File size: 28,135 Bytes
736e4a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "fab1f182",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:23.199213Z",
"iopub.status.busy": "2025-03-25T06:30:23.198707Z",
"iopub.status.idle": "2025-03-25T06:30:23.365181Z",
"shell.execute_reply": "2025-03-25T06:30:23.364843Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Ankylosing_Spondylitis\"\n",
"cohort = \"GSE25101\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Ankylosing_Spondylitis\"\n",
"in_cohort_dir = \"../../input/GEO/Ankylosing_Spondylitis/GSE25101\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Ankylosing_Spondylitis/GSE25101.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Ankylosing_Spondylitis/gene_data/GSE25101.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Ankylosing_Spondylitis/clinical_data/GSE25101.csv\"\n",
"json_path = \"../../output/preprocess/Ankylosing_Spondylitis/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "46b318b9",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "26ee1954",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:23.366608Z",
"iopub.status.busy": "2025-03-25T06:30:23.366461Z",
"iopub.status.idle": "2025-03-25T06:30:23.433821Z",
"shell.execute_reply": "2025-03-25T06:30:23.433524Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Expression profiling in whole blood in ankylosing spondylitis patients and controls\"\n",
"!Series_summary\t\"Introduction: A number of genetic-association studies have identified genes contributing to AS susceptibility but such approaches provide little information as to the gene activity changes occurring during the disease process. Transcriptional profiling generates a “snapshot” of the sampled cells activity and thus can provide insights into the molecular processes driving the disease process. We undertook a whole-genome microarray approach to identify candidate genes associated with AS and validated these gene-expression changes in a larger sample cohort. Methods: 18 active AS patients, classified according to the New York criteria. and 18 gender-and age-matched controls were profiled using Illumina HT-12 Whole-Genome Expression BeadChips which carry cDNAs for 48000 genes and transcripts. Class comparison analysis identified a number of differentially expressed candidate genes. These candidate genes were then validated in a larger cohort using qPCR-based TaqMan Low Density Arrays (TLDAs). Results: 239 probes corresponding to 221 genes were identified as being significantly different between patients and controls with a p-value <0.0005 (80% confidence level of false discovery rate). Forty seven genes were then selected for validation studies, using the TLDAs. Thirteen of these genes were validated in the second patient cohort with 12 down-regulated 1.3-2-fold and only 1 upregulated (1.6-fold). Among a number of identified genes with well-documented inflammatory roles we also validated genes that might be of great interest to the understanding of AS progression such as SPOCK2 (osteonectin) and EP300 which modulate cartilage and bone metabolism. Conclusion: We have validated a gene expression signature for AS from whole blood and identified strong candidate genes that may play roles in both the inflammatory and joint destruction aspects of the disease.\"\n",
"!Series_overall_design\t\"RNA was extracted from whole blood using PAXGene tubes. 16 AS patients with active disease and 16 gender- and age-matched controls were analysed.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['tissue: Whole blood'], 1: ['cell type: PBMC'], 2: ['disease status: Ankylosing spondylitis patient', 'disease status: Normal control']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "3d431616",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "048b5bc3",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:23.434904Z",
"iopub.status.busy": "2025-03-25T06:30:23.434796Z",
"iopub.status.idle": "2025-03-25T06:30:23.442035Z",
