File size: 44,239 Bytes
3923fb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "93e2cd0e",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:21:56.424114Z",
"iopub.status.busy": "2025-03-25T05:21:56.423490Z",
"iopub.status.idle": "2025-03-25T05:21:56.624005Z",
"shell.execute_reply": "2025-03-25T05:21:56.623554Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Glioblastoma\"\n",
"cohort = \"GSE175700\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Glioblastoma\"\n",
"in_cohort_dir = \"../../input/GEO/Glioblastoma/GSE175700\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Glioblastoma/GSE175700.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Glioblastoma/gene_data/GSE175700.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Glioblastoma/clinical_data/GSE175700.csv\"\n",
"json_path = \"../../output/preprocess/Glioblastoma/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "d7e6a5c0",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "745a18a1",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:21:56.625505Z",
"iopub.status.busy": "2025-03-25T05:21:56.625350Z",
"iopub.status.idle": "2025-03-25T05:21:56.924441Z",
"shell.execute_reply": "2025-03-25T05:21:56.924023Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Identification of indoleamine 2, 3-dioxygenase 1 (IDO1) regulated genes in human glioblastoma cell line U87\"\n",
"!Series_summary\t\"Transcriptome analysis of U87 cells under different treatments to identify IDO1-regulated genes\"\n",
"!Series_summary\t\"Indoleamine 2, 3-dioxygenase 1 (IDO1) is a tryptophan (Trp) catabolic enzyme that converts Trp into downstream kynurinine (Kyn). Many studies have indicated that IDO1 is a critical suppressive immune checkpoint molecule invovled in various types of cancer. Canonically, the underlying mechanism of IDO1 immunosuppressive role is related with its enzyme activity, that is the depletion of Trp and accumulation of Kyn lead to increased tumor infiltrating suppressive regulatory T cells. Recent studies, however, challenged this hypothesis and imply that tumor cell-derived IDO1 can mediate immunosuppression independent of its enzyme activity. In this study, we aim to identify genes that are regulated by IDO1 in human glioblastoma cells, a gene expression regulatory function of IDO1 that is indepent of its enzyme activity.\"\n",
"!Series_overall_design\t\"U87 cells were either non-treated or treated with 20 nM human IDO1-specific siRNA for 16-18 hours, followed by human IFN-g (100 ng/ml) treatment for another 24 hours. Human IDO1 overexpressing U87 (O/E) cells were either non-treated or treated with 20 nM human IDO1-siRNA for 24 hours. At the end of experiment, total RNAs were extracted from the following 6 groups: 1) U87 NT; 2) U87 + IFNg; 3) U87 + siRNA; 4) U87 + siRNA + IFNg; 5) IDO1-O/E U87 NT; 6) IDO1-O/E U87 + siRNA and subject to microarray analysis. Each treatment group has two replicates. Experiment was repeated 3 times. Totally 36 samples were analyzed.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['tissue: brain'], 1: ['Sex: male']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "d33bb0c5",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "c7109983",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:21:56.925835Z",
"iopub.status.busy": "2025-03-25T05:21:56.925720Z",
"iopub.status.idle": "2025-03-25T05:21:56.931200Z",
"shell.execute_reply": "2025-03-25T05:21:56.930842Z"
}
},
"outputs": [],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this is a microarray study of gene expression\n",
"# in U87 glioblastoma cells under different treatment conditions\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# Looking at the sample characteristics dictionary\n",
"\n",
"# 2.1 Data Availability\n",
"# From the sample characteristics dictionary and background information:\n",
"# For trait (Glioblastoma): The dataset consists of U87 glioblastoma cells\n",
"# Everyone in the dataset has glioblastoma (cell line), so trait is constant\n",
"trait_row = None # Trait data is not useful for association study since it's constant\n",
"\n",
"# For age: No age information provided\n",
"age_row = None\n",
"\n",
"# For gender: There's 'Sex: male' at index 1\n",
"gender_row = 1\n",
"\n",
"# 2.2 Data Type Conversion functions\n",
"def convert_trait(value):\n",
" # Not used since trait_row is None, but defining for completeness\n",
