File size: 38,051 Bytes
58f02a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "4b954e65",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:17:23.121092Z",
     "iopub.status.busy": "2025-03-25T06:17:23.120857Z",
     "iopub.status.idle": "2025-03-25T06:17:23.282335Z",
     "shell.execute_reply": "2025-03-25T06:17:23.281987Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Acute_Myeloid_Leukemia\"\n",
    "cohort = \"GSE161532\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Acute_Myeloid_Leukemia\"\n",
    "in_cohort_dir = \"../../input/GEO/Acute_Myeloid_Leukemia/GSE161532\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/GSE161532.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE161532.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE161532.csv\"\n",
    "json_path = \"../../output/preprocess/Acute_Myeloid_Leukemia/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "aa10e5ce",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "0584e104",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:17:23.283564Z",
     "iopub.status.busy": "2025-03-25T06:17:23.283421Z",
     "iopub.status.idle": "2025-03-25T06:17:23.577788Z",
     "shell.execute_reply": "2025-03-25T06:17:23.577431Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene expression profiling of Acute Myeloid Leukemia\"\n",
      "!Series_summary\t\"The transcriptional profile of acute myeloid leukemia (AML) cells changes according to the disease molecular and genomic properties and to the microenvironmental features. Moreover, it shapes the interaction with the tissue and immune microenvironment. We analyzed the gene expression profile of 61 AML cases (Affymetrix Human Transcriptome Array 2.0, Thermo Fisher Scientific) in order to identify investigate the potential involvement of adrenomedullin in AML and the alterations having a putative causal and/or tolerogenic role towards aneuploidy.\"\n",
      "!Series_summary\t\"The gene expression profile of 61 AML cases was determined using Affymetrix Human Transcriptome Array 2.0, in order to identify alterations with a putative causal and/or tolerogenic role towards aneuploidy.\"\n",
      "!Series_overall_design\t\"Bone marow cells from AML patients (more than or equal to 80% blast cells) were used for RNA extraction and hybridization on microarrays.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['percentage of blasts: ≥80%'], 1: ['age: 54', 'age: 66', 'age: 65', 'age: 38', 'age: na', 'age: 51', 'age: 82', 'age: 70', 'age: 69', 'age: 72', 'age: 59', 'age: 47', 'age: 67', 'age: 63', 'age: 42', 'age: 71', 'age: 64', 'age: 57', 'age: 62', 'age: 60', 'age: 76', 'age: 31', 'age: 52', 'age: 50', 'age: 68', 'age: 34', 'age: 61', 'age: 39', 'age: 77', 'age: 73'], 2: ['gender: Female', 'gender: Male'], 3: ['cytogenetic class: Other', 'cytogenetic class: Normal Karyotype', 'cytogenetic class: Complex Karyotype', 'cytogenetic class: inv(16)/t(16;16)', 'cytogenetic class: t(8;21)', 'cytogenetic class: Monosomy 7', 'cytogenetic class: MLL-rearranged', 'cytogenetic class: t(3;3)/inv(3)'], 4: ['disease state: de novo, AML', 'disease state: secondary, AML', 'disease state: na, AML', 'disease state: t-AML, AML'], 5: ['cell type: bone marrow cells']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2efb6599",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "35889b20",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:17:23.579452Z",
     "iopub.status.busy": "2025-03-25T06:17:23.579338Z",
     "iopub.status.idle": "2025-03-25T06:17:23.584130Z",
     "shell.execute_reply": "2025-03-25T06:17:23.583798Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical feature extraction skipped due to missing proper clinical data format.\n",
      "Trait row: 4, Age row: 1, Gender row: 2\n",
      "Trait availability: True, Gene availability: True\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "is_gene_available = True  # Based on Series description, this dataset contains gene expression data from microarrays\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "trait_row = 4  # 'disease state' can be used to determine AML status\n",
    "age_row = 1    # Age information is available\n",
    "gender_row = 2 # Gender information is available\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert the AML disease state to binary: 1 for any type of AML, 0 otherwise.\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # All entries contain \"AML\" as per the sample characteristics dictionary\n",
    "    # So this is essentially a constant feature, but we'll keep it for completeness\n",
    "    return 1 if 'AML' in value else 0\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age to a numeric value.\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to numeric, handling 'na' values\n",