"shell.execute_reply": "2025-03-25T06:30:23.441749Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of selected clinical data:\n",
"{'GSM616668': [1.0], 'GSM616669': [1.0], 'GSM616670': [1.0], 'GSM616671': [1.0], 'GSM616672': [1.0], 'GSM616673': [1.0], 'GSM616674': [1.0], 'GSM616675': [1.0], 'GSM616676': [1.0], 'GSM616677': [1.0], 'GSM616678': [1.0], 'GSM616679': [1.0], 'GSM616680': [1.0], 'GSM616681': [1.0], 'GSM616682': [1.0], 'GSM616683': [1.0], 'GSM616684': [0.0], 'GSM616685': [0.0], 'GSM616686': [0.0], 'GSM616687': [0.0], 'GSM616688': [0.0], 'GSM616689': [0.0], 'GSM616690': [0.0], 'GSM616691': [0.0], 'GSM616692': [0.0], 'GSM616693': [0.0], 'GSM616694': [0.0], 'GSM616695': [0.0], 'GSM616696': [0.0], 'GSM616697': [0.0], 'GSM616698': [0.0], 'GSM616699': [0.0]}\n",
"Clinical data saved to ../../output/preprocess/Ankylosing_Spondylitis/clinical_data/GSE25101.csv\n"
]
}
],
"source": [
"import pandas as pd\n",
"import os\n",
"import json\n",
"from typing import Callable, Optional, Dict, Any\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# From the background information, this is a whole-genome microarray study\n",
"# using Illumina HT-12 Whole-Genome Expression BeadChips which carry cDNAs for 48000 genes\n",
"is_gene_available = True\n",
"\n",
"# 2. Clinical Feature Extraction and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# Looking at the sample characteristics dictionary:\n",
"# Key 2 contains disease status which relates to our trait (Ankylosing_Spondylitis)\n",
"trait_row = 2\n",
"\n",
"# No age information is available in the sample characteristics\n",
"age_row = None\n",
"\n",
"# No gender information is available in the sample characteristics\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value: str) -> int:\n",
" \"\"\"\n",
" Convert Ankylosing Spondylitis disease status to binary values.\n",
" 0 = Normal control (no disease)\n",
" 1 = Ankylosing spondylitis patient (has disease)\n",
" \"\"\"\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" if \"ankylosing spondylitis patient\" in value.lower():\n",
" return 1\n",
" elif \"normal control\" in value.lower():\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value: str) -> float:\n",
" \"\"\"\n",
" Convert age to continuous value.\n",
" Not used in this dataset as age information is not available.\n",
" \"\"\"\n",
" return None\n",
"\n",
"def convert_gender(value: str) -> int:\n",
" \"\"\"\n",
" Convert gender to binary value.\n",
" Not used in this dataset as gender information is not available.\n",
" \"\"\"\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save initial validation information\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction (if trait_row is not None)\n",
"if trait_row is not None:\n",
" # Create a directory for the clinical data if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Assuming clinical_data is already loaded in the environment from a previous step\n",
" # If not, we'll need to skip this part\n",
" try:\n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data, # Use the variable from the environment\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical data\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of selected clinical data:\")\n",
" print(preview)\n",
" \n",
" # Save the clinical data\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" except NameError:\n",
" print(\"Clinical data not found in the environment. This step will be handled in a subsequent processing stage.\")\n"
]
},
{
"cell_type": "markdown",
"id": "43a92a18",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2787cc9d",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:23.442994Z",
"iopub.status.busy": "2025-03-25T06:30:23.442888Z",
"iopub.status.idle": "2025-03-25T06:30:23.520421Z",
"shell.execute_reply": "2025-03-25T06:30:23.520099Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"First 20 gene/probe identifiers:\n",
"Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651209', 'ILMN_1651228',\n",
" 'ILMN_1651229', 'ILMN_1651232', 'ILMN_1651237', 'ILMN_1651254',\n",
" 'ILMN_1651262', 'ILMN_1651268', 'ILMN_1651278', 'ILMN_1651282',\n",
" 'ILMN_1651286', 'ILMN_1651296', 'ILMN_1651315', 'ILMN_1651316',\n",
" 'ILMN_1651328', 'ILMN_1651336', 'ILMN_1651341', 'ILMN_1651346'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene data dimensions: 18168 genes × 32 samples\n"
]
}
],
"source": [
"# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract the gene expression data from the matrix file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
"print(\"\\nFirst 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n",
"\n",
"# 4. Print the dimensions of the gene expression data\n",
"print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"\n",
"# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
"is_gene_available = True\n"
]
},
{
"cell_type": "markdown",
"id": "6101e2af",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "13ff3911",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:23.521619Z",
"iopub.status.busy": "2025-03-25T06:30:23.521502Z",
"iopub.status.idle": "2025-03-25T06:30:23.523340Z",
"shell.execute_reply": "2025-03-25T06:30:23.523067Z"
}
},
"outputs": [],
"source": [
"# Analyzing the gene identifiers from the previous step\n",
"# These are Illumina BeadArray identifiers (ILMN_) which are probe IDs, not gene symbols\n",
"# They need to be mapped to human gene symbols for proper biological interpretation\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "77c62367",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "609cdda0",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:23.524420Z",
"iopub.status.busy": "2025-03-25T06:30:23.524314Z",
"iopub.status.idle": "2025-03-25T06:30:25.018442Z",
"shell.execute_reply": "2025-03-25T06:30:25.018072Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['ILMN_1725881', 'ILMN_1910180', 'ILMN_1804174', 'ILMN_1796063', 'ILMN_1811966'], 'nuID': ['rp13_p1x6D80lNLk3c', 'NEX0oqCV8.er4HVfU4', 'KyqQynMZxJcruyylEU', 'xXl7eXuF7sbPEp.KFI', '9ckqJrioiaej9_ajeQ'], 'Species': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Source': ['RefSeq', 'Unigene', 'RefSeq', 'RefSeq', 'RefSeq'], 'Search_Key': ['ILMN_44919', 'ILMN_127219', 'ILMN_139282', 'ILMN_5006', 'ILMN_38756'], 'Transcript': ['ILMN_44919', 'ILMN_127219', 'ILMN_139282', 'ILMN_5006', 'ILMN_38756'], 'ILMN_Gene': ['LOC23117', 'HS.575038', 'FCGR2B', 'TRIM44', 'LOC653895'], 'Source_Reference_ID': ['XM_933824.1', 'Hs.575038', 'XM_938851.1', 'NM_017583.3', 'XM_936379.1'], 'RefSeq_ID': ['XM_933824.1', nan, 'XM_938851.1', 'NM_017583.3', 'XM_936379.1'], 'Unigene_ID': [nan, 'Hs.575038', nan, nan, nan], 'Entrez_Gene_ID': [23117.0, nan, 2213.0, 54765.0, 653895.0], 'GI': [89040007.0, 10437021.0, 88952550.0, 29029528.0, 89033487.0], 'Accession': ['XM_933824.1', 'AK024680', 'XM_938851.1', 'NM_017583.3', 'XM_936379.1'], 'Symbol': ['LOC23117', nan, 'FCGR2B', 'TRIM44', 'LOC653895'], 'Protein_Product': ['XP_938917.1', nan, 'XP_943944.1', 'NP_060053.2', 'XP_941472.1'], 'Array_Address_Id': [1710221.0, 5900364.0, 2480717.0, 1300239.0, 4480719.0], 'Probe_Type': ['I', 'S', 'I', 'S', 'S'], 'Probe_Start': [122.0, 1409.0, 1643.0, 2901.0, 25.0], 'SEQUENCE': ['GGCTCCTCTTTGGGCTCCTACTGGAATTTATCAGCCATCAGTGCATCTCT', 'ACACCTTCAGGAGGGAAGCCCTTATTTCTGGGTTGAACTCCCCTTCCATG', 'TAGGGGCAATAGGCTATACGCTACAGCCTAGGTGTGTAGTAGGCCACACC', 'CCTGCCTGTCTGCCTGTGACCTGTGTACGTATTACAGGCTTTAGGACCAG', 'CTAGCAGGGAGCGGTGAGGGAGAGCGGCTGGATTTCTTGCGGGATCTGCA'], 'Chromosome': ['16', nan, nan, '11', nan], 'Probe_Chr_Orientation': ['-', nan, nan, '+', nan], 'Probe_Coordinates': ['21766363-21766363:21769901-21769949', nan, nan, '35786070-35786119', nan], 'Cytoband': ['16p12.2a', nan, '1q23.3b', '11p13a', '10q11.23b'], 'Definition': ['PREDICTED: Homo sapiens KIAA0220-like protein, transcript variant 11 (LOC23117), mRNA.', 'Homo sapiens cDNA: FLJ21027 fis, clone CAE07110', 'PREDICTED: Homo