" if value and \":\" in value:\n",
" trait_value = value.split(\":\", 1)[1].strip().lower()\n",
" if \"glioblastoma\" in trait_value:\n",
" return 1\n",
" else:\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" # Not used since age_row is None, but defining for completeness\n",
" if value and \":\" in value:\n",
" age_value = value.split(\":\", 1)[1].strip()\n",
" try:\n",
" return float(age_value)\n",
" except ValueError:\n",
" return None\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" if value and \":\" in value:\n",
" gender_value = value.split(\":\", 1)[1].strip().lower()\n",
" if \"female\" in gender_value:\n",
" return 0\n",
" elif \"male\" in gender_value:\n",
" return 1\n",
" else:\n",
" return None\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability (if trait_row is not None)\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Use the validate_and_save_cohort_info function for initial filtering\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction (if trait_row is not None)\n",
"# In this case, trait_row is None, so we skip this step\n",
"# But let's still include the code for completeness with a condition\n",
"\n",
"if trait_row is not None:\n",
" # Define the sample characteristics dictionary\n",
" sample_characteristics = {0: ['tissue: brain'], 1: ['Sex: male']}\n",
" \n",
" # Define the dataframe for clinical data\n",
" clinical_data = pd.DataFrame(list(sample_characteristics.values()), \n",
" index=sample_characteristics.keys(),\n",
" columns=[\"characteristics\"])\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the output\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Clinical data preview:\", preview)\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n"
]
},
{
"cell_type": "markdown",
"id": "954c15db",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "64efdc12",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:21:56.932328Z",
"iopub.status.busy": "2025-03-25T05:21:56.932220Z",
"iopub.status.idle": "2025-03-25T05:21:57.344446Z",
"shell.execute_reply": "2025-03-25T05:21:57.343972Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found data marker at line 69\n",
"Header line: \"ID_REF\"\t\"GSM5344433\"\t\"GSM5344434\"\t\"GSM5344435\"\t\"GSM5344436\"\t\"GSM5344437\"\t\"GSM5344438\"\t\"GSM5344439\"\t\"GSM5344440\"\t\"GSM5344441\"\t\"GSM5344442\"\t\"GSM5344443\"\t\"GSM5344444\"\t\"GSM5344445\"\t\"GSM5344446\"\t\"GSM5344447\"\t\"GSM5344448\"\t\"GSM5344449\"\t\"GSM5344450\"\t\"GSM5344451\"\t\"GSM5344452\"\t\"GSM5344453\"\t\"GSM5344454\"\t\"GSM5344455\"\t\"GSM5344456\"\t\"GSM5344457\"\t\"GSM5344458\"\t\"GSM5344459\"\t\"GSM5344460\"\t\"GSM5344461\"\t\"GSM5344462\"\t\"GSM5344463\"\t\"GSM5344464\"\t\"GSM5344465\"\t\"GSM5344466\"\t\"GSM5344467\"\t\"GSM5344468\"\n",
"First data line: \"AFFX-BkGr-GC03_st\"\t8.7173\t9.07515\t8.58114\t7.23554\t8.72152\t8.81188\t9.45325\t8.28566\t10.5923\t8.7657\t8.08258\t8.94281\t9.22912\t9.4206\t10.2476\t9.18288\t8.11761\t8.5086\t7.88719\t9.10813\t8.64127\t9.05306\t8.84052\t7.82312\t9.88867\t9.80206\t10.9257\t9.94282\t9.51898\t8.61312\t9.44908\t9.06246\t8.82998\t9.3153\t9.54165\t9.37893\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['AFFX-BkGr-GC03_st', 'AFFX-BkGr-GC04_st', 'AFFX-BkGr-GC05_st',\n",
" 'AFFX-BkGr-GC06_st', 'AFFX-BkGr-GC07_st', 'AFFX-BkGr-GC08_st',\n",
" 'AFFX-BkGr-GC09_st', 'AFFX-BkGr-GC10_st', 'AFFX-BkGr-GC11_st',\n",
" 'AFFX-BkGr-GC12_st', 'AFFX-BkGr-GC13_st', 'AFFX-BkGr-GC14_st',\n",
" 'AFFX-BkGr-GC15_st', 'AFFX-BkGr-GC16_st', 'AFFX-BkGr-GC17_st',\n",
" 'AFFX-BkGr-GC18_st', 'AFFX-BkGr-GC19_st', 'AFFX-BkGr-GC20_st',\n",
" 'AFFX-BkGr-GC21_st', 'AFFX-BkGr-GC22_st'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Get the file paths for the SOFT file and matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. First, let's examine the structure of the matrix file to understand its format\n",
"import gzip\n",
"\n",
"# Peek at the first few lines of the file to understand its structure\n",
"with gzip.open(matrix_file, 'rt') as file:\n",
" # Read first 100 lines to find the header structure\n",
" for i, line in enumerate(file):\n",
" if '!series_matrix_table_begin' in line:\n",
" print(f\"Found data marker at line {i}\")\n",
" # Read the next line which should be the header\n",
" header_line = next(file)\n",
" print(f\"Header line: {header_line.strip()}\")\n",
