509 // calcium ion binding // not recorded /// 0008253 // 5'-nucleotidase activity // inferred from electronic annotation /// 0016787 // hydrolase activity // inferred from electronic annotation /// 0016791 // phosphatase activity // inferred from electronic annotation /// 0042803 // protein homodimerization activity // not recorded /// 0046872 // metal ion binding // inferred from electronic annotation\", '0005515 // protein binding // inferred from physical interaction']}\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9567fd64",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "415ffd90",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:29:32.715696Z",
     "iopub.status.busy": "2025-03-25T06:29:32.715571Z",
     "iopub.status.idle": "2025-03-25T06:29:32.910965Z",
     "shell.execute_reply": "2025-03-25T06:29:32.910582Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data index preview:\n",
      "['10338001', '10338002', '10338003', '10338004', '10338005']\n",
      "\n",
      "Gene annotation ID preview:\n",
      "['1415670_at', '1415671_at', '1415672_at', '1415673_at', '1415674_a_at']\n",
      "\n",
      "This appears to be a mouse dataset with platform mismatch between expression data and annotation.\n",
      "Will save the original probe-level data for further analysis.\n",
      "\n",
      "Saved gene expression data to ../../output/preprocess/Angelman_Syndrome/gene_data/GSE43900.csv\n",
      "Gene data shape (using original probe IDs): (35556, 10)\n",
      "\n",
      "Preserving original probe-level data for downstream analysis.\n"
     ]
    }
   ],
   "source": [
    "# 1. Look at what's in our gene expression data versus annotation data\n",
    "print(\"Gene expression data index preview:\")\n",
    "print(gene_data.index[:5].tolist())\n",
    "\n",
    "print(\"\\nGene annotation ID preview:\")\n",
    "print(gene_annotation['ID'][:5].tolist())\n",
    "\n",
    "# The gene expression data uses numerical IDs while the annotation uses different format IDs\n",
    "# Since there's a platform mismatch, we'll use the original probe data but normalize it\n",
    "print(\"\\nThis appears to be a mouse dataset with platform mismatch between expression data and annotation.\")\n",
    "print(\"Will save the original probe-level data for further analysis.\")\n",
    "\n",
    "# Check if the gene expression data has any rows\n",
    "if gene_data.shape[0] > 0:\n",
    "    # Save the gene expression data with the original probe IDs\n",
    "    # Ensure the output directory exists\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    gene_data.to_csv(out_gene_data_file)\n",
    "    \n",
    "    print(f\"\\nSaved gene expression data to {out_gene_data_file}\")\n",
    "    print(f\"Gene data shape (using original probe IDs): {gene_data.shape}\")\n",
    "    \n",
    "    # Set the flag to indicate gene data is available\n",
    "    is_gene_available = True\n",
    "else:\n",
    "    print(\"\\nNo gene expression data was found.\")\n",
    "    is_gene_available = False\n",
    "\n",
    "# Keep the gene data in its original form for further steps\n",
    "mapped_gene_data = gene_data.copy()\n",
    "print(\"\\nPreserving original probe-level data for downstream analysis.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ddb2dc65",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "b6a7f679",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:29:32.912269Z",
     "iopub.status.busy": "2025-03-25T06:29:32.912151Z",
     "iopub.status.idle": "2025-03-25T06:29:33.093943Z",
     "shell.execute_reply": "2025-03-25T06:29:33.093617Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalization returned empty results - keeping original gene data.\n",
      "Gene data shape to be saved: (35556, 10)\n",
      "First 5 gene/probe IDs: ['10338001', '10338002', '10338003', '10338004', '10338005']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data saved to ../../output/preprocess/Angelman_Syndrome/gene_data/GSE43900.csv\n",
      "Trait data is unavailable in this dataset.\n",
      "Abnormality detected in the cohort: GSE43900. Preprocessing failed.\n",
      "Dataset deemed not usable for human trait associational studies.\n"
     ]
    }
   ],
   "source": [
    "# 1. The normalized gene data was empty, which suggests that the normalization was unsuccessful.\n",
    "# Let's keep the original gene data instead of attempting to normalize it.\n",
    "print(\"Normalization returned empty results - keeping original gene data.\")\n",
    "gene_data_to_save = gene_data\n",
    "print(f\"Gene data shape to be saved: {gene_data_to_save.shape}\")\n",
    "print(f\"First 5 gene/probe IDs: {gene_data_to_save.index[:5].tolist()}\")\n",
    "\n",
    "# Save the gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data_to_save.to_csv(out_gene_data_file)\n",
    "print(f\"Gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Since we previously determined that trait data is not available in this dataset,\n",
    "# we won't attempt to load or create clinical data that doesn't exist\n",
    "is_trait_available = False\n",
    "print(\"Trait data is unavailable in this dataset.\")\n",
    "\n",
    "# Since this is mouse data and doesn't contain human trait (Angelman Syndrome) information,\n",
    "# the dataset is not usable for our human trait association studies\n",
    "is_biased = True  # Set to True to indicate dataset is not suitable\n",
    "\n",
    "# Create a minimal valid DataFrame for metadata using gene data sample IDs\n",
    "sample_df = pd.DataFrame(index=gene_data.columns)\n",
    "\n",
    "# Validate and save cohort info with appropriate values\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,  # Providing a value even when trait is not available\n",
    "    df=sample_df,\n",
    "    note=\"This dataset contains mouse neuron gene expression data with various treatments, but no human Angelman Syndrome trait information.\"\n",
    ")\n",
    "\n",
    "# No linked data to save since trait data is not available\n",
    "print(\"Dataset deemed not usable for human trait associational studies.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}