File size: 7,499 Bytes
0d7438c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "a66d0751",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:50:24.335964Z",
     "iopub.status.busy": "2025-03-25T05:50:24.335642Z",
     "iopub.status.idle": "2025-03-25T05:50:24.500372Z",
     "shell.execute_reply": "2025-03-25T05:50:24.499936Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Hypertrophic_Cardiomyopathy\"\n",
    "\n",
    "# Input paths\n",
    "tcga_root_dir = \"../../input/TCGA\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Hypertrophic_Cardiomyopathy/TCGA.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Hypertrophic_Cardiomyopathy/gene_data/TCGA.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Hypertrophic_Cardiomyopathy/clinical_data/TCGA.csv\"\n",
    "json_path = \"../../output/preprocess/Hypertrophic_Cardiomyopathy/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1e311673",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "4dff5875",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:50:24.501825Z",
     "iopub.status.busy": "2025-03-25T05:50:24.501687Z",
     "iopub.status.idle": "2025-03-25T05:50:24.508006Z",
     "shell.execute_reply": "2025-03-25T05:50:24.507623Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Available TCGA subdirectories: ['TCGA_Liver_Cancer_(LIHC)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Thymoma_(THYM)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', '.DS_Store', 'CrawlData.ipynb', 'TCGA_Acute_Myeloid_Leukemia_(LAML)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)']\n",
      "No suitable directory found for Hypertrophic_Cardiomyopathy.\n",
      "Skipping this trait as no suitable data was found in TCGA.\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "\n",
    "# 1. List all subdirectories in the TCGA root directory\n",
    "subdirectories = os.listdir(tcga_root_dir)\n",
    "print(f\"Available TCGA subdirectories: {subdirectories}\")\n",
    "\n",
    "# The target trait is Hutchinson-Gilford Progeria Syndrome\n",
    "# Define key terms relevant to Progeria Syndrome\n",
    "key_terms = [\"progeria\", \"aging\", \"premature\", \"gilford\", \"hutchinson\", \"skin\", \"aging\", \"lamin\"]\n",
    "\n",
    "# Initialize variables for best match\n",
    "best_match = None\n",
    "best_match_score = 0\n",
    "min_threshold = 1  # Require at least 1 matching term\n",
    "\n",
    "# Convert trait to lowercase for case-insensitive matching\n",
    "target_trait = trait.lower()  # \"hutchinson-gilford_progeria_syndrome\"\n",
    "\n",
    "# Search for relevant directories\n",
    "for subdir in subdirectories:\n",
    "    if not os.path.isdir(os.path.join(tcga_root_dir, subdir)) or subdir.startswith('.'):\n",
    "        continue\n",
    "        \n",
    "    subdir_lower = subdir.lower()\n",
    "    \n",
    "    # Check for exact matches with key parts of the syndrome name\n",
    "    if \"progeria\" in subdir_lower or \"hutchinson\" in subdir_lower or \"gilford\" in subdir_lower:\n",
    "        best_match = subdir\n",
    "        print(f\"Found exact match: {subdir}\")\n",
    "        break\n",
    "    \n",
    "    # Calculate score based on key terms\n",
    "    score = 0\n",
    "    for term in key_terms:\n",
    "        if term.lower() in subdir_lower:\n",
    "            score += 1\n",
    "    \n",
    "    # Update best match if score is higher than current best\n",
    "    if score > best_match_score and score >= min_threshold:\n",
    "        best_match_score = score\n",
    "        best_match = subdir\n",
    "        print(f\"Found potential match: {subdir} (score: {score})\")\n",
    "\n",
    "# Handle the case where a match is found\n",
    "if best_match:\n",
    "    print(f\"Selected directory: {best_match}\")\n",
    "    \n",
    "    # 2. Get the clinical and genetic data file paths\n",
    "    cohort_dir = os.path.join(tcga_root_dir, best_match)\n",
    "    clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)\n",
    "    \n",
    "    print(f\"Clinical file: {os.path.basename(clinical_file_path)}\")\n",
    "    print(f\"Genetic file: {os.path.basename(genetic_file_path)}\")\n",
    "    \n",
    "    # 3. Load the data files\n",
    "    clinical_df = pd.read_csv(clinical_file_path, sep='\\t', index_col=0)\n",
    "    genetic_df = pd.read_csv(genetic_file_path, sep='\\t', index_col=0)\n",
    "    \n",
    "    # 4. Print clinical data columns for inspection\n",
    "    print(\"\\nClinical data columns:\")\n",
    "    print(clinical_df.columns.tolist())\n",
    "    \n",
    "    # Print basic information about the datasets\n",
    "    print(f\"\\nClinical data shape: {clinical_df.shape}\")\n",
    "    print(f\"Genetic data shape: {genetic_df.shape}\")\n",
    "    \n",
    "    # Check if we have both gene and trait data\n",
    "    is_gene_available = genetic_df.shape[0] > 0\n",
    "    is_trait_available = clinical_df.shape[0] > 0\n",
    "    \n",
    "else:\n",
    "    print(f\"No suitable directory found for {trait}.\")\n",
    "    is_gene_available = False\n",
    "    is_trait_available = False\n",
    "\n",
    "# Record the data availability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=\"TCGA\",\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Exit if no suitable directory was found\n",
    "if not best_match:\n",
    "    print(\"Skipping this trait as no suitable data was found in TCGA.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}