" # And the first data line\n",
" first_data_line = next(file)\n",
" print(f\"First data line: {first_data_line.strip()}\")\n",
" break\n",
" if i > 100: # Limit search to first 100 lines\n",
" print(\"Matrix table marker not found in first 100 lines\")\n",
" break\n",
"\n",
"# 3. Now try to get the genetic data with better error handling\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(gene_data.index[:20])\n",
"except KeyError as e:\n",
" print(f\"KeyError: {e}\")\n",
" \n",
" # Alternative approach: manually extract the data\n",
" print(\"\\nTrying alternative approach to read the gene data:\")\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" # Find the start of the data\n",
" for line in file:\n",
" if '!series_matrix_table_begin' in line:\n",
" break\n",
" \n",
" # Read the headers and data\n",
" import pandas as pd\n",
" df = pd.read_csv(file, sep='\\t', index_col=0)\n",
" print(f\"Column names: {df.columns[:5]}\")\n",
" print(f\"First 20 row IDs: {df.index[:20]}\")\n",
" gene_data = df\n"
]
},
{
"cell_type": "markdown",
"id": "3267a01d",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "b786db22",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:21:57.345903Z",
"iopub.status.busy": "2025-03-25T05:21:57.345785Z",
"iopub.status.idle": "2025-03-25T05:21:57.347833Z",
"shell.execute_reply": "2025-03-25T05:21:57.347487Z"
}
},
"outputs": [],
"source": [
"# Looking at the gene identifiers in the gene expression data\n",
"# The identifiers like 'AFFX-BkGr-GC03_st' are Affymetrix probe IDs, not human gene symbols\n",
"# These are microarray probe identifiers that need to be mapped to gene symbols\n",
"# The \"_st\" suffix indicates these are from an Affymetrix GeneChip ST (Sense Target) array\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "6f987d2b",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a3c2a092",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:21:57.348934Z",
"iopub.status.busy": "2025-03-25T05:21:57.348828Z",
"iopub.status.idle": "2025-03-25T05:22:08.393027Z",
"shell.execute_reply": "2025-03-25T05:22:08.392540Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Examining SOFT file structure:\n",
"Line 0: ^DATABASE = GeoMiame\n",
"Line 1: !Database_name = Gene Expression Omnibus (GEO)\n",
"Line 2: !Database_institute = NCBI NLM NIH\n",
"Line 3: !Database_web_link = http://www.ncbi.nlm.nih.gov/geo\n",
"Line 4: !Database_email = [email protected]\n",
"Line 5: ^SERIES = GSE175700\n",
"Line 6: !Series_title = Identification of indoleamine 2, 3-dioxygenase 1 (IDO1) regulated genes in human glioblastoma cell line U87\n",
"Line 7: !Series_geo_accession = GSE175700\n",
"Line 8: !Series_status = Public on Dec 10 2021\n",
"Line 9: !Series_submission_date = May 27 2021\n",
"Line 10: !Series_last_update_date = Dec 11 2021\n",
"Line 11: !Series_pubmed_id = 34479957\n",
"Line 12: !Series_summary = Transcriptome analysis of U87 cells under different treatments to identify IDO1-regulated genes\n",
"Line 13: !Series_summary = Indoleamine 2, 3-dioxygenase 1 (IDO1) is a tryptophan (Trp) catabolic enzyme that converts Trp into downstream kynurinine (Kyn). Many studies have indicated that IDO1 is a critical suppressive immune checkpoint molecule invovled in various types of cancer. Canonically, the underlying mechanism of IDO1 immunosuppressive role is related with its enzyme activity, that is the depletion of Trp and accumulation of Kyn lead to increased tumor infiltrating suppressive regulatory T cells. Recent studies, however, challenged this hypothesis and imply that tumor cell-derived IDO1 can mediate immunosuppression independent of its enzyme activity. In this study, we aim to identify genes that are regulated by IDO1 in human glioblastoma cells, a gene expression regulatory function of IDO1 that is indepent of its enzyme activity.\n",
"Line 14: !Series_overall_design = U87 cells were either non-treated or treated with 20 nM human IDO1-specific siRNA for 16-18 hours, followed by human IFN-g (100 ng/ml) treatment for another 24 hours. Human IDO1 overexpressing U87 (O/E) cells were either non-treated or treated with 20 nM human IDO1-siRNA for 24 hours. At the end of experiment, total RNAs were extracted from the following 6 groups: 1) U87 NT; 2) U87 + IFNg; 3) U87 + siRNA; 4) U87 + siRNA + IFNg; 5) IDO1-O/E U87 NT; 6) IDO1-O/E U87 + siRNA and subject to microarray analysis. Each treatment group has two replicates. Experiment was repeated 3 times. Totally 36 samples were analyzed.\n",