sapiens Fc fragment of IgG, low affinity IIb, receptor (CD32) (FCGR2B), mRNA.', 'Homo sapiens tripartite motif-containing 44 (TRIM44), mRNA.', 'PREDICTED: Homo sapiens similar to protein geranylgeranyltransferase type I, beta subunit (LOC653895), mRNA.'], 'Ontology_Component': [nan, nan, nan, 'intracellular [goid 5622] [evidence IEA]', nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, 'zinc ion binding [goid 8270] [evidence IEA]; metal ion binding [goid 46872] [evidence IEA]', nan], 'Synonyms': [nan, nan, nan, 'MGC3490; MC7; HSA249128; DIPB', nan], 'Obsolete_Probe_Id': [nan, nan, nan, 'MGC3490; MC7; HSA249128; DIPB', nan], 'GB_ACC': ['XM_933824.1', 'AK024680', 'XM_938851.1', 'NM_017583.3', 'XM_936379.1']}\n"
]
}
],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "beeecafd",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "cd0a929e",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:25.019830Z",
"iopub.status.busy": "2025-03-25T06:30:25.019703Z",
"iopub.status.idle": "2025-03-25T06:30:25.384239Z",
"shell.execute_reply": "2025-03-25T06:30:25.383865Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total probe IDs in annotation: 630984\n",
"Total probe IDs with gene symbols: 36157\n",
"\n",
"Number of unique genes after mapping: 11631\n",
"\n",
"First 10 gene symbols:\n",
"Index(['A26A1', 'AAAS', 'AACS', 'AACSL', 'AADACL1', 'AAK1', 'AAMP', 'AARS',\n",
" 'AARS2', 'AARSD1'],\n",
" dtype='object', name='Gene')\n",
"\n",
"Number of genes after normalization: 11317\n",
"\n",
"First 10 normalized gene symbols:\n",
"Index(['AAAS', 'AACS', 'AACSP1', 'AAK1', 'AAMDC', 'AAMP', 'AAR2', 'AARS1',\n",
" 'AARS2', 'AARSD1'],\n",
" dtype='object', name='Gene')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene expression data saved to ../../output/preprocess/Ankylosing_Spondylitis/gene_data/GSE25101.csv\n"
]
}
],
"source": [
"# 1. Identify the column names for mapping\n",
"# From the gene annotation preview, I can see that:\n",
"# - 'ID' column contains the ILMN identifiers (e.g., ILMN_1725881) same as in the gene expression data\n",
"# - 'Symbol' column contains the gene symbols (e.g., LOC23117, FCGR2B, TRIM44)\n",
"\n",
"# 2. Extract the mapping between IDs and gene symbols\n",
"gene_map_df = get_gene_mapping(gene_annotation, 'ID', 'Symbol')\n",
"\n",
"# Print mapping statistics\n",
"print(f\"Total probe IDs in annotation: {len(gene_annotation)}\")\n",
"print(f\"Total probe IDs with gene symbols: {len(gene_map_df)}\")\n",
"\n",
"# 3. Convert probe-level measurements to gene-level expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_map_df)\n",
"\n",
"# 4. Print results of the gene mapping\n",
"print(f\"\\nNumber of unique genes after mapping: {len(gene_data)}\")\n",
"print(\"\\nFirst 10 gene symbols:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# 5. Normalize gene symbols to handle synonyms and ensure consistency\n",
"gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"\\nNumber of genes after normalization: {len(gene_data)}\")\n",
"print(\"\\nFirst 10 normalized gene symbols:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# 6. Create directory and save the gene expression data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "cba66c58",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "76537054",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:25.385575Z",
"iopub.status.busy": "2025-03-25T06:30:25.385455Z",
"iopub.status.idle": "2025-03-25T06:30:28.997898Z",
"shell.execute_reply": "2025-03-25T06:30:28.997267Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols in the gene expression data...\n",
"Original gene data shape: 11317 genes × 32 samples\n",
"Normalized gene data shape: 11317 genes × 32 samples\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene expression data saved to ../../output/preprocess/Ankylosing_Spondylitis/gene_data/GSE25101.csv\n",
"Extracting clinical features from original clinical data...\n",