    "    if value.lower() == 'na':\n",
    "        return None\n",
    "    try:\n",
    "        return float(value)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary: 0 for female, 1 for male.\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary\n",
    "    if value.lower() == 'female':\n",
    "        return 0\n",
    "    elif value.lower() == 'male':\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Check if trait data is available (it is if trait_row is not None)\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Conduct initial filtering on the usability of the dataset\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# We'll skip clinical feature extraction for now since we don't have the properly formatted clinical data\n",
    "# The function needs the original clinical data in the correct format, which isn't available in this task\n",
    "print(\"Clinical feature extraction skipped due to missing proper clinical data format.\")\n",
    "print(f\"Trait row: {trait_row}, Age row: {age_row}, Gender row: {gender_row}\")\n",
    "print(f\"Trait availability: {is_trait_available}, Gene availability: {is_gene_available}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e57479f8",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "6326bbde",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:17:23.585720Z",
     "iopub.status.busy": "2025-03-25T06:17:23.585614Z",
     "iopub.status.idle": "2025-03-25T06:17:24.055017Z",
     "shell.execute_reply": "2025-03-25T06:17:24.054626Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['2824546_st', '2824549_st', '2824551_st', '2824554_st', '2827992_st',\n",
      "       '2827995_st', '2827996_st', '2828010_st', '2828012_st', '2835442_st',\n",
      "       '2835447_st', '2835453_st', '2835456_st', '2835459_st', '2835461_st',\n",
      "       '2839509_st', '2839511_st', '2839513_st', '2839515_st', '2839517_st'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d3bb9362",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "6c5d6c3c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:17:24.056717Z",
     "iopub.status.busy": "2025-03-25T06:17:24.056594Z",
     "iopub.status.idle": "2025-03-25T06:17:24.058493Z",
     "shell.execute_reply": "2025-03-25T06:17:24.058203Z"
    }
   },
   "outputs": [],
   "source": [
    "# These are Affymetrix probe set IDs from a microarray platform, not standard human gene symbols.\n",
    "# They need to be mapped to gene symbols for meaningful biological interpretation.\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5019466f",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "ba9052b1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:17:24.060171Z",
     "iopub.status.busy": "2025-03-25T06:17:24.060038Z",
     "iopub.status.idle": "2025-03-25T06:17:32.816340Z",
     "shell.execute_reply": "2025-03-25T06:17:32.815906Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1'], 'probeset_id': ['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'strand': ['+', '+', '+', '+', '+'], 'start': ['11869', '29554', '69091', '160446', '317811'], 'stop': ['14409', '31109', '70008', '161525', '328581'], 'total_probes': [49.0, 60.0, 30.0, 30.0, 191.0], 'gene_assignment': ['NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000456328 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // 9p24.3 // 100287596 /// ENST00000456328 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102', 'ENST00000408384 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000408384 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000408384 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000408384 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000469289 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000469289 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000469289 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000469289 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000473358 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000473358 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000473358 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000473358 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// OTTHUMT00000002841 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002841 // RP11-34P13.3 // NULL // --- // --- /// OTTHUMT00000002840 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002840 // RP11-34P13.3 // NULL // --- // ---', 'NM_001005484 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000335137 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// OTTHUMT00000003223 // OR4F5 // NULL // --- // ---', 'OTTHUMT00000007169 // OTTHUMG00000002525 // NULL // --- // --- /// OTTHUMT00000007169 // RP11-34P13.9 // NULL // --- // ---', 'NR_028322 // LOC100132287 // uncharacterized LOC100132287 // 1p36.33 // 100132287 /// NR_028327 // LOC100133331 // uncharacterized LOC100133331 // 1p36.33 // 100133331 /// ENST00000425496 // LOC101060495 // uncharacterized LOC101060495 // --- // 101060495 /// ENST00000425496 // LOC101060494 // uncharacterized LOC101060494 // --- // 101060494 /// ENST00000425496 // LOC101059936 // uncharacterized LOC101059936 // --- // 101059936 /// ENST00000425496 // LOC100996502 // uncharacterized LOC100996502 // --- // 100996502 /// ENST00000425496 // LOC100996328 // uncharacterized LOC100996328 // --- // 100996328 /// ENST00000425496 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// NR_028325 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// OTTHUMT00000346878 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346878 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346879 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346879 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346880 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346880 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346881 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346881 // RP4-669L17.10 // NULL // --- // ---'], 'mrna_assignment': ['NR_046018 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 (DDX11L1), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aaa.3 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc010nxq.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc010nxr.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0', 'ENST00000408384 // ENSEMBL // ncrna:miRNA chromosome:GRCh37:1:30366:30503:1 gene:ENSG00000221311 gene_biotype:miRNA transcript_biotype:miRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000469289 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:30267:31109:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000473358 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:29554:31097:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002841 // Havana transcript // cdna:all chromosome:VEGA52:1:30267:31109:1 Gene:OTTHUMG00000000959 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002840 // Havana transcript // cdna:all chromosome:VEGA52:1:29554:31097:1 Gene:OTTHUMG00000000959 // chr1 // 100 // 100 // 0 // --- // 0', 'NM_001005484 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000335137 // ENSEMBL // cdna:known chromosome:GRCh37:1:69091:70008:1 gene:ENSG00000186092 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aal.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000003223 // Havana transcript // cdna:all chromosome:VEGA52:1:69091:70008:1 Gene:OTTHUMG00000001094 // chr1 // 100 // 100 // 0 // --- // 0', 'ENST00000496488 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:160446:161525:1 gene:ENSG00000241599 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000007169 // Havana transcript // cdna:all chromosome:VEGA52:1:160446:161525:1 Gene:OTTHUMG00000002525 // chr1 // 100 // 100 // 0 // --- // 0', 'NR_028322 // RefSeq // Homo sapiens uncharacterized LOC100132287 (LOC100132287), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// NR_028327 // RefSeq // Homo sapiens uncharacterized LOC100133331 (LOC100133331), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000425496 // ENSEMBL // ensembl:lincRNA chromosome:GRCh37:1:324756:328453:1 gene:ENSG00000237094 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000426316 // ENSEMBL // [retired] cdna:known chromosome:GRCh37:1:317811:328455:1 gene:ENSG00000240876 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 100 // 0 // --- // 0 /// NR_028325 // RefSeq // Homo sapiens uncharacterized LOC100132062 (LOC100132062), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// uc009vjk.2 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc021oeh.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc021oei.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346906 // Havana transcript // [retired] cdna:all chromosome:VEGA50:1:317811:328455:1 Gene:OTTHUMG00000156972 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346878 // Havana transcript // cdna:all chromosome:VEGA52:1:320162:321056:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346879 // Havana transcript // cdna:all chromosome:VEGA52:1:320162:324461:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346880 // Havana transcript // cdna:all chromosome:VEGA52:1:317720:324873:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346881 // Havana transcript // cdna:all chromosome:VEGA52:1:322672:324955:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0'], 'swissprot': ['NR_046018 // B7ZGX0 /// NR_046018 // B7ZGX2 /// NR_046018 // B7ZGX7 /// NR_046018 // B7ZGX8 /// ENST00000456328 // B7ZGX0 /// ENST00000456328 // B7ZGX2 /// ENST00000456328 // B7ZGX3 /// ENST00000456328 // B7ZGX7 /// ENST00000456328 // B7ZGX8 /// ENST00000456328 // Q6ZU42', '---', 'NM_001005484 // Q8NH21 /// ENST00000335137 // Q8NH21', '---', 'NR_028325 // B4DYM5 /// NR_028325 // B4E0H4 /// NR_028325 // B4E3X0 /// NR_028325 // B4E3X2 /// NR_028325 // Q6ZQS4'], 'unigene': ['NR_046018 // Hs.714157 // testis| normal| adult /// ENST00000456328 // Hs.719844 // brain| testis| normal /// ENST00000456328 // Hs.714157 // testis| normal| adult /// ENST00000456328 // Hs.618434 // testis| normal', 'ENST00000469289 // Hs.622486 // eye| normal| adult /// ENST00000469289 // Hs.729632 // testis| normal /// ENST00000469289 // Hs.742718 // testis /// ENST00000473358 // Hs.622486 // eye| normal| adult /// ENST00000473358 // Hs.729632 // testis| normal /// ENST00000473358 // Hs.742718 // testis', 'NM_001005484 // Hs.554500 // --- /// ENST00000335137 // Hs.554500 // ---', '---', 'NR_028322 // Hs.446409 // adrenal gland| blood| bone| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| lymph node| mouth| pharynx| placenta| prostate| skin| testis| thymus| thyroid| uterus| bladder carcinoma| chondrosarcoma| colorectal tumor| germ cell tumor| head and neck tumor| kidney tumor| leukemia| lung tumor| normal| primitive neuroectodermal tumor of the CNS| uterine tumor|embryoid body| blastocyst| fetus| neonate| adult /// NR_028327 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000425496 // Hs.744556 // mammary gland| normal| adult /// ENST00000425496 // Hs.660700 // eye| placenta| testis| normal| adult /// ENST00000425496 // Hs.518952 // blood| brain| intestine| lung| mammary gland| mouth| muscle| pharynx| placenta| prostate| spleen| testis| thymus| thyroid| trachea| breast (mammary gland) tumor| colorectal tumor| head and neck tumor| leukemia| lung tumor| normal| prostate cancer| fetus| adult /// ENST00000425496 // Hs.742131 // testis| normal| adult /// ENST00000425496 // Hs.636102 // uterus| uterine tumor /// ENST00000425496 // Hs.646112 // brain| intestine| larynx| lung| mouth| prostate| testis| thyroid| colorectal tumor| head and neck tumor| lung tumor| normal| prostate cancer| adult /// ENST00000425496 // Hs.647795 // brain| lung| lung tumor| adult /// ENST00000425496 // Hs.684307 // --- /// ENST00000425496 // Hs.720881 // testis| normal /// ENST00000425496 // Hs.729353 // brain| lung| placenta| testis| trachea| lung tumor| normal| fetus| adult /// ENST00000425496 // Hs.735014 // ovary| ovarian tumor /// NR_028325 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| kidney tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult'], 'category': ['main', 'main', 'main', 'main', 'main'], 'locus type': ['Coding', 'Coding', 'Coding', 'Coding', 'Coding'], 'notes': ['---', '---', '---', '---', '2 retired transcript(s) from ENSEMBL, Havana transcript'], 'SPOT_ID': ['chr1(+):11869-14409', 'chr1(+):29554-31109', 'chr1(+):69091-70008', 'chr1(+):160446-161525', 'chr1(+):317811-328581']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "38097082",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "1c79f850",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:17:32.818144Z",
     "iopub.status.busy": "2025-03-25T06:17:32.818021Z",
     "iopub.status.idle": "2025-03-25T06:17:33.840322Z",
     "shell.execute_reply": "2025-03-25T06:17:33.840014Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Column names in gene_annotation:\n",
      "['ID', 'probeset_id', 'seqname', 'strand', 'start', 'stop', 'total_probes', 'gene_assignment', 'mrna_assignment', 'swissprot', 'unigene', 'category', 'locus type', 'notes', 'SPOT_ID']\n",
      "\n",
      "First few gene identifiers in gene_data:\n",
      "Index(['2824546_st', '2824549_st', '2824551_st', '2824554_st', '2827992_st'], dtype='object', name='ID')\n",
      "\n",
      "First few probeset_ids in gene_annotation:\n",
      "['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1']\n",
      "\n",
      "First few IDs in gene_annotation:\n",
      "['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene mapping dataframe (first few rows):\n",
      "                ID                                               Gene\n",
      "0  TC01000001.hg.1  NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-As...\n",
      "1  TC01000002.hg.1  ENST00000408384 // MIR1302-11 // microRNA 1302...\n",
      "2  TC01000003.hg.1  NM_001005484 // OR4F5 // olfactory receptor, f...\n",
      "3  TC01000004.hg.1  OTTHUMT00000007169 // OTTHUMG00000002525 // NU...\n",
      "4  TC01000005.hg.1  NR_028322 // LOC100132287 // uncharacterized L...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene expression dataframe after mapping (first few rows):\n",
      "         GSM4909492  GSM4909493  GSM4909494  GSM4909495  GSM4909496  \\\n",
      "Gene                                                                  \n",
      "A-        19.717014   19.988207   20.262083   21.016678   20.559258   \n",
      "A-2        0.941636    0.916887    0.891820    0.915832    0.886529   \n",
      "A-52       5.242986    5.407402    5.369311    5.141263    5.422811   \n",
      "A-575C2    2.368492    2.362056    2.408504    2.332893    2.431963   \n",
      "A-E        2.211264    1.684236    2.269916    1.997309    2.201032   \n",
      "\n",
      "         GSM4909497  GSM4909498  GSM4909499  GSM4909500  GSM4909501  ...  \\\n",
      "Gene                                                                 ...   \n",
      "A-        20.374758   19.327033   19.760321   21.080433   19.348171  ...   \n",
      "A-2        0.922684    0.956801    0.998681    0.920608    0.912332  ...   \n",
      "A-52       5.427153    5.296226    5.240743    5.369918    5.294553  ...   \n",
      "A-575C2    2.223798    2.063372    2.656254    2.334759    2.132777  ...   \n",
      "A-E        2.380026    2.117448    2.499612    1.944188    2.169447  ...   \n",
      "\n",
      "         GSM4909543  GSM4909544  GSM4909545  GSM4909546  GSM4909547  \\\n",
      "Gene                                                                  \n",
      "A-        19.618703   20.320039   20.313237   21.217702   19.822748   \n",
      "A-2        0.935954    0.922228    0.908520    0.992044    0.882002   \n",
      "A-52       5.434340    5.125716    5.105845    5.087677    4.987783   \n",
      "A-575C2    2.127195    2.125405    2.636122    2.559967    2.297185   \n",
      "A-E        2.039245    2.151125    2.174645    1.785323    2.043044   \n",
      "\n",
      "         GSM4909548  GSM4909549  GSM4909550  GSM4909551  GSM4909552  \n",
      "Gene                                                                 \n",
      "A-        19.399933   20.070251   20.315729   20.400689   20.078562  \n",
      "A-2        0.946665    0.963266    0.982364    0.937492    0.919660  \n",
      "A-52       5.333968    5.377563    5.147598    5.186868    5.015772  \n",
      "A-575C2    2.343535    2.081508    2.324792    2.389361    2.348917  \n",
      "A-E        1.997776    1.714052    2.374575    2.136888    2.095309  \n",
      "\n",
      "[5 rows x 61 columns]\n"
     ]
    }
   ],
   "source": [
    "# 1. Examining the gene identifiers in gene expression data and gene annotation data\n",
    "# From the previous steps, we can observe that gene identifiers in gene_data have the format like \"2824546_st\"\n",
    "# In the gene annotation, we need to find which column matches this format\n",
    "\n",
    "# Check column names in gene_annotation to identify the ID column\n",
    "print(\"Column names in gene_annotation:\")\n",
    "print(gene_annotation.columns.tolist())\n",
    "\n",
    "# Looking at gene identifiers in both datasets\n",
    "print(\"\\nFirst few gene identifiers in gene_data:\")\n",
    "print(gene_data.index[:5])\n",
    "\n",
    "# Look at a sample of the probeset_id column to see if it matches our gene expression IDs\n",
    "print(\"\\nFirst few probeset_ids in gene_annotation:\")\n",
    "print(gene_annotation['probeset_id'].head().tolist())\n",
    "\n",
    "# Compare with other potential identifier columns\n",
    "print(\"\\nFirst few IDs in gene_annotation:\")\n",
    "print(gene_annotation['ID'].head().tolist())\n",
    "\n",
    "# After examining the data, we need to use ID from gene_annotation for mapping\n",
    "# The 'gene_assignment' column contains the gene symbols but needs parsing\n",
    "\n",
    "# Let's create a more consistent mapping by extracting gene symbols from gene_assignment\n",
    "# 2. Get gene mapping dataframe\n",
    "# The ID column in gene_annotation matches the probe IDs in gene_data\n",
    "# For gene symbols, we need to extract from gene_assignment\n",
    "mapping_df = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')\n",
    "\n",
    "# Print the mapping to verify its structure\n",
    "print(\"\\nGene mapping dataframe (first few rows):\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level data to gene-level data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Print the first few rows of the resulting gene expression dataframe\n",
    "print(\"\\nGene expression dataframe after mapping (first few rows):\")\n",
    "print(gene_data.head())\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ba981887",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "06fa1b4f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:17:33.842139Z",
     "iopub.status.busy": "2025-03-25T06:17:33.842003Z",
     "iopub.status.idle": "2025-03-25T06:17:43.115325Z",
     "shell.execute_reply": "2025-03-25T06:17:43.114943Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE161532.csv\n",
      "Clinical data saved to ../../output/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE161532.csv\n",
      "Clinical data shape: (3, 61)\n",
      "Clinical data preview:\n",
      "{'GSM4909492': [1.0, 54.0, 0.0], 'GSM4909493': [1.0, 66.0, 1.0], 'GSM4909494': [1.0, 65.0, 1.0], 'GSM4909495': [1.0, 38.0, 0.0], 'GSM4909496': [1.0, nan, 0.0], 'GSM4909497': [1.0, 51.0, 0.0], 'GSM4909498': [1.0, 82.0, 1.0], 'GSM4909499': [1.0, 70.0, 1.0], 'GSM4909500': [1.0, nan, 1.0], 'GSM4909501': [1.0, 69.0, 1.0], 'GSM4909502': [1.0, 72.0, 0.0], 'GSM4909503': [1.0, 59.0, 0.0], 'GSM4909504': [1.0, 47.0, 0.0], 'GSM4909505': [1.0, 67.0, 1.0], 'GSM4909506': [1.0, 63.0, 0.0], 'GSM4909507': [1.0, 42.0, 0.0], 'GSM4909508': [1.0, 71.0, 1.0], 'GSM4909509': [1.0, 64.0, 1.0], 'GSM4909510': [1.0, 57.0, 0.0], 'GSM4909511': [1.0, 70.0, 0.0], 'GSM4909512': [1.0, 62.0, 1.0], 'GSM4909513': [1.0, 66.0, 0.0], 'GSM4909514': [1.0, 60.0, 0.0], 'GSM4909515': [1.0, 67.0, 0.0], 'GSM4909516': [1.0, 66.0, 1.0], 'GSM4909517': [1.0, 76.0, 0.0], 'GSM4909518': [1.0, 31.0, 1.0], 'GSM4909519': [1.0, 67.0, 1.0], 'GSM4909520': [1.0, 52.0, 1.0], 'GSM4909521': [1.0, 69.0, 0.0], 'GSM4909522': [1.0, nan, 1.0], 'GSM4909523': [1.0, 62.0, 1.0], 'GSM4909524': [1.0, 62.0, 0.0], 'GSM4909525': [1.0, 50.0, 0.0], 'GSM4909526': [1.0, 76.0, 0.0], 'GSM4909527': [1.0, 60.0, 0.0], 'GSM4909528': [1.0, 62.0, 0.0], 'GSM4909529': [1.0, 66.0, 1.0], 'GSM4909530': [1.0, 72.0, 0.0], 'GSM4909531': [1.0, 62.0, 0.0], 'GSM4909532': [1.0, 67.0, 0.0], 'GSM4909533': [1.0, 68.0, 1.0], 'GSM4909534': [1.0, 68.0, 0.0], 'GSM4909535': [1.0, 34.0, 0.0], 'GSM4909536': [1.0, 61.0, 1.0], 'GSM4909537': [1.0, 71.0, 0.0], 'GSM4909538': [1.0, 42.0, 1.0], 'GSM4909539': [1.0, 57.0, 1.0], 'GSM4909540': [1.0, nan, 1.0], 'GSM4909541': [1.0, 39.0, 1.0], 'GSM4909542': [1.0, 64.0, 1.0], 'GSM4909543': [1.0, 77.0, 1.0], 'GSM4909544': [1.0, 66.0, 0.0], 'GSM4909545': [1.0, 66.0, 1.0], 'GSM4909546': [1.0, 39.0, 0.0], 'GSM4909547': [1.0, nan, 0.0], 'GSM4909548': [1.0, 73.0, 1.0], 'GSM4909549': [1.0, 74.0, 0.0], 'GSM4909550': [1.0, 42.0, 1.0], 'GSM4909551': [1.0, 64.0, 1.0], 'GSM4909552': [1.0, 45.0, 1.0]}\n",
      "Linked data shape: (61, 24021)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (61, 24021)\n",
      "Unique values in trait column: [1.]\n",
      "Quartiles for 'Acute_Myeloid_Leukemia':\n",
      "  25%: 1.0\n",
      "  50% (Median): 1.0\n",
      "  75%: 1.0\n",
      "Min: 1.0\n",
      "Max: 1.0\n",
      "The distribution of the feature 'Acute_Myeloid_Leukemia' in this dataset is severely biased.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: 57.0\n",
      "  50% (Median): 63.0\n",
      "  75%: 68.0\n",
      "Min: 31.0\n",
      "Max: 82.0\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '1.0' with 30 occurrences. This represents 49.18% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n",
      "Dataset not usable due to bias in trait distribution. Data not saved.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Extract clinical features using the determined rows and conversion functions from Step 2\n",
    "clinical_df = geo_select_clinical_features(\n",
    "    clinical_data, \n",
    "    trait=trait,\n",
    "    trait_row=4,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=1,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=2,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "print(f\"Clinical data shape: {clinical_df.shape}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(clinical_df))\n",
    "\n",
    "# 3. Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# Verify that the trait column has at least two unique values\n",
    "unique_trait_values = linked_data[trait].unique()\n",
    "print(f\"Unique values in trait column: {unique_trait_values}\")\n",
    "\n",
    "# 5. Determine whether the trait and some demographic features are severely biased\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 6. Conduct quality check and save the cohort information\n",
    "note = \"Dataset contains AML (Acute Myeloid Leukemia) samples with different subtypes.\"\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 7. If the linked data is usable, save it\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Processed dataset saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset not usable due to bias in trait distribution. Data not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}