"Line 15: !Series_type = Expression profiling by array\n",
"Line 16: !Series_contributor = Derek,,Wainwright\n",
"Line 17: !Series_contributor = Matthew,,Genet\n",
"Line 18: !Series_contributor = Brenda,,Nguyen\n",
"Line 19: !Series_contributor = Lijie,,Zhai\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene annotation preview:\n",
"{'ID': ['TC0100006432.hg.1', 'TC0100006433.hg.1', 'TC0100006434.hg.1', 'TC0100006435.hg.1', 'TC0100006436.hg.1'], 'probeset_id': ['TC0100006432.hg.1', 'TC0100006433.hg.1', 'TC0100006434.hg.1', 'TC0100006435.hg.1', 'TC0100006436.hg.1'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'strand': ['+', '+', '+', '+', '+'], 'start': ['11869', '28046', '29554', '52473', '62948'], 'stop': ['14412', '29178', '31109', '53312', '63887'], 'total_probes': [10, 6, 10, 10, 10], 'gene_assignment': ['NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// OTTHUMT00000002844 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// OTTHUMT00000362751 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102', 'spopoybu.aAug10-unspliced // spopoybu // Transcript Identified by AceView // --- // ---', 'NR_036267 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000607096 // MIR1302-2 // microRNA 1302-2 // --- // 100302278', 'OTTHUMT00000471235 // OR4G4P // olfactory receptor, family 4, subfamily G, member 4 pseudogene // 1p36.33 // 79504', 'ENST00000492842 // OR4G2P // olfactory receptor, family 4, subfamily G, member 2 pseudogene // 15q26 // 26680 /// OTTHUMT00000003224 // OR4G11P // olfactory receptor, family 4, subfamily G, member 11 pseudogene // 1p36.33 // 403263'], 'mrna_assignment': ['NR_046018 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 (DDX11L1), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002844 // Havana transcript // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1[gene_biotype:transcribed_unprocessed_pseudogene transcript_biotype:transcribed_unprocessed_pseudogene] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000362751 // Havana transcript // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1[gene_biotype:transcribed_unprocessed_pseudogene transcript_biotype:processed_transcript] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000450305 // ENSEMBL // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 [gene_biotype:transcribed_unprocessed_pseudogene transcript_biotype:transcribed_unprocessed_pseudogene] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000456328 // ENSEMBL // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 [gene_biotype:transcribed_unprocessed_pseudogene transcript_biotype:processed_transcript] // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000001 // lncRNAWiki // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000001 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000002 // lncRNAWiki // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000002 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000003 // lncRNAWiki // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000003 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000004 // lncRNAWiki // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000004 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 0 // --- // 0', 'spopoybu.aAug10-unspliced // Ace View // Transcript Identified by AceView // chr1 // 100 // 100 // 0 // --- // 0', 'NR_036267 // RefSeq // Homo sapiens microRNA 1302-10 (MIR1302-10), microRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000607096 // ENSEMBL // microRNA 1302-2 [gene_biotype:miRNA transcript_biotype:miRNA] // chr1 // 100 // 100 // 0 // --- // 0 /// NR_036051_3 // RefSeq // Homo sapiens microRNA 1302-2 (MIR1302-2), microRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// NR_036266_3 // RefSeq // Homo sapiens microRNA 1302-9 (MIR1302-9), microRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// NR_036268_4 // RefSeq // Homo sapiens microRNA 1302-11 (MIR1302-11), microRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000469289 // ENSEMBL // havana:known chromosome:GRCh38:1:30267:31109:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000473358 // ENSEMBL // havana:known chromosome:GRCh38:1:29554:31097:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000469289.1 // lncRNAWiki // microRNA 1302-11 [Source:HGNC Symbol;Acc:HGNC:38246] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000473358.1 // lncRNAWiki // microRNA 1302-11 [Source:HGNC Symbol;Acc:HGNC:38246] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000607096.1 // lncRNAWiki // microRNA 1302-11 [Source:HGNC Symbol;Acc:38246] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002840 // Havana transcript // novel transcript // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002841 // Havana transcript // novel transcript // chr1 // 100 // 100 // 0 // --- // 0 /// uc031tlb.1 // UCSC Genes // microRNA 1302-2 [Source:HGNC Symbol;Acc:HGNC:35294] // chr1 // 100 // 100 // 0 // --- // 0 /// uc057aty.1 // UCSC Genes // N/A // chr1 // 100 // 100 // 0 // --- // 0 /// uc057atz.1 // UCSC Genes // N/A // chr1 // 100 // 100 // 0 // --- // 0 /// HG491497.1:1..712:ncRNA // RNACentral // long non-coding RNA OTTHUMT00000002840.1 (RP11-34P13.3 gene // chr1 // 100 // 100 // 0 // --- // 0 /// HG491498.1:1..535:ncRNA // RNACentral // long non-coding RNA OTTHUMT00000002841.2 (RP11-34P13.3 gene // chr1 // 100 // 100 // 0 // --- // 0 /// LM610125.1:1..138:precursor_RNA // RNACentral // microRNA hsa-mir-1302-9 precursor // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000011 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000012 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 0 // --- // 0 /// NR_036051.1:1..138:precursor_RNA // RNACentral // microRNA hsa-mir-1302-9 precursor // chr1 // 100 // 100 // 0 // --- // 0', 'OTTHUMT00000471235 // Havana transcript // lfactory receptor, family 4, subfamily G, member 4 pseudogene[gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene] // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000606857 // ENSEMBL // olfactory receptor, family 4, subfamily G, member 4 pseudogene [gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene] // chr1 // 100 // 100 // 0 // --- // 0', 'ENST00000492842 // ENSEMBL // olfactory receptor, family 4, subfamily G, member 11 pseudogene [gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene] // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000003224 // Havana transcript // olfactory receptor, family 4, subfamily G, member 11 pseudogene[gene_biotype:unprocessed_pseudogene transcript_biotype:unprocessed_pseudogene] // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000016 // lncRNAWiki // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 0 // --- // 0 /// NONHSAT000016 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 100 // 100 // 0 // --- // 0'], 'swissprot': ['NR_046018 // B7ZGX0 /// NR_046018 // B7ZGX2 /// NR_046018 // B7ZGX7 /// NR_046018 // B7ZGX8 /// OTTHUMT00000002844 // B7ZGX0 /// OTTHUMT00000002844 // B7ZGX2 /// OTTHUMT00000002844 // B7ZGX7 /// OTTHUMT00000002844 // B7ZGX8 /// OTTHUMT00000362751 // B7ZGX0 /// OTTHUMT00000362751 // B7ZGX2 /// OTTHUMT00000362751 // B7ZGX7 /// OTTHUMT00000362751 // B7ZGX8 /// ENST00000450305 // B7ZGX0 /// ENST00000450305 // B7ZGX2 /// ENST00000450305 // B7ZGX7 /// ENST00000450305 // B7ZGX8 /// ENST00000450305 // B4E2Z4 /// ENST00000450305 // B7ZGW9 /// ENST00000450305 // Q6ZU42 /// ENST00000450305 // B7ZGX3 /// ENST00000450305 // B5WYT6 /// ENST00000456328 // B7ZGX0 /// ENST00000456328 // B7ZGX2 /// ENST00000456328 // B7ZGX7 /// ENST00000456328 // B7ZGX8 /// ENST00000456328 // B4E2Z4 /// ENST00000456328 // B7ZGW9 /// ENST00000456328 // Q6ZU42 /// ENST00000456328 // B7ZGX3 /// ENST00000456328 // B5WYT6', '---', '---', '---', '---'], 'unigene': ['NR_046018 // Hs.714157 // testis| normal| adult /// OTTHUMT00000002844 // Hs.714157 // testis| normal| adult /// OTTHUMT00000362751 // Hs.714157 // testis| normal| adult /// ENST00000450305 // Hs.719844 // brain| testis| normal /// ENST00000450305 // Hs.714157 // testis| normal| adult /// ENST00000450305 // Hs.740212 // --- /// ENST00000450305 // Hs.712940 // bladder| bone marrow| brain| embryonic tissue| intestine| mammary gland| muscle| pharynx| placenta| prostate| skin| spleen| stomach| testis| thymus| breast (mammary gland) tumor| gastrointestinal tumor| glioma| non-neoplasia| normal| prostate cancer| skin tumor| soft tissue/muscle tissue tumor|embryoid body| adult /// ENST00000456328 // Hs.719844 // brain| testis| normal /// ENST00000456328 // Hs.714157 // testis| normal| adult /// ENST00000456328 // Hs.740212 // --- /// ENST00000456328 // Hs.712940 // bladder| bone marrow| brain| embryonic tissue| intestine| mammary gland| muscle| pharynx| placenta| prostate| skin| spleen| stomach| testis| thymus| breast (mammary gland) tumor| gastrointestinal tumor| glioma| non-neoplasia| normal| prostate cancer| skin tumor| soft tissue/muscle tissue tumor|embryoid body| adult', '---', '---', '---', '---'], 'GO_biological_process': ['ENST00000450305 // GO:0006139 // nucleobase-containing compound metabolic process // inferred from electronic annotation /// ENST00000456328 // GO:0006139 // nucleobase-containing compound metabolic process // inferred from electronic annotation', '---', '---', '---', '---'], 'GO_cellular_component': ['---', '---', '---', '---', '---'], 'GO_molecular_function': ['ENST00000450305 // GO:0003676 // nucleic acid binding // inferred from electronic annotation /// ENST00000450305 // GO:0005524 // ATP binding // inferred from electronic annotation /// ENST00000450305 // GO:0008026 // ATP-dependent helicase activity // inferred from electronic annotation /// ENST00000450305 // GO:0016818 // hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides // inferred from electronic annotation /// ENST00000456328 // GO:0003676 // nucleic acid binding // inferred from electronic annotation /// ENST00000456328 // GO:0005524 // ATP binding // inferred from electronic annotation /// ENST00000456328 // GO:0008026 // ATP-dependent helicase activity // inferred from electronic annotation /// ENST00000456328 // GO:0016818 // hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides // inferred from electronic annotation', '---', '---', '---', '---'], 'pathway': ['---', '---', '---', '---', '---'], 'protein_domains': ['---', '---', '---', '---', '---'], 'category': ['main', 'main', 'main', 'main', 'main'], 'locus type': ['Multiple_Complex', 'Coding', 'Multiple_Complex', 'Pseudogene', 'Multiple_Complex'], 'SPOT_ID': ['NR_046018 // RefSeq', 'spopoybu.aAug10-unspliced // Ace View', 'NR_036267 // RefSeq', 'OTTHUMT00000471235 // Havana transcript', 'ENST00000492842 // ENSEMBL']}\n"
]
}
],
"source": [
"# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
"import gzip\n",
"\n",
"# Look at the first few lines of the SOFT file to understand its structure\n",
"print(\"Examining SOFT file structure:\")\n",
"try:\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" # Read first 20 lines to understand the file structure\n",
" for i, line in enumerate(file):\n",
" if i < 20:\n",
" print(f\"Line {i}: {line.strip()}\")\n",
" else:\n",
" break\n",
"except Exception as e:\n",
" print(f\"Error reading SOFT file: {e}\")\n",
"\n",
"# 2. Now let's try a more robust approach to extract the gene annotation\n",
"# Instead of using the library function which failed, we'll implement a custom approach\n",
"try:\n",
" # First, look for the platform section which contains gene annotation\n",
" platform_data = []\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" in_platform_section = False\n",
" for line in file:\n",
" if line.startswith('^PLATFORM'):\n",
" in_platform_section = True\n",
" continue\n",
" if in_platform_section and line.startswith('!platform_table_begin'):\n",
" # Next line should be the header\n",
" header = next(file).strip()\n",
" platform_data.append(header)\n",
" # Read until the end of the platform table\n",
" for table_line in file:\n",
" if table_line.startswith('!platform_table_end'):\n",
" break\n",
" platform_data.append(table_line.strip())\n",
" break\n",
" \n",
" # If we found platform data, convert it to a DataFrame\n",
" if platform_data:\n",
" import pandas as pd\n",
" import io\n",
" platform_text = '\\n'.join(platform_data)\n",
" gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
" low_memory=False, on_bad_lines='skip')\n",
" print(\"\\nGene annotation preview:\")\n",
" print(preview_df(gene_annotation))\n",
" else:\n",
" print(\"Could not find platform table in SOFT file\")\n",
" \n",
" # Try an alternative approach - extract mapping from other sections\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" for line in file:\n",
" if 'ANNOTATION information' in line or 'annotation information' in line:\n",
" print(f\"Found annotation information: {line.strip()}\")\n",
" if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
" print(f\"Platform title: {line.strip()}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error processing gene annotation: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "b23fd413",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "2038e9f9",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:22:08.394376Z",
"iopub.status.busy": "2025-03-25T05:22:08.394266Z",
"iopub.status.idle": "2025-03-25T05:22:10.426787Z",
"shell.execute_reply": "2025-03-25T05:22:10.426302Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data after mapping:\n",
"Shape: (73312, 36)\n",
"First 5 gene symbols: ['A-', 'A-52', 'A-E', 'A-I', 'A-II']\n",
"Sample of gene expression values:\n",
" GSM5344433 GSM5344434 GSM5344435 GSM5344436 GSM5344437\n",
"Gene \n",
"A- 33.056562 33.313759 33.639137 33.114868 33.792869\n",
"A-52 19.138190 18.546140 19.292170 19.040045 19.265255\n",
"A-E 0.769540 0.632636 0.748591 0.716990 0.893139\n",
"A-I 3.273666 3.064109 3.105160 3.134560 3.060834\n",
"A-II 1.306777 1.430533 1.328100 1.298530 1.352080\n",
"\n",
"After normalizing gene symbols:\n",
"Shape: (34003, 36)\n",
"First 5 gene symbols: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/Glioblastoma/gene_data/GSE175700.csv\n"
]
}
],
"source": [
"# 1. Identify which columns in gene_annotation contain probe IDs and gene symbols\n",
"# From examining the gene_annotation dataframe:\n",
"# 'ID' column contains the probe IDs that match the gene expression data\n",
"# 'gene_assignment' column contains gene symbol information, but needs to be processed\n",
"\n",
"# 2. Create a gene mapping dataframe with probe IDs and gene symbols\n",
"# First, let's extract the columns and rename gene_assignment to 'Gene' as required by apply_gene_mapping\n",
"mapping_data = gene_annotation[['ID', 'gene_assignment']].copy()\n",
"mapping_data = mapping_data.rename(columns={'gene_assignment': 'Gene'})\n",
"\n",
"# 3. Apply the mapping to convert probe-level measurements to gene expression\n",
"# Use the apply_gene_mapping function, which will:\n",
"# - Extract human gene symbols from the gene_assignment text\n",
"# - Handle the many-to-many mapping between probes and genes\n",
"# - Split probe values proportionally when a probe maps to multiple genes\n",
"# - Sum all probe contributions for each gene\n",
"gene_data = apply_gene_mapping(gene_data, mapping_data)\n",
"\n",
"# Add validation to check if the mapping was successful\n",
"if gene_data.empty:\n",
" print(\"Warning: No genes were successfully mapped. Check the gene annotation format.\")\n",
"else:\n",
" # Preview the results\n",
" print(\"Gene expression data after mapping:\")\n",
" print(f\"Shape: {gene_data.shape}\")\n",
" print(f\"First 5 gene symbols: {list(gene_data.index[:5])}\")\n",
" print(\"Sample of gene expression values:\")\n",
" print(gene_data.iloc[:5, :5])\n",
"\n",
" # Normalize gene symbols in the index to handle synonyms and aggregate rows with same symbol\n",
" gene_data = normalize_gene_symbols_in_index(gene_data)\n",
" print(\"\\nAfter normalizing gene symbols:\")\n",
" print(f\"Shape: {gene_data.shape}\")\n",
" print(f\"First 5 gene symbols: {list(gene_data.index[:5])}\")\n",
"\n",
" # Save the gene expression data\n",
" os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
" gene_data.to_csv(out_gene_data_file)\n",
" print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "d48796b6",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "632e63c4",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:22:10.428159Z",
"iopub.status.busy": "2025-03-25T05:22:10.428035Z",
"iopub.status.idle": "2025-03-25T05:22:24.117604Z",
"shell.execute_reply": "2025-03-25T05:22:24.117197Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loaded gene data shape: (34003, 36)\n",
"Normalized gene data shape: (34003, 36)\n",
"Sample gene symbols after normalization: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2ML1-AS1', 'A2ML1-AS2', 'A2MP1', 'A3GALT2']\n",
"\n",
"Creating mock clinical data - this is a cell line experiment with no clinical variation\n",
"Mock clinical data shape: (36, 1)\n",
"Mock clinical data preview:\n",
" Glioblastoma\n",
"GSM5344433 1\n",
"GSM5344434 1\n",
"GSM5344435 1\n",
"GSM5344436 1\n",
"GSM5344437 1\n",
"Linked data shape: (36, 34004)\n",
"Linked data preview (first 5 rows, first 5 columns):\n",
" Glioblastoma A1BG A1BG-AS1 A1CF A2M\n",
"GSM5344433 1 3.306317 2.422265 0.951533 4.913935\n",
"GSM5344434 1 3.350438 2.392850 0.988175 4.899650\n",
"GSM5344435 1 3.103491 2.201615 0.952673 4.918110\n",
"GSM5344436 1 3.343382 2.464650 0.902613 4.953450\n",
"GSM5344437 1 3.484879 2.545615 1.205907 5.221790\n",
"\n",
"Missing values before handling:\n",
" Trait (Glioblastoma) missing: 0 out of 36\n",
" Genes with >20% missing: 0\n",
" Samples with >5% missing genes: 0\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (36, 34004)\n",
"\n",
"Evaluating trait bias:\n",
"All samples in this dataset are glioblastoma cell lines under different experimental conditions.\n",
"Since there is no variation in the trait, this dataset is biased and not suitable for associational studies.\n",
"This dataset is not usable for trait-gene association studies as it lacks trait variation.\n"
]
}
],
"source": [
"# 1. Load the gene expression data saved in step 6\n",
"gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n",
"print(f\"Loaded gene data shape: {gene_data.shape}\")\n",
"\n",
"# Normalize gene symbols using NCBI Gene database (already done in step 6, so we don't need to do it again)\n",
"# We'll use the normalized gene data directly from the previous step\n",
"normalized_gene_data = gene_data\n",
"print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
"print(f\"Sample gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n",
"\n",
"# 2. Create mock clinical data since this dataset doesn't have real clinical features\n",
"# Based on the background information, this is a cell line study with no clinical variation\n",
"print(\"\\nCreating mock clinical data - this is a cell line experiment with no clinical variation\")\n",
"# Create a clinical DataFrame with just the trait column (all samples have glioblastoma)\n",
"sample_ids = normalized_gene_data.columns\n",
"mock_clinical_data = pd.DataFrame(\n",
" {trait: [1] * len(sample_ids)}, # All samples are glioblastoma cell lines\n",
" index=sample_ids\n",
")\n",
"print(f\"Mock clinical data shape: {mock_clinical_data.shape}\")\n",
"print(\"Mock clinical data preview:\")\n",
"print(mock_clinical_data.head())\n",
"\n",
"# Save the mock clinical data\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"mock_clinical_data.to_csv(out_clinical_data_file)\n",
"\n",
"# 3. Link clinical and genetic data\n",
"linked_data = pd.concat([mock_clinical_data, normalized_gene_data.T], axis=1)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
"if linked_data.shape[1] >= 5:\n",
" print(linked_data.iloc[:5, :5])\n",
"else:\n",
" print(linked_data.head())\n",
"\n",
"# 4. Handle missing values\n",
"print(\"\\nMissing values before handling:\")\n",
"print(f\" Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
"gene_cols = [col for col in linked_data.columns if col != trait]\n",
"if gene_cols:\n",
" print(f\" Genes with >20% missing: {sum(linked_data[gene_cols].isna().mean() > 0.2)}\")\n",
" print(f\" Samples with >5% missing genes: {sum(linked_data[gene_cols].isna().mean(axis=1) > 0.05)}\")\n",
"\n",
"cleaned_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
"\n",
"# 5. Evaluate bias in trait and demographic features\n",
"is_trait_biased = True # Set to True since all samples have the same trait value (all are glioblastoma)\n",
"print(\"\\nEvaluating trait bias:\")\n",
"print(f\"All samples in this dataset are glioblastoma cell lines under different experimental conditions.\")\n",
"print(f\"Since there is no variation in the trait, this dataset is biased and not suitable for associational studies.\")\n",
"\n",
"# 6. Final validation and save\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=len(normalized_gene_data) > 0, \n",
" is_trait_available=True, # The trait is available, but lacks variation\n",
" is_biased=is_trait_biased, \n",
" df=cleaned_data,\n",
" note=\"Dataset contains gene expression from glioblastoma cell line U87 under different treatments, but lacks trait variation.\"\n",
")\n",
"\n",
"# 7. Since this is a cell line experiment without clinical variation,\n",
"# we won't save the linked data as it's not suitable for trait-gene association studies\n",
"if is_usable and len(cleaned_data) > 0:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" cleaned_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"This dataset is not usable for trait-gene association studies as it lacks trait variation.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|