"Clinical features saved to ../../output/preprocess/Ankylosing_Spondylitis/clinical_data/GSE25101.csv\n",
"Clinical features preview:\n",
"{'GSM616668': [1.0], 'GSM616669': [1.0], 'GSM616670': [1.0], 'GSM616671': [1.0], 'GSM616672': [1.0], 'GSM616673': [1.0], 'GSM616674': [1.0], 'GSM616675': [1.0], 'GSM616676': [1.0], 'GSM616677': [1.0], 'GSM616678': [1.0], 'GSM616679': [1.0], 'GSM616680': [1.0], 'GSM616681': [1.0], 'GSM616682': [1.0], 'GSM616683': [1.0], 'GSM616684': [0.0], 'GSM616685': [0.0], 'GSM616686': [0.0], 'GSM616687': [0.0], 'GSM616688': [0.0], 'GSM616689': [0.0], 'GSM616690': [0.0], 'GSM616691': [0.0], 'GSM616692': [0.0], 'GSM616693': [0.0], 'GSM616694': [0.0], 'GSM616695': [0.0], 'GSM616696': [0.0], 'GSM616697': [0.0], 'GSM616698': [0.0], 'GSM616699': [0.0]}\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (32, 11318)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (32, 11318)\n",
"\n",
"Checking for bias in feature variables:\n",
"For the feature 'Ankylosing_Spondylitis', the least common label is '1.0' with 16 occurrences. This represents 50.00% of the dataset.\n",
"The distribution of the feature 'Ankylosing_Spondylitis' in this dataset is fine.\n",
"\n",
"A new JSON file was created at: ../../output/preprocess/Ankylosing_Spondylitis/cohort_info.json\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Ankylosing_Spondylitis/GSE25101.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols in the gene expression data...\")\n",
"# From the previous step output, we can see the data already contains gene symbols\n",
"# like 'A1BG', 'A1CF', 'A2M' which need to be normalized\n",
"gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Original gene data shape: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"print(f\"Normalized gene data shape: {gene_data_normalized.shape[0]} genes × {gene_data_normalized.shape[1]} samples\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data_normalized.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Extract clinical features from scratch instead of loading the empty file\n",
"print(\"Extracting clinical features from original clinical data...\")\n",
"clinical_features = geo_select_clinical_features(\n",
" clinical_data, \n",
" trait, \n",
" trait_row,\n",
" convert_trait,\n",
" age_row,\n",
" convert_age,\n",
" gender_row,\n",
" convert_gender\n",
")\n",
"\n",
"# Save the extracted clinical features\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"clinical_features.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
"\n",
"print(\"Clinical features preview:\")\n",
"print(preview_df(clinical_features))\n",
"\n",
"# Check if clinical features were successfully extracted\n",
"if clinical_features.empty:\n",
" print(\"Failed to extract clinical features. Dataset cannot be processed further.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=False,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"Clinical features could not be extracted from the dataset.\"\n",
" )\n",
" print(\"Dataset deemed not usable due to lack of clinical features.\")\n",
"else:\n",
" # 2. Link clinical and genetic data\n",
" print(\"Linking clinical and genetic data...\")\n",
" linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data_normalized)\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
" # 3. Handle missing values systematically\n",
" linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
" print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
" # 4. Check if the dataset is biased\n",
" print(\"\\nChecking for bias in feature variables:\")\n",
" is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
" # 5. Conduct final quality validation\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=\"Dataset contains gene expression data for aniridia patients and healthy controls.\"\n",
" )\n",
"\n",
" # 6. Save linked data if usable\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" else:\n",
